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3D Reconstruction in Scattering Media
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Abstract: This paper discusses three-dimensional (3D) reconstruction in scattering media. 3D reconstruction from
two-dimensional images is important in computer vision. However, images captured in scattering media, such as fog
or murky water, degrade due to light scattering and attenuation caused by suspended particles. Conventional 3D re-
construction methods are affected by the image degradation in scattering media. This paper presents image formation
models for such degradation and proposes methods to enable 3D reconstruction in scattering media. 3D reconstruction
methods can be divided into three categories on the basis of their principles, i.e., disparity-, shading-, and time-of-flight-
based method. Each method is extended for scattering media with an appropriate physics-based scattering model. The
effectiveness of the proposed methods is evaluated on real data captured in foggy scenes and underwater.
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1. Introduction
In the field of computer vision, tasks to obtain three-

dimensional (3D) information such as an object shape, surface
normals, and scene depth are referred to as 3D reconstruction
methods. The typical input of the 3D reconstruction methods is
a single or multiple two-dimensional (2D) images captured by
RGB cameras. Existing 3D reconstruction methods are basically
designed for clear scenes. On the other hand, under bad weather
conditions such as foggy scenes, or through murky water, the vis-
ibility of the scene is degraded. Figure 1 shows an example of
an image captured under a foggy scene. Such environments are
referred to as scattering media. Light traveling through scatter-
ing media get scattered and attenuated by suspended particles,
and thus the contrast of images captured in scattering media is
reduced.

This paper discusses 3D reconstruction in scattering media.
This enables many applications in difficult scenes, for exmaple,
drones and self-driving vehicles under bad weather, or au-
tonomous underwater vehicles. However, conventional 3D recon-
struction methods are affected by the image degradation in scat-
tering media. In this paper, we present image formation models
with such degradation and propose methods to enable 3D recon-
struction in scattering media.

First of all, we overview existing 3D reconstruction methods.
We divide the 3D reconstruction methods into three categories on
the basis of their principles: Disparity-based methods use mul-
tiple cameras to capture multiple 2D images, which are taken as
input for the methods. If a system consists of two or more than
three cameras, it is called stereo or multi-view stereo (MVS) [8],
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Fig. 1 Image captured under bad weather

respectively. The principle of 3D reconstruction of these methods
is triangulation, i.e., if the positional relationship between cam-
reas is known, corresponding pixels computed on the basis of fea-
ture matching yield 3D points. Shading-based methods lever-
age brightness on object surfaces to infer the 3D shape. As well
as the disparity-based methods, these methods also take 2D im-
ages as input, while they directly use the pixel intensity of the in-
put images. Intuitively, the observed image is brightest when the
surface normal is parallel to the lighting direction. Photometric
stereo [32] estimates surface normals from multiple images cap-
tured under different lighting conditions. Time-of-Flight (ToF)
-based methods use special sensors that are designed to measure
scene depth. A light source within the ToF sensor emits a signal
into a target scene and the sensor receives the reflected light. The
scene depth can be computed using the time difference between
the emitted and received signals. Recently, off-the-shelf ToF cam-
eras such as the Microsoft Kinect for Windows v2 (Kinect v2) are
available at a low cost.

As mentioned above, image degradation in scattering media
reduces the accuracy of 3D reconstruction. For example, feature
extraction and feature matching in the disparity-based methods
become difficult due to the decrease of image contrast. For the
shading- and ToF-based methods, light attenuation and undesir-
able scattered light observed at the camera has a significant influ-
ence because they directly use pixel intensity for 3D reconstruc-
tion. It is necessary to use an appropriate image formation model
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Fig. 2 Estimated depth in scattering media. (a) Image captured in actual
foggy scene. (b) Output depth of fine-tuned MVDepthNet [31] with
ordinary cost volume. (c) Output depth of network with our dehazing
cost volume.

in scattering media depending on an applied 3D reconstruction
method.

In summary, this paper discusses three methods, i.e., disparity-,
shading-, and ToF-based methods, with physics-based scattering
models for the application in scattering media. As a disparity-
based method, we propose MVS in scattering media, where the
system consists of only cameras. The atmospheric scattering
model [18], which is a simple linear model, can be used as the
image formation model for such a camera-only system. As a
shading-based method, we propose photometric stereo in scat-
tering media, which requires multiple active light sources. The
single scattering model [26] can be adopted to describe the obser-
vation under active light sources in scattering media. As a ToF-
based method, we propose depth measurement with a coninuous-
wave ToF camera in scattering media. The single scattering
model is also used for the image formation model, while the ob-
servation is represented in amplitude and phase space.

2. Multi-view stereo in scattering media

In this section, we discuss MVS in scattering media as a
disparity-based 3D reconstruction method. MVS methods [8] are
used for reconstructing the 3D geometry of a scene from multiple
images. They exploits the dense pixel correspondence between
multiple images.

We discuss a learning-based MVS method in scattering media.
Learning-based MVS methods have recently been proposed and
provided highly accurate results [12], [13], [34]. The proposed
method is based on MVDepthNet [31], which is one such MVS
method.

MVDepthNet estimates scene depth by taking a cost volume as
input for the network. The cost volume is based on a plane sweep
volume [5], i.e., it is constructed by sweeping a fronto-parallel
plane to a camera in the scene and evaluates the photometric con-
sistency between multiple cameras under the assumptions that the
scene lies on each plane. However, an image captured in scatter-
ing media degrades; thus, using the ordinary cost volume leads to
undesirable results, as shown in Fig. 2(b).

To solve this problem, we propose a novel cost volume for
scattering media, called the dehazing cost volume. Degradation
due to a scattering medium depends on the scene depth, and
our dehazing cost volume can restore images with such depth-
dependent degradation and compute the effective cost of photo-
metric consistency simultaneously. It enables robust 3D recon-
struction in scattering media, as shown in Fig. 2(c).

2.1 Related work

There have been several works for applying disparity-based
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Fig. 3 Overview of MVS in scattering media. Input of network is reference
image captured in scattering medium and our dehazing cost volume.
Our dehazing cost volume is constructed from reference image and
source images. Network architecture of our method is same as that
of MVDepthNet [31], which has encoder-decoder with skip connec-
tions. Output of network is disparity maps (inverse depth maps) at
different resolutions.

methods to scattering media, e.g., binocular stereo methods in
scattering media [3], [24] The most related method to ours is the
MVS method proposed by Li et al. [14]. These previous studies
[3], [14] designed photometric consistency measures considering
the scattering effect. However, this requires scene depth because
degradation due to scattering media depends on this depth. Thus,
they relied on iterative implementation of an MVS method and
dehazing, which leads to large computation cost. In contrast, our
dehazing cost volume can solve this chicken-and-egg problem by
computing the scattering effect in the cost volume. The scene
depth is then estimated effectively by taking the cost volume as
input for a CNN, making fast inference possible.

2.2 MVS with dehazing cost volume in scattering media

We first overview the proposed method then discuss the or-
dinary cost volume and our dehazing cost volume, followed by
implementation details.
2.2.1 Overview

The proposed method is formulated as depth-map estimation,
i.e., given multiple cameras, we estimate a depth map for one of
the cameras. We refer to a target camera to estimate a depth map
as a reference camera r and the other cameras as source cameras
s ∈ {1, · · · , S }, and images captured with these cameras are de-
noted as a reference image Ir and source images Is, respectively.

An overview of the proposed method is shown in Fig. 3. Our
dehazing cost volume is constructed from a hazy reference image
and source images captured in a scattering medium. The network
takes the reference image and our dehazing cost volume as input
then outputs a disparity map (inverse depth map) of the reference
image. The network architecture is the same as that of MVDepth-
Net [31], while the ordinary cost volume used in MVDepthNet is
replaced with our dehazing cost volume for scattering media.
2.2.2 Dehazing cost volume

Before explaining our dehazing cost volume, we show the
computation of the ordinary cost volume in Fig. 4(a). We first
sample the 3D space in the reference-camera coordinate system
by sweeping a fronto-parallel plane. We then back-project source
images onto each sampled plane. Finally, we take the residual be-
tween the reference image and each warped source image, which
corresponds to the cost of photometric consistency on the hypoth-
esis that the scene exists on the plane. Let the image size be W×H
and number of sampled depths be N. We denote the cost volume
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Fig. 4 Cost volume and dehazing cost volume. (a) Ordinary cost volume
is constructed by sweeping fronto-parallel plane in reference-camera
coordinate. Cost of photometric consistency is simply computed as
residual between reference image and warped source image on each
swept plane z = zi. (b) In our dehazing cost volume, reference im-
age is dehazed using sampled depth, zi, which is constant over all
pixels. Source image is dehazed using depth of swept plane from
source-camera view, then dehazed source image is back-projected
onto plane. Cost is computed by taking residual between both de-
hazed images.

as V : {1, · · · ,W} × {1, · · · ,H} × {1, · · · ,N} → R, and each ele-
ment of the cost volume is given as follows:

V(u, v, i) =
1
S

∑
s

‖Ir(u, v) − Is(πr→s(u, v; zi))‖1, (1)

where zi is the depth value of the i-th plane. The operator
πr→s : R2 → R2 projects the camera pixel (u, v) of the reference
camera r onto the source image Is with the camera parameters
and given depth. The cost volume evaluates the photometric con-
sistency of each pixel with respect to the sampled depth; thus, the
element of the cost volume with correct depth ideally becomes
zero.

An image captured under overcast sky illumination in foggy
scenes can be modeled with the atmospheric scattering model
[18]. Let an RGB value at the pixel (u, v) of a degraded image cap-
tured in scattering media and its latent clear image be I(u, v) ∈ R3

and J(u, v) ∈ R3, respectively. We assume that the pixel value of
each color channel is within 0 and 1. The atmospheric scattering
model is given by

I(u, v) = J(u, v)e−βz(u,v) + A(1 − e−βz(u,v)), (2)

where z(u, v) ∈ R is the depth at pixel (u, v), β ∈ R is a scattering
coefficient that represents the density of a medium, and A ∈ R3

is global airlight. For simplicity, we assume that A is given by
A = [A, A, A]�, A ∈ R, i.e., the color of scattering media is achro-
matic (gray or white). This degradation leads to undesirable re-
sults with the ordinary cost volume defined in Eq. (1).

Figure 4(b) shows the computation of our dehazing cost vol-
ume. A reference image is dehazed directly using the depth of a
swept plane. A source image is dehazed using the swept plane
from a source camera view, then the dehazed source image is
warped to the reference-camera coordinate system. Similar to
the ordinary cost volume, we define our dehazing cost volume as
D : {1, · · · ,W} × {1, · · · ,H} × {1, · · · ,N} → R, and each element
of our dehazing cost volume is given as

D(u, v, i) =
1
S

∑
s

‖Jr(u, v; zi) − Js(πr→s(u, v; zi))‖1, (3)

where Jr(u, v; zi) and Js(πt→s(u, v; zi)) are dehazed reference and
source images. From Eq. (2), if A and β are estimated before-
hand, they are computed as follows:

Jr(u, v; zi) =
Ir(u, v) − A

e−βzi
+ A, (4)

Js(πr→s(u, v; zi)) =
Is(πr→s(u, v; zi)) − A

e−βζs,i(πr→s(u,v;zi))
+ A. (5)

As shown in Fig. 4(b), the reference image is dehazed using the
swept plane with depth zi, whose depth map is denoted as zi. On
the other hand, the source image is dehazed using ζ s,i, which is a
depth map of the swept plane from the source camera view. Our
dehazing cost volume exploits the dehazed images with much
more contrast than the degraded ones; thus, the computed cost
is robust even in scattering media. In accordance with this defi-
nition of our dehazing cost volume, the photometric consistency
between the latent clear images is preserved.

Our dehazing cost volume restores an image using all depth
hypotheses; thus, image dehazing with depth that greatly differs
from the correct scene depth results in an unexpected image. The
extreme case is when a dehazed image has negative values at cer-
tain pixels. This includes the possibility that a computed cost
using Eq. (3) becomes very large. To avoid such cases, we revise
the definition of our dehazing cost volume as follows:

D(u, v, i) =
1
S

∑
s

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

‖Jr(u, v; zi) − Js(πr→s(u, v; zi))‖1
i f 0 ≤ Jc

r (u, v; zi) ≤ 1 and
0 ≤ Jc

s (πr→s(u, v; zi)) ≤ 1 c ∈ {r, g, b}
γ otherwise,

(6)

where Jc
r (u, v; zi) and Jc

s (πr→s(u, v; zi)) are the pixel values of the
channel c ∈ {r, g, b} of the reconstructed clear images. A constant
γ is a parameter that is set as a penalty cost when the dehazed re-
sult is not contained in the domain of definition. This makes the
training of the network stable because our dehazing cost volume
is upper bounded by γ. We can also reduce the search space of
depth by explicitly giving the penalty cost. In this study, we set
γ = 3, which is the maximum value of the ordinary cost volume
defined in Eq. (1) when the pixel value of each color channel is
within 0 and 1.

Figure 5(b) visualizes the ordinary cost volume and our dehaz-
ing cost volume at the red point in (a). Each dot in (b) indicates a
minimum cost, and the red dot in (b) indicates ground-truth depth.
The curve of the cost volume is smoother than that of our dehaz-
ing cost volume due to the degradation in image contrast, which
leads to a depth error. Our dehazing cost volume can also reduce
the search space with the dehazing constraint γ on the left part in
(b), where its cost value is constantly large.

c© 2021 Information Processing Society of Japan 3

Vol.2021-NL-248 No.9
Vol.2021-CVIM-226 No.9

2021/5/20



IPSJ SIG Technical Report

(a) (b)

(c) (d)

Fig. 5 Visualization of our dehazing cost volume. (b) Computed ordinary
cost volume and our dehazing cost volume at red point in (a). In (b),
red dot indicates location of ground-truth, and blue and green dots
indicate minimum value of ordinary cost volume and our dehazing
cost volume, respectively. (c) and (d) Output depth of MVDepth-
Net [31] with ordinary cost volume and our dehazing cost volume,
respectively.

Table 1 Network architecture of airlight estimator. Network takes single
RGB image as input then outputs single scalar value A. Stride of
convolution layers from conv1 to conv6 is 2. Each convolution
layer except for conv8 has batch normalization and ReLU activa-
tion. glb avg pool denotes global average pooling layer.

Layer Kernel Channel Input
conv1 7 3/16 I
conv2 5 16/32 conv1
conv3 3 32/64 conv2
conv4 3 64/128 conv3
conv5 3 128/256 conv4
conv6 3 256/256 conv5

glb avg pool - 256/256 conv6
conv7 1 256/64 glb avg pool
conv8 1 64/1 conv7

Fig. 6 Error histogram of our airlight estimator on synthesized test dataset.

2.2.3 Loss function

As shown in Fig. 3, a network takes a reference image and our
dehazing cost volume as input. The network architecture is the
same as that of MVDepthNet [31]. The network outputs dispar-
ity maps at different resolutions. The training loss is defined as
the sum of L1 loss between these estimated disparity maps and
the ground-truth disparity map.

2.3 Scattering parameter estimation

As mentioned in Section 2.2.2, our dehazing cost volume re-
quires scattering parameters, airlight A and a scattering coeffi-
cient β in Eq. (5). This section discusses the simultaneous esti-
mation of the scattering parameters and depth with our dehazing
cost volume.
2.3.1 Estimation of airlight A

We first describe the estimation of A. Although methods for
estimating A from a single image have been proposed, we im-
plement and evaluate a CNN-based estimator, the architecture of
which is shown in Table 1. It takes a single RGB image as input

(a) (b)

(c) (d) (e)

Fig. 7 Consideration of depth discontinuities. (a) Input image. (b) Output
depth with ground-truth scattering parameters. Depth discontinuities
exist in red boxed region. Zoom of regions in (a) and (b) are shown in
(c) and (d), respectively. (e) Depth map of sparse 3D point cloud ob-
tained by SfM in this region. It is uncertain whether feature point ob-
tained by SfM is located on background or foreground around depth
discontinuities. This includes possibility that output depths of net-
work and SfM are completely different such as right pixel in (e).

to yield 1D output A. For training and test, we used the synthe-
sized image dataset described in Section 2.4.1. Figure 6 shows
the L1 error histogram of A on the test dataset. In this dataset, the
value of A is randomly sampled from [0.7, 1.0], indicating that
the estimation of A can be achieved from a single image.
2.3.2 Difficulty of estimating scattering coefficient β

In contrast to A, it is difficult to estimate β from a single image.
As shown in Eq. (2), image degradation due to scattering me-
dia depends on β and scene depth z through e−βz with the scale-
invariant property, i.e., the pairs of kβ and (1/k)z for arbitrary
k ∈ R lead to the same degradation. Since the depth scale cannot
be determined from a single image, the estimation of the scatter-
ing coefficient from a single image is infeasible.

In response to this problem, Li et al. [14] proposed a method
for estimating β from multi-view images. With this method, it is
assumed that a sparse 3D point cloud and camera parameters can
be obtained by SfM from noticeable image edges even in scatter-
ing media. From a pixel pair and corresponding 3D point, two
equations can be obtained from Eq. (2). Additionally, if we as-
sume that the pixel value of the latent clear image is equal to
the corresponding pixel value of the other clear image, this si-
multaneous equations can be solved for β. However, this multi-
view-based method involves several strong assumptions. First,
the pixel value of the latent clear image should be completely
equal to the corresponding pixel value of the other clear image.
Second, the values of the observed pixels should be sufficiently
different to ensure numerical stability. This assumption means
the depth values of both images should be sufficiently different,
and it is sometimes very difficult to find such points. Finally, A is
assumed to be properly estimated beforehand. These limitations
indicate that we should avoid using the pixel values directly for β
estimation.
2.3.3 Estimation with geometric information

In this study, the scattering coefficient was estimated without
using pixel intensity. Our method ensures the correctness of the
output depth with the estimated scattering coefficient.

As well as the MVS method proposed by Li et al. [14], a sparse
3D point cloud is assumed to be obtained by SfM in advance. Al-
though our dehazing cost volume, which is taken as input for a
network, requires A and β, this means that the network can be re-
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(a) (b)

(c) (d)

Fig. 8 Example of parameter search. (a) Input image. (b) Sparse depth map
obtained by SfM. (c) Error plot with respect to β. (d) Final output
depth.

garded as a function that takes A and β as variables and outputs
a depth map. Now, the network with fixed parameters is denoted
by F , and the output depth can be written by zA,β = F (A, β) as a
function of A and β. Note that for simplicity, we omitted the input
image from the notation. Let a depth map that corresponds to a
sparse 3D point cloud by SfM be zs f m. The scattering parameters
are estimated by solving the following optimization problem:

A∗, β∗ = argmin
A,β

∑
u,v

m(u, v)ρ
(
zs f m(u, v), zA,β(u, v)

)
, (7)

where z∗(u, v) denotes a value at the pixel (u, v) of a depth map
z∗, and m(u, v) is an indicator function, where m(u, v) = 1 if a 3D
point estimated by SfM is observed at pixel (u, v), and m(u, v) = 0
otherwise. A function ρ computes the residual between the ar-
gument depths. Therefore, the solution of Eq. (7) minimizes the
difference between the output depth of the network and the sparse
depth map obtained by SfM. A final dense depth map can then
be computed with the estimated A∗ and β∗, i.e., z∗ = F (A∗, β∗).
Differing from the previous method [14], our method does not
require pixel intensity because the optimization is based on only
geometric information, and the final output depth is ensured to
match at least the sparse depth map obtained by SfM.

We use the following function as ρ to measure the difference
between depth values:

ρ
(
zs f m(u, v), zA,β(u, v)

)
= min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|zs f m(u, v) − zA,β(u, v)|,
|zs f m(u, v) − zA,β(u + δ, v)|,
|zs f m(u, v) − zA,β(u − δ, v)|,
|zs f m(u, v) − zA,β(u, v + δ)|,
|zs f m(u, v) − zA,β(u, v − δ)|

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.(8)

As shown in Fig. 7, it is uncertain whether the feature point ob-
tained by SfM is located on the background or foreground around
depth discontinuities. This includes the possibility that the output
depths of the network and SfM are completely different. To sup-
press the effect of this error on the scattering parameter estima-
tion, we use the neighboring pixels when calculating the residual
of the depths. As shown in Eq. (8), we use the depth values of
the pixels at a distance of δ pixel in the horizontal and vertical
direction. The minimum value among these residuals is used for
the optimization. Note that we set δ = 5 pixels in this study.
2.3.4 Solver

The network with our dehazing cost volume is differentiable

Algorithm 1 Depth and scattering parameter estimation
Require: Reference image Ir , source images {Is |s ∈ {1, · · · , S }}, depth esti-

mator F , airlight estimator G, βmin, βmax,ΔA, Δβ, and zs f m

Ensure: A∗, β∗, z∗

A0 ← G(Ir)
β0 ← argmin

β∈[βmin ,βmax]

∑
u,v m(u, v)ρ

(
zs f m(u, v), zA0 ,β(u, v)

)
where zA,β = F (A, β; Ir , {I1, · · · , IS })
A∗, β∗ ← argmin

A∈ΩA ,β∈Ωβ

∑
u,v m(u, v)ρ

(
zs f m(u, v), zA,β(u, v)

)
where ΩA = [A0 − ΔA, A0 + ΔA] and Ωβ = [β0 − Δβ, β0 + Δβ]
z∗ ← F (A∗, β∗; Ir , {I1, · · · , IS })

Table 2 Quantitative results of depth and scattering parameter estimation.
“MVDepthNet w/ dcv, pe” denotes the proposed method with scat-
tering parameter estimation. Red and blue values are best and
second-best, respectively. As evaluation metric of A and β, we
used mean absolute error (MAEA and MAEβ).

Method L1-rel L1-inv sc-inv C.P. (%) MAEA MAEβ
FFA-Net +MVDepthNet 0.141 0.104 0.152 57.0 - -

MVDepthNet 0.130 0.090 0.135 59.9 - -
DPSNet 0.109 0.069 0.125 65.2 - -

MVDepthNet w/ dcv 0.069 0.043 0.104 80.7 - -
MVDepthNet w/ dcv, pe 0.081 0.050 0.116 76.3 0.028 0.043

with respect to A and β. Standard gradient-based methods can
thus be adopted for the optimization problem. However, we found
that an iterative algorithm based on back-propagation easily falls
into a local minimum. Therefore, we perform grid search to find
the best solution. Figure 8 shows an example in which we search
for β under ground-truth A. Figure 8(a) shows an input image,
and (b) shows the sparse depth map obtained by SfM. The hori-
zontal axis of (c) represents β, and we plot the value of Eq. (7)
with respect to each β. The green dashed line, which represents
the ground-truth β, corresponds to the global minimum. Figure
8(d) shows the final output depth of the network with this global
optimal solution.

As discussed in Section 2.3.1, we can roughly estimate A with
the CNN-based estimator. We initialize A by this estimate. Let
A0 be the output of this estimator, and we search for β0 in the
predetermined search space [βmin, βmax] as follows:

β0 = argmin
β∈[βmin ,βmax]

∑
u,v

m(u, v)ρ
(
zs f m(u, v), zA0 ,β(u, v)

)
. (9)

We then search for A∗ and β∗ that satisfy Eq. (7) in the predeter-
mined search space [A0 − ΔA, A0 + ΔA] and [β0 − Δβ, β0 + Δβ].
Algorithm 1 shows the overall procedure of depth and scattering
parameter estimation.

2.4 Experiments

In this study, we used MVDepthNet [31] as a baseline method.
As mentioned previously, the ordinary cost volume is replaced
with our dehazing cost volume in the proposed method, so we can
directly evaluate the effect of our dehazing cost volume by com-
paring our method with this baseline method. We also compared
the proposed method with simple sequential methods of dehazing
and 3D reconstruction using the baseline method. DPSNet [13],
the architecture of which is more complicated such as a multi-
scale feature extractor, 3D convolutions, and a cost aggregation
module, was also trained on hazy images for further comparison.
In addition to the experiments with synthetic data, we give an
example of applying the proposed method to actual foggy scenes.

c© 2021 Information Processing Society of Japan 5

Vol.2021-NL-248 No.9
Vol.2021-CVIM-226 No.9

2021/5/20



IPSJ SIG Technical Report

2.4.1 Dataset

Training: We used the DeMoN dataset [29] for training. This
dataset consists of the SUN3D [33], RGB-D SLAM [25], and
MVS datasets [7], which have sequences of real images. The De-
MoN dataset also has the Scenes11 dataset [4], [29], which con-
sists of synthetic images. Each image sequence in the DeMoN
dataset includes RGB images, depth maps, and camera param-
eters. In the real-image datasets, most of the depth maps have
missing regions due to sensor sensibility. As we discuss later,
we synthesized hazy images from the clean images in the De-
MoN dataset for training the proposed method, where we need
dense depth maps without missing regions to compute pixel-wise
degradation due to haze. Therefore, we first trained MVDepthNet
using clear images then filled the missing regions of each depth
map with the output depth of MVDepthNet. To suppress bound-
ary discontinuities and sensor noise around missing regions, we
applied a median filter after depth completion. For the MVS
dataset, which has larger noise than other datasets, we reduced
the noise simply by thresholding before inpainting. Note that the
training loss was computed using only pixels that originally had
valid depth values. We generated 419,046 samples for training.
Each sample contained one reference image and one source im-
age. All images were resized to 256 × 192.

We synthesized a hazy-image dataset for training the pro-
posed method from clear images. The procedure of generating
a hazy image is based on Eq. (2). For A, we randomly sampled
A ∈ [0.7, 1.0] for each data sample. For β, we randomly sam-
pled β ∈ [0.4, 0.8], [0.4, 0.8], [0.05, 0.15] for the SUN3D, RGB-
D SLAM, and Scenes11 datasets, respectively. We found that for
the MVS dataset, it was difficult to determine the same sampling
range of β for all images because it contains various scenes with
different depth scales. Therefore, we determined the sampling
range of β for each sample of the MVS dataset as follows. We
first set the range of a transmission map e−βz to [0.2, 0.4] for all
samples then computed the median of a depth map zmed for each
sample. Finally, we determined the β range for each sample as
β ∈ [− log(0.4)/zmed,− log(0.2)/zmed].

Similar to Wang and Shen [31], we adopted data augmenta-
tion to enable the network to reconstruct a wide depth range. The
depth of each sample was scaled by a factor between 0.5 and 1.5
together with the translation vector of the camera. Note that when
training the proposed method, β should also be scaled by the in-
verse of the scale factor.

Test: Each sample of the training dataset presented above con-
sists of image pairs. Parameter estimation requires a 3D point
cloud obtained by SfM. To ensure the accuracy of SfM, which re-
quires high visual overlap between images and a sufficient num-
ber of images observing the same objects, we created a new test
dataset for the evaluation of the scattering parameter estimation.
From the SUN3D dataset [33], we selected 68 scenes and ex-
tracted 80 frames from each scene. The resolution of each image
is 680 × 480. We cropped the image patch with 512 × 384 from
the center and downsized the resolution to 256 × 192 for the in-
put of the proposed method. Similar to the previous test dataset,
missing regions were compensated with the output of MVDepth-
Net [31]. The scattering parameters were randomly sampled for

(a) (b) (c) (d) (e) (f)

Fig. 9 Results with synthesized data. (a) Hazy input, (b) ground-truth depth,
(c) DPSNet [13], (d) proposed method with ground-truth scattering
parameters, (e) proposed method with scattering parameter estima-
tion, and (f) sparse depth obtained by SfM.

(a) (b) (c) (d) (e) (f)

Fig. 10 Experimental results on our captured data in actual foggy scenes.
(a) input reference image, (b) input source image, (c) output of DP-
SNet [13], (d) output of fine-tuned MVDepthNet [31], (e) output
of proposed method with scattering parameter estimation, and (f)
sparse depth obtained by SfM.

each scene, where the sampling ranges were A ∈ [0.7, 1.0] and
β ∈ [0.4, 0.8]. SfM [22], [23] was applied to all 80 frames of
each scene to estimate a sparse 3D point cloud, and then the pro-
posed method took the image pair as input. To evaluate the output
depth on the ground-truth depth of the original SUN3D dataset,
the sparse depth obtained by SfM was rescaled to match the scale
of the ground-truth depth, and we used the camera parameters of
the original SUN3D dataset.

For the parameter search, we set the first β range as βmin = 0.4
and βmax = 0.8 with 10 steps for the grid search. We then searched
for A and β with the search range ΔA = 0.05, Δβ = 0.05 and 4× 4
steps. The total number of the forward computation of the net-
work was 26, and the total computation time was about 15 sec-
onds in our computational environment.
2.4.2 Results

Table 2 shows the quantitative results of depth and scattering
parameter estimation. “MVDepthNet w/ dcv, pe” denotes the pro-
posed method with scattering parameter estimation. As the eval-
uation metric of A and β, we used mean absolute error (MAEA

and MAEβ). These results indicate that the proposed method
with ground-truth scattering parameters (MVDeptNet w/ dcv)
performed the best. On the other hand, even when we incorpo-
rated scattering parameter estimation into the proposed method,
it outperformed the other methods.

The qualitative results of the following depth estimation af-
ter scattering parameter estimation are shown in Fig. 9. Figure
9(f) shows the input sparse depth obtained by SfM. Compared
with the proposed method with ground-truth scattering parame-
ters, the method with the scattering parameter estimation resulted
in almost the same output depth. In the third row in the figure, the
left part in the image has slight error because no 3D sparse points
were observed in that region.
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2.4.3 Experiments with actual foggy scenes

We captured a video with a smartphone camera in an actual
foggy scene. We applied the SfM method [22], [23] to all frames
to obtain camera parameters and a sparse 3D point cloud. The
proposed method took the estimated camera parameters, a sparse
depth, and image pair as input. We set the search space of the
scattering parameter estimation as βmin = 0.01, βmax = 0.1,
ΔA = 0.05, and Δβ = 0.01 with the same step size in the ex-
periments of the synthesized data.

The results are shown in Fig. 10. Figures (a) and (b) show
the input reference and source images, respectively. This results
indicate that the proposed method can reconstruct distant regions
with large image degradation due to light scattering.

2.5 Conclusion

In this section, we discussed a disparity-based 3D reconstruc-
tion method in scattering media. We proposed a learning-based
MVS method with a novel cost volume, called the dehazing cost
volume, which enables MVS methods to be used in scattering me-
dia. Differing from the ordinary cost volume, our dehazing cost
volume can compute the cost of photometric consistency by tak-
ing into account image degradation modeled by the atmospheric
scattering model. This is the first study to solve the chicken-and-
egg problem of depth and scattering estimation by computing the
scattering effect using each swept plane in the cost volume with-
out explicit scene depth. We also proposed a method for estimat-
ing scattering parameters such as airlight and a scattering coeffi-
cient. This method leverages geometric information obtained at
an SfM step, and ensures the correctness of the following depth
estimation. The experimental results on synthesized hazy images
indicate the effectiveness of our dehazing cost volume in scatter-
ing media. We also demonstrated its applicability using images
captured in actual foggy scenes.

3. Photometric stereo in scattering media

This section discusses photometric stereo in scattering media
as a shading-based method as shown in Fig. 12. Photometric
stereo methods are an effective approach for reconstructing a 3D
shape in scattering media [16], [19], [28]. Figure 11 shows a
capture setting with a single camera and light source under the
single scattering model [26]. As shown, backscatter and forward
scatter occur in scattering media; thus, the irradiance observed
at a camera includes a direct component reflected on the sur-
face, as well as a backscatter and forward scatter components.
Narasimhan et al. [19] modeled single backscattering under a di-
rectional light source in scattering media and estimated surface
normals using a nonlinear optimization technique. Tsiotsios et
al. [28] assumed that backscatter saturates close to the camera
when illumination follows the inverse square law, and subtracted
the backscatter from the captured image. Note that forward scat-
ter is not modeled in these methods. Forward scatter depends on
the object’s shape locally and globally, and in highly turbid me-
dia such as port water, 3D reconstruction accuracy is affected by
forward scatter. Although Murez et al. [16] proposed a photomet-
ric stereo technique that considers forward scatter, they assumed
that the scene is approximated as a plane, which enables prior
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Fig. 11 Single scattering model. Observed irradiance at camera includes di-
rect component reflected on surface, and both backscatter and for-
ward scatter components.
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Fig. 12 Photometric stereo in scattering media

calibration of forward scatter.
We propose a forward scatter model and implement the model

into a photometric stereo framework. Differing from the previ-
ous study [16], we compute forward scatter, which depends on
the object’s shape. To overcome the mutual dependence between
shape and forward scatter, we develop an iterative algorithm that
performs a forward scatter removal and 3D shape reconstruction
alternately.

The single scattering model is more complicated model than
the atmospheric scattering model used in the previous section.
We thus propose an effective method for computing forward scat-
ter with an analytical form of single scattering. In computer
graphics, Sun et al. [26] proposed an analytical single scatter-
ing model of backscatter and forward scatter between the source
and the surface (source-surface forward scatter) using 2D lookup
tables to overcome computational complexity issues. Similar to
their model, in this study, forward scatter between the surface and
the camera (surface-camera forward scatter) is computed using a
lookup table.

3.1 Analytical form of single scattering model

First of all, we provide an analytical form of the single scat-
tering model using lookup tables. Sun et al. [26] assumed single
and isotropic scattering and used 2D lookup tables to analytically
describe backscatter and source-camera forward scatter to over-
come computational complexity issues. We also use a lookup ta-
ble similar to that of Sun et al. [26], while we additionally model
surface-camera forward scatter analytically. Note that we assume
perspective projection, near lighting, and Lambertian objects.

Here, let L(p) be irradiance at a camera when the 3D position
p on an object surface is observed. As shown in Fig. 11, L(p) is
decomposed into a reflected component Ls(p) (orange arrow), a
backscatter component Lb(p) (blue arrow), and a surface-camera
forward scatter component Lf (p) (green arrow) as follows:
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Fig. 13 Reflected component Ls(p) (yellow arrow) consists of direct com-
ponent Ls,d(p) (red arrow) and source-surface forward scatter com-
ponent Ls, f (p). Direct component reaches surface directly from
light source. Source-surface forward scatter is reflected component
whose incident light reaches surface via forward scatter.

L(p) = Ls(p)e−σdvp + Lb(p) + Lf (p). (10)

Here, parameters σ and dvp denote an extinction coefficient and
the distance between the camera and position p, respectively. In
scattering media, light is attenuated exponentially relative to dis-
tance. The extinction coefficient σ is the sum of the absorption
coefficient α and the scattering coefficient β.

As shown in Fig. 13, the reflected component Ls(p) consists of
a direct component Ls,d(p) (yellow arrow) and a source-surface
forward scatter component Ls, f (p) (red arrow),

Ls(p) = Ls,d(p) + Ls, f (p). (11)

Thus, the observed irradiance is written as follows:

Ls(p) =
(
Ls,d(p) + Ls, f (p)

)
e−σdvp + Lb(p) + Lf (p). (12)

In the rest of this section, we describe these four components.
3.1.1 Direct component

The direct component reaches the surface directly from the
source as shown in Fig. 13. Considering diffuse reflection and
attenuation in scattering media, Ls,d(p) is expressed as follows:

Ls,d(p) =
I0

d2
sp

e−Tspρpn�p lsp, (13)

where ρp is a diffuse albedo at p, np is a surface normal, and lsp

is the direction from p to the source. Tsp = σdsp is optical thick-
ness. In the following, Txy denotes the product of σ and distance
dxy.
3.1.2 Backscatter component

Figure 14 shows the observation of the backscatter component.
The backscatter component is the sum of scattered light on the
viewline without reaching the surface as follows:

Lb(p) =
∫ dvp

0

I0

d2 βP(θ)e−σ(x+d)dx, (14)

where d is the distance between the source and a scattering point,
x is the distance between the scattering point and camera, I0 de-
notes the radiant intensity of the source, θ is a scattering angle,
and P(α) is a phase function that describes the angular scattering
distribution. Although Eq. (14) cannot be computed in closed-
form, an analytical solution can be acquired using a lookup table.
Sun et al. [26] assumed isotropic scattering (i.e., P(θ) = 1/4π)
and derived an analytical solution using a 2D lookup table F(u, v):

Lb(p) = I0H0(Tsv, γ)
[
F(H1(Tsv, γ),H2(Tvp, Tsv, γ)) − F(H1(Tsv, γ),

γ

2
)
]
,

(15)
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Fig. 14 Backscatter component is sum of scattered light on viewline with-
out reaching surface.

where H0(Tsv, γ), H1(Tsv, γ), and H2(Tvp, Tsv, γ) are defined as
follows:

H0(Tsv, γ) =
βσe−Tsv cos γ

2πTsv sin γ
, (16)

H1(Tsv, γ) = Tsv sin γ, (17)

H2(Tvp, Tsv, γ) =
π

4
+

1
2

arctan
Tvp − Tsv cos γ

Tsv sin γ
. (18)

F(u, v) =
∫ v

0 e−u tan ξdξ is a 2D lookup table computed numerically
in advance.
3.1.3 Source-surface forward scatter component

The source-surface forward scatter is a reflected component
whose incident light reaches the surface via forward scatter (see
Fig. 13). This component is the integral of scattered light on a
hemisphere centered on p:

Ls, f (p) =
∫
Ω2π

Lb(ω)ρpn�p lωdω, (19)

where lω is a incident direction. We define Lb(ω) as the sum of
scattered light from direction lω:

Lb(ω) =
∫ ∞

0

I0

d2
ω

βP(θ)e−σ(xω+dω)dxω, (20)

where dω is the distance between the source and a scattering point
and xω is the distance between the scattering point and surface.
As discussed in Section 3.1.2, Sun et al. [26] derived an analytical
solution using a 2D lookup table as follows:

Ls, f (p) =
βσI0ρp

2πTsp
G(Tsp, n

�
p lsp), (21)

where G(Tsp, n
�
p lsp) is a 2D lookup table given as

G(Tsp, n
�
p lsp)

=

∫
Ω2π

e−Tsp cos γ′

sin γ′

[
F(H1(Tsp, γ

′),
π

2
) − F(H1(Tsp, γ

′),
γ′

2
)
]

n�p lωdω,

(22)

where γ′ is an angle between the light source and the incident
direction.
3.1.4 Surface-camera forward scatter component

When we observe surface point p in scattering media, the light
reflected on point q is scattered on the viewline, and the scattered
light is also observed as a forward scatter component (see Fig.
15). In this study, we describe this component analytically using
a lookup table.

As shown in Fig. 15, irradiance at the camera includes reflected
light from the small facet centered at q. If we consider this small
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Fig. 15 Surface-camera forward scatter component. When we observe sur-
face point p in scattering media, light reflected on point q is scat-
tered on viewline, and scattered light is also observed.

facet as a virtual light source, similar to Eq. (14), the irradiance
can be expressed as follows:

∫ dvp′

0

Ls(q)dAq

d2 βP(θ)e−σ(x+d)dx, (23)

where dAq is the area of the facet. At the camera, a discrete point
on the surface corresponding to the pixel is observed. Thus, Lf (p)
is the sum of these discrete points:

Lf (p) =
∑
q�p

∫ dvp′

0

Ls(q)dAq

d2 βP(θ)e−σ(x+d)dx. (24)

Note that the domain of integration [0, dvp′ ] differs from that of
Eq. (14), i.e., [0, dvp]. We define p′ as the intersection point of
the viewline and the tangent plane to q. If dvp′ > dvp, i.e., p′ is
inside the object, we set dvp′ = dvp. If dvp′ < 0 which means that
p′ is behind the camera, we set dvp′ = 0. Similar to Eq. (15), the
isotropic scattering assumption yields the following:

Lf (p) =
∑
q�p

Ls(q)dAqH0(Tvq, γ)

[
F(H1(Tvq, γ),H2(Tvp′ , Tvq, γ)) − F(H1(Tvq, γ),

γ

2
)
]
. (25)

This is the analytical expression of the surface-camera forward
scatter.

3.2 Photometric stereo considering shape-dependent for-

ward scatter

In Section 3.1, we model the image formation in scattering
media using four components in Eq. (12). To reconstruct sur-
face normals using photometric stereo, we must restore the direct
component Ls,d(p). In this section, we first explain the compen-
sation of the backscatter component [28]. Then, we discuss how
to remove the surface-camera forward scatter. Finally, we explain
photometric stereo that considers the source-surface forward scat-
ter.
3.2.1 Backscatter removal

As mentioned previously, to remove backscatter, Tsiotsios et
al. [28] leveraged backscatter saturation without computing it ex-
plicitly, i.e., subtracting no object image from an input image.
We also use an image without the target object to remove the
backscatter component Lb(p) from the input image.
3.2.2 Approximation of a large-scale dense matrix

Here, let L′ =
[
L(p1) − Lb(p1), · · · , L(pN) − Lb(pN)

]� ∈ RN

be a backscatter removed image, where N is the number of pix-
els. Then from Eq. (10) and (25), reflected light at the surface
Ls =

[
Ls(p1), · · · , Ls(pN)

]� ∈ RN is expressed as follows:

L′ = KLs, (26)

where K ∈ RN×N is a large-scale dense matrix. Each element Kpq

is given by

Kpq =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−Tvp (p = q)
dAqH0(Tvq, γ)

[
F(H1(Tvq, γ),H2(Tvp′ , Tvq, γ))

−F(H1(Tvq, γ),
γ
2 )

]
(p � q).

(27)

Theoretically, the reflected light is recovered using an inverse ma-
trix K−1 as follows:

Ls = K−1L′ (28)

Our model is similar to that of Murez et al. [16], i.e., they also
modeled the surface-camera forward scatter as a kernel matrix.
However, our model is different in that each row of K is spatially-
variant because we compute the forward scatter considering the
object’s shape. In the model presented by Murez et al. [16],
the plane approximation of the scene under orthogonal projection
yields a spatially-invariant point spread function. Therefore, Eq.
(28) is effectively computed using a Fast Fourier Transform. Our
spatially-variant kernel matrix makes it infeasible to solve Eq.
(26) directly.

To overcome this problem, we propose an approximation of a
large-scale dense matrix K as a sparse matrix and a constant term
which represents global effect. Here, we assume that the value of
Kpq is close to ε (0 < ε � 1) in the neighboring support S (p),
and we obtain the following approximation:

L′(p) =
∑

q

KpqLs(q) (29)

≈
∑

q∈S (p)

KpqLs(q) +
∑

q�S (p)

εLs(q) (30)

≈
∑

q∈S (p)

KpqLs(q) +C, (31)

where C =
∑

q εLs(q) and we use
∑

q∈S (p) εLs(q) ≈ 0 from Eq.
(30) to (31). Then, we define a sparse matrix K̂ as follows:

K̂pq =

⎧⎪⎪⎨⎪⎪⎩ Kpq (q ∈ S (p))
0 (q � S (p)).

(32)

This yields the following linear system:

⎡⎢⎢⎢⎢⎣ L′

0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

K̂
...

1
ε · · · ε −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ Ls

C

⎤⎥⎥⎥⎥⎦ . (33)

We solve this linear system using BiCG stabilization [30] to re-
move the surface-camera forward scatter.

Note that the size of the kernel support S (p) and the conver-
gence value ε have ambiguity. The plausible value of ε might be
obtained if we compute all the elements of K; however, it requires
a large amount of computation. Therefore, we approximated ε as
follows:

ε = min
p,q

{
Kpq | q ∈ S (p)

}
. (34)

3.2.3 Photometric stereo using approximation of lookup ta-

ble

After removing the backscatter and the surface-camera forward
scatter, we can obtain the reflected components Ls(p). We re-
construct the surface normals by applying photometric stereo to
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(a) (b)

Fig. 16 Approximation of lookup table. G(Tsp, n
�
p lsp) (blue line) and

G(Tsp, 1)(n�p lsp) (green line) when (a) Tsp = 0.6 and (b)
Tsp = 2. Although the error increases as arccos(n�p lsp) in-
creases, these graphs validate the approximation G(Tsp, n

�
p lsp) ≈

G(Tsp, 1)(n�p lsp).

Ls(p). From Eqs. (11), (13) and (21), Ls(p) is given as follows:

Ls(p) =
I0

d2
sp

e−Tspρpn�p lsp +
βσI0ρp

2πTsp
G(Tsp, n

�
p lsp). (35)

Note that this equation is not linear with respect to the normal
due to the source-surface forward scatter. We use the following
approximation of table G(Tsp, n

�
p lsp) to apply photometric stereo

directly to the equation:

G(Tsp, n
�
p lsp) ≈ G(Tsp, 1)(n�p lsp). (36)

In Fig. 16, we plot G(Tsp, n
�
p lsp) and G(Tsp, 1)(n�p lsp) when

Tsp = 0.6 and Tsp = 2. In each figure, the blue line represents
G(Tsp, n

�
p lsp) and the green line represents G(Tsp, 1)(n�p lsp). Al-

though the error gets to be larger as arccos(n�p lsp) increases, these
graphs validate this approximation. From this approximation, we
can obtain

Ls(p) ≈ ρpI0

⎛⎜⎜⎜⎜⎝e−Tsp

d2
sp
+
βσ

2πTsp
G(Tsp, 1)

⎞⎟⎟⎟⎟⎠ (n�p lsp). (37)

This is a linear equation about normal np; hence we apply pho-
tometric stereo to this equation. With this linearization, we can
also avoid the explicit initialization and estimation of the albedo
ρp during the iteration.
3.2.4 Implementation

In this section, we explain our overall algorithm. Note that the
kernel of Eq. (27) is only defined on the object’s surface; thus,
we input a mask image and perform the proposed method on only
the object region. Backscatter is removed using a previously pro-
posed method [28]; however, the resulting image contains high-
frequency noise due to SNR degradation. Therefore, we apply a
3 × 3 median filter after removing the backscatter to reduce this
high-frequency noise. We used Poisson solver [1], [20] for nor-
mal integration to reconstruct the shape. The overall algorithm is
described as follows:
( 1 ) Input images and a mask. Initialize the shape and normals.
( 2 ) Remove backscatter [28] and apply a median filter to the re-

sulting images.
( 3 ) Remove surface-camera forward scatter (Eq. (33)).
( 4 ) Reconstruct the normals using Eq. (37).
( 5 ) Integrate the normals and update them from the recon-

structed shape.
( 6 ) Repeat steps 3–5 until convergence.

3.3 Experiments

In this section, we describe experiments and evaluation of the

(a) (b) (c)

Fig. 17 Examples of synthesized images. (a) Synthesized image without
scattering medium, (b) reflected component Ls, and (c) backscatter
subtracted image L′.

(a) (b)

Fig. 18 Results of synthesized data. (a) Ground truth and (b) output of each
iteration from left to right. (top row) output normals. (middle row)
reconstructed shapes.

Table 3 Mean angular error of output of each iteration with synthesized
data

Iteration 1 2 3 4 5 Input GT
Error (deg.) 5.20 4.65 1.43 1.29 1.29 1.30

proposed method. First, the proposed method is evaluated with
synthesized data. Then, we demonstrate 3D reconstruction in
scattering media with real data.
3.3.1 Results with synthesized data

We generated 8 synthesized images with a 3D model of a
sphere under different light sources using our scattering model
in Section 3.1. The reflectance property of the surface is Lamber-
tian, and the scattering property was assumed to be isotropic and
the parameters were set as β = σ = 5.0 × 10−3. We show the ex-
amples of the synthesized images in Fig. 17, where (a) an image
without a scattering medium, (b) a reflected component Ls, and
(c) a backscatter subtracted image L′.

The results are shown in Fig. 18 and Table 3. We set the sup-
port size of the sparse matrix approximation in Eq. (33) as 81×81
. The input shape is initialized as a plane Figure 18(a) shows the
ground truth and (b) shows the output of each iteration from left to
right. Table 3 shows the mean angular error of each output. Input
GT in Table 3 denotes the error when we removed scattering ef-
fects with the ground truth shape and reconstructed the 3D shape
inversely. As shown in Fig. 18, the shape converged while oscil-
lating in height. This convergence was seen in the experiments
with the real data (see Fig. 21). Murez et al. [16] approximated
an object as a plane. In this experiment, we initialized the object
as a plane. The improvement from the first to the last iteration
shows the effect of our method.
3.3.2 Results with real data

The experimental environment is shown in Fig. 19. We used a
60-cm cubic tank and placed a target object in it. We used diluted
milk as the scattering medium. The medium parameters were set
with reference to [17]. A ViewPLUS Xviii 18-bit linear camera
was mounted in close contact with the tank, and eight LEDs were
located in the tank. The input images were captured at an expo-
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Fig. 19 Experimental environment. This is top view of tank.

(a)
sphere

(b) shell (c) fish

Fig. 20 Target object

(a) (b) (c)

Fig. 21 Results of sphere. (a) Ground truth, (b) result of [28], and (c) pro-
posed method. (top row) output normals, (middle row) error map
of angles, (bottom row) reconstructed shape.

Table 4 Mean angular error of sphere.

[28] Iteration 1 2 3 4 5
Error (deg.) 19.48 5.96 4.38 3.62 3.66 3.66

sure of 33 ms. We captured 60 images under the same condition,
and these images were averaged to make input images robust to
noise caused by the imaging system; thus, eight averaged images
were input to the proposed method. The target objects are shown
in Fig. 20 (sphere, shell, and fish).

We compared the proposed method with a previously proposed
method [28] that models only backscatter. Each target object was
initialized as a plane for the iteration. We set the size of the kernel
support as 61 × 61.

First, we evaluated the proposed method quantitatively using
sphere. In Fig. 12, a part of the input images are shown. The
results are given in Fig. 21, where Fig. 21(a) shows the ground
truth, (b) shows the result of the backscatter-only modeling [28],
and (c) shows the result of the proposed method, which depicts
the output of each iteration from left to right. These experimental
results demonstrate that the proposed method can reconstruct the
object’s shape in highly turbid media, in which the method that
does not consider forward scatter fails. Table 4 shows the mean
angular error of the results of the backscatter-only modeling [28]
and the output of each iteration of the proposed method. The error
reaches convergence during a few iterations.

Figures 22 and 23 show the results for shell, and fish. In each
figure, (a) shows the result obtained in clear water and (b) shows
the results of the existing [28] (second and third rows) and pro-
posed (fourth and fifth rows). The top row shows one of the input
images. We changed the concentration of the scattering medium
during these experiments. As can be seen, the result of the ex-
isting method [28] becomes flattened as the concentration of the
scattering medium increases. In contrast, the proposed method

(a) (b)

Fig. 22 Results of shell. (a) Reconstruction in clear water and (b) results of
[28] (second and third rows) and proposed method (fourth and fifth
rows). Top row is one of input images. Concentration of scattering
medium increases from left to right.

(a) (b)

Fig. 23 Results of fish. Regardless of texture, proposed method can im-
prove 3D reconstruction in scattering media. Bottom row of (b)
shows estimated albedos.

reconstructs the shape correctly in highly turbid media. The pro-
posed method can reconstruct the local gradient of shell. The
result of fish in Fig. 23 demonstrates the effectiveness on objects
with texture. The bottom row of Fig. 23(b) is estimated surface
albedos. The proposed method can recover albedos as well as a
3D shape.

3.4 Conclusion

In this section, we have proposed a photometric stereo method
in scattering media that considers forward scatter. The proposed
analytical model of the single scattering model differs from the
previous works [16] in that forward scatter depends on the ob-
ject’s shape. The shape dependency of the forward scatter makes
it infeasible to remove. To address this problem, we have pro-
posed an approximation of the large-scale dense matrix that rep-
resents the forward scatter as a sparse matrix. Our experimental
results demonstrate that the proposed method can reconstruct a
shape in highly turbid media.

4. Time-of-Flight in scattering media

In this section, we discuss depth measurement with a ToF cam-
era in scattering media. There are several architectures for ToF
cameras. We use a continuous-wave ToF camera that emits a
modulated sinusoid signal into a scene and then measures the am-
plitude of light that bounces off an object surface and the phase
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(a) Depth error due to light
scattering

Object mask

Amplitude image Phase image

Reconstructed depth

Observation

ToF camera

Foggy scene

(b) Overview of proposed method

Fig. 24 ToF in scattering media. (a) Depth measurement suffers from scat-
tering effect in scattering media such as foggy scene. (b) Overview
of proposed method. Continuous-wave ToF camera captures am-
plitude image and phase image. From these images captured in
participating media, we estimate object region and recover depth
simultaneously.

shift between the illumination and received signal. These obser-
vations are represented as an amplitude image and a phase image
as shown in Fig. 24(b). Since the phase shift depends on an op-
tical path, we can reconstruct the depth from the phase shift. We
denote the observation of an object surface by direct component.

This architecture assumes that each camera pixel observes a
single point in a scene. Similar to common RGB cameras, how-
ever, the observed signal in scattering media includes a scatter-
ing component due to light scattering as well as a direct compo-
nent. The amplitude and phase shift suffer from the scattering
effect, and this causes error of depth measurement as shown in
Fig. 24(a). In this section, we formulate a scattering model in
amplitude and phase space. ToF cameras emit light signals from
an internally mounted light source. Thus, the single scattering
model can be used for the observation of ToF measurement in
scattering media. We also leverage the saturation of a backscat-
ter component, which occurs in RGB space [27], [28], to recover
the direct component. We assume that a target scene consists of
an object region and a background that only contains a scattering
component. This allows us to estimate the scattering component
simply by observing the background. The proposed automatic
scene segmentation enables simultaneous obstacle detection and
depth reconstruction as shown in Fig. 24(a).

4.1 Related work

ToF measurement in scattering media has been proposed by
[10], [21]. Our method differs from these approaches in that we
just use an off-the-shelf ToF camera such as Kinect v2 with no
special hardware modification. The concurrent work by Muraji
et al. [15] also used a continuous-wave ToF camera. They re-
moved scattering effect using multiple modulation frequencies.
We address different problem settings as follows: (1) we model
spatially varying scattering components due to a limited lighting
angle as explained in Section 4.3.1; (2) we model the simultane-
ous estimation of object regions and scattering components as a
single optimization problem.

4.2 ToF observation in scattering media

In this section, we describe our image formation model for a
continuous-wave ToF camera in scattering media on the basis of
the single scattering model. We assume here that the effect of
forward scattering are negligibly small.

�������
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p

p0(u, v)

p∗

Fig. 25 ToF camera with limited beam angle in scattering media. Light in-
teracts with scattering medium on line of sight and then arrives at
camera pixel. Total scattering component is sum of scattered light
on red line in figure, which depends on limited beam angle of light
source.

A continuous-wave ToF camera illuminates a scene with
amplitude-modulated light and then measures the amplitude of
received signal α and phase shift ϕ between the illumination and
received signal. This observation can be described using a phasor
[9], as

αe jϕ ∈ C. (38)

Since the phase shift is proportional to the depth of an object, we
can compute the depth as

z =
cϕ

4π f
, (39)

where z is depth, c is the speed of light, and f is the modulation
frequency of the camera.

In scattering media, the observation contains scattered light.
Figure 25 shows the observation of a ToF camera in scattering
media. Similar to a RGB camera, light interacts with the medium
on the line of sight and then arrives at the camera pixel. Thus, the
observed scattering component is the sum of scattered light on
the line of sight. Now, we consider the 3D coordinate, the origin
of which is the camera center. When the camera observes a sur-
face point p∗ ∈ R3 at a camera pixel (u, v), the total observation
α̃(u, v; p∗)e jϕ̃(u,v;p∗) can be written as

α̃(u, v; p∗)e jϕ̃(u,v;p∗)

= αd(u, v; p∗)e jϕd(u,v;p∗) +

∫ ‖p∗‖

‖p‖=‖p0(u,v)‖
α(u, v; p)e jϕ(u,v;p)d‖p‖,

(40)

where αd(u, v; p∗) and ϕd(u, v; p∗) are the direct components.
αd(u, v; p∗) depends on the surface albedo, shading, and attenua-
tion, which is caused by the medium as well as the inverse square
law. α(u, v; p)e jϕ(u,v;p) is the observation of scattered light at a po-
sition p. Note that although the scattering component can be writ-
ten using an integral, the domain of the integral (red line in Fig.
25) depends on the relative position between the light source and
camera pixel. This is because an ideal point light source irradi-
ates a scene with isotropic intensity, while a practical illumination
such as a spotlight has a limited beam angle [28].

In Section 3.2.1, the backscatter component is assumed to be
saturated close to the camera in RGB space. This assumtion holds
under a near light source in scattering media [27], [28]. We also
leverage this assumtion for ToF measurement, that is, there exists
psaturate for which

‖p‖ ≥ ‖psaturate‖ ⇒ α(u, v; p) = 0. (41)

Therefore, we can rewrite Eq. (40) as
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(a) RGB image (b) Amplitude
image

(c) Phase image

Fig. 26 Observation of black surface in foggy scene. Black surface approx-
imates distant observation where only scattering component can be
observed because reflected light from scene gets attenuated. Note
that observed scattering component is inhomogeneous due to lim-
ited beam angle of illumination.

α̃(u, v; p∗)e jϕ̃(u,v;p∗)

= αd(u, v; p∗)e jϕd(u,v;p∗) +

∫ ‖psaturate‖

‖p‖=‖p0(u,v)‖
α(u, v; p)e jϕ(u,v;p)d‖p‖

︸��������������������������������������︷︷��������������������������������������︸
=αs(u,v)e jϕs (u,v)

,

(42)

where αs(u, v) and ϕs(u, v) are the scattering components, which
depend on only the camera pixel (u, v) rather than the object
depth.

Although the observation consists of the direct component
αd(u, v; p∗)e jϕd(u,v;p∗) and the scattering component αs(u, v)e jϕs(u,v),
the attenuation due to the medium reduces the direct component
dramatically. Thus, if the camera observes a distant point p f ar,
the amplitude of the reflected light fades away, that is,

αd(u, v; p f ar) = 0. (43)

Therefore, the observation of the distant point includes only a
scattering component:

α̃(u, v; p f ar)e jϕ̃(u,v;p f ar) = αs(u, v)e jϕs(u,v). (44)

Figure 26 shows amplitude and phase images when the cam-
era observes a black surface in a foggy scene. The intensity of
reflected light from the black surface is very small, so this ap-
proximates a distant observation where only a scattering compo-
nent can be observed. As discussed above, in both the amplitude
and phase images, the scattering component is inhomogeneous
because the illumination has a limited beam angle.

4.3 Simultaneous estimation of object region and depth

As explained in the previous section, a scattering component
depends on the position of a camera pixel rather than a target ob-
ject. In addition, only the scattering component is observed in the
background where an object is farther away. Thus, our goal is
to estimate the scattering component in an object region from the
observation of the background.

In this section, we describe how our method divides camera
pixels into an object region and a background, and simultaneously
estimates the scattering component in the object region. First, we
introduce two priors to estimate the scattering component, and
then the problem is formulated as robust estimation, which allows
us to extract the object region as outliers. In the following, with a
slight alteration of notation, we refer to both an amplitude image
and a phase image as an image, since we process both images in
the same manner.

xk(u, v)

= ak1u
2 + ak2uv + ak3v

2 + ak4u+ ak5v + ak6

Patch Quadratic functionxk

Fig. 27 Local quadratic prior. We assume that scattering component can be
represented with quadratic function in local image patch.

4.3.1 Prior of scattering component

We can estimate the scattering component of an object region
from a background because the component does not depend on
the object. Tsiotsios et al. [28] approximated backscatter as a
quadratic function in a captured image. Similarly to their work,
we also introduce priors, local quadratic prior and global sym-
metrical prior, that allow us to estimate the scattering component.

Local quadratic prior: As shown in Fig. 27, we assume that
a scattering component can be represented with a quadratic func-
tion in a local image patch, that is,

xk(u, v) = ak
1u2 + ak

2uv + ak
3v

2 + ak
4u + ak

5v + ak
6

= a�k u, (45)

where xk(u, v) is the value at a pixel (u, v) in a local image patch
xk. u = [u2 uv v2 u v 1]� is a 6-dimensional vector and
ak = [ak

1 ak
2 ak

3 ak
4 ak

5 ak
6]� denotes the coefficients of the

quadratic function in patch xk.
Global symmetrical prior: However, this local prior is not

useful when there exists a large object region and a quadratic
function is also fitted into the values in that region. To address
this problem, we introduce a global prior to the scattering com-
ponent.

As discussed in section 4.2, a scattering component depends
on the relative position between a camera pixel and a light source.
This is because the individual starting points of the integral in Eq.
(40) differ from each other. Meanwhile, as shown in Fig. 28, we
assume that the camera and light source are collocated on the line
that is parallel to the horizontal axis of the image. ToF devices
can easily be built on the basis of this setting (e.g., Kinect v2 has
this setting). In this case, the integral domain of a pixel is consis-
tent with that of the symmetrical pixel with respect to the central
axis of the image. Thus, the observed scattering component also
has symmetry, and we leverage this symmetry as a global prior.
4.3.2 Formulation as robust estimation

We formulate the scattering component estimation problem as
robust estimation. Specifically, we solve the following optimiza-
tion problem:

min
x,a1 ,··· ,aK

N∑
i=1

ρ

(
xi − x̃i

σ1

)
+γ1

K∑
k=1

‖Uak−xk‖2+γ2‖Fx−x‖2+γ3‖∇x‖2.
(46)

The first term of Eq. (46) is a data term where x̃ = [x̃1 · · · x̃N]�

and x = [x1 · · · xN]� are a captured image and a scattering com-
ponent, respectively. N is the number of camera pixels, and σ1

is a scale parameter. We use a nonlinear differentiable function
ρ(x) rather than square error x2, which allows us to make the es-
timation robust against outliers. In this study, we simply use the
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Fig. 28 Global symmetrical prior. When camera and light source are col-
located on line that is parallel to horizontal axis of image, observed
scattering component has symmetry because integral domain of
pixel is consistent with that of symmetrical pixel with respect to
central axis of image.

residual of the observation and the scattering component as the
data term, i.e., pixels that contain a direct component are regarded
as outliers.

We use three additional regularization terms. The second term
represents the local prior. K is the number of patches for local
quadratic function fitting. U is an Nk × 6 matrix where Nk is
the number of pixels in patch xk ∈ RNk and each row of U is a
vector u that corresponds to each pixel coordinate. In this study,
these patches do not overlap each other. The third term represents
the global prior where F ∈ RN×N is a matrix that flips an image
vertically. The last term is a smoothing term where ∇ denotes a
gradient operator. This smoothing accelerates the optimization.
Hyperparameters γ1, γ2, γ3 control the contribution of each term.
4.3.3 IRLS and object region estimation

We minimize Eq. (46) with respect to a scattering component
x and the coefficients of quadratic functions a1, · · · , aK . For solv-
ing this problem, we use an iteratively reweighted least squares
(IRLS) optimization scheme [6], [11]. IRLS minimizes weighted
least squares iteratively and the weight is updated using the cur-
rent estimate in each iteration. The objective function in Eq. (46)
is transformed into weighted least squares as follows:

min
x,a1 ,··· ,aK

(x−x̃)�W(x−x̃)+γ′1
K∑

k=1

‖Uak−xk‖2+γ′2‖Fx−x‖2+γ′3‖∇x‖2,
(47)

where W = diag(w) is an N × N matrix and w = [w1, · · · , wN]�

is the weight for each error xi − x̃i. Hyperparameters are given as
γ′∗ = 2σ2

1γ∗. Equation (47) is quadratic with respect to the scatter-
ing component x, and thus is easy to optimize. In each iteration,
we solve Eq. (47) for x and a1, · · · , aK , and the weight can be
updated using the current estimate as

wi =
ρ′ ((xi − x̃i)/σ1)

(xi − x̃i)/σ1
. (48)

The specific update rule of the weight depends on the nonlin-
ear function ρ(x). In this study, we use the following function as
ρ(x):

ρ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c2

6

[
1 −

{
1 −

(
x
c

)2
}3

]
i f |x| ≤ c

c2

6 otherwise.
(49)

This function yields the following update:

Kinect v2

Fog generator

(a)

Plane

Chair

Desk

Hand

Duck

(b)

Fig. 29 (a) Experimental environment. (b) Target objects

wi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
1 −

(
ri
c

)2
}2

i f |ri| ≤ c

0 otherwise,
(50)

where ri = (xi − x̃i)/σ1, and c is a tuning parameter. This update
is referred to as Tukey’s biweight [2], [6], where 0 ≤ wi ≤ 1.

The weight controls the robust estimation, that is, a large error
term reduces the corresponding weight. In this study, we con-
sider the object region as outliers, and thus the weight in the ob-
ject region should be small. Therefore, we can leverage the IRLS
weight to extract the object region from the image.
4.3.4 Coarse-to-fine optimization

The accurate object region extraction is critical for the effec-
tiveness of the scattering component estimation. In Section 4.3.1,
we introduced the local and global priors of the scattering com-
ponent to deal with a large object region. To make the region
extraction more robust, we developed a coarse-to-fine optimiza-
tion scheme. Before solving Eq. (46), we optimize the following
objective function:

min
x,a1 ,··· ,aK

K∑
k=1

ρ

( ‖xk − x̃k‖
σ2

)
+ γ1

K∑
k=1

‖Uak − xk‖2 + γ2‖Fx − x‖2 + γ3‖∇x‖2.

(51)

The difference from Eq. (46) is that the data term consists of
patch-wise errors. Equation (51) can be transformed into IRLS
as well as Eq. (46) where γ′∗ = 2σ2

2γ∗, and the IRLS weight is
updated patch-wise rather than pixel-wise.

4.4 Experiments

We evaluated the effectiveness of the proposed method using
real and synthetic data. First, we show the experiments with real
data, and then, the applicability to various scenes is discussed us-
ing synthetic data.
4.4.1 Experiments with real data

First, we performed the experiments in a scene shown in Fig.
29. We set up a fog generator and a Kinect v2 in a closed space
sized 186 × 161 cm with black walls and floor. The observation
of the wall includes only a scattering component because incident
light into the wall is absorbed. The Kinect v2 has three modula-
tion frequencies: 120, 80, and 16 MHz. We used images obtained
with 16 MHz. To compensate for high frequency noise, we used
a bilateral filter as preprocessing.

For amplitude images, we set the hyperparameters of the ob-
jective function as [γ′1, γ

′
2, γ
′
3] = [0.1, 0.1, 10], and the tuning pa-

rameter of the function ρ(x) is set as c = 4, 7 in the coarse and
fine level optimization, respectively. For phase images, we set
[γ′1, γ

′
2, γ
′
3] = [0.01, 0.1, 50] and c = 2, 3. The numbers of IRLS

iterations were 5 and 50 for the coarse and fine optimization. One
iteration required about from 0.3 to 1.0 seconds.
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(a) Scene

(b) Scattering estimation of amplitude

(c) Scattering estimation of phase

(d) Depth and object mask estimation

Fig. 30 (a) Target scene. (b)(c) Left to right: input image, estimated scatter-
ing component, and IRLS weight for amplitude and phase image,
respectively. (d) Left to right: depth without fog, depth with fog,
reconstructed depth, masked reconstructed depth, and estimated ob-
ject mask.

Table 5 Mean /max depth error on each object of without considering scat-
tering (top) and proposed (bottom). [cm]

Plane Chair Desk Hand Duck
25.3 / 97.3 37.2 / 98.2 65.6 / 92.1 67.9 / 102.5 79.8 / 111.0
2.1 / 28.5 6.0 / 49.8 10.7 / 78.6 5.1 / 57.1 11.8 / 74.9

The results are shown in Fig 30. We show (a) the RGB im-
age and (b)(c) the input image, the estimation of the scattering
component, and object region for the amplitude and phase im-
age. The object region depicted here is the IRLS weight before
binarization. In (d), we show the depth without and with fog, the
reconstructed depth, the masked depth, and the estimated object
mask from left to right. The depth measurement in the foggy
scene had large error here due to fog. On the other hand, the
proposed method could estimate the scattering component and
object region, and improve the depth measurement. Of particu-
lar note is that thin regions such as the legs of the chair could
be extracted. The mean and max depth error without considering
scattering and with the proposed method under different density
conditions is listed in Table 5; here, we define the ground truth as
the measured depth without fog. The object label corresponds to
that of Fig. 29(b). As shown, the proposed method could reduce
the error significantly.

Next, we tested the proposed method in a scene shown in Fig.
31. This scene has neither dark walls nor floor. The estimation of
the scattering component and object region for the amplitude and
phase image is shown in Fig. 31(b)(c), respectively, and the result
of the depth reconstruction is shown in Fig. 31(d). The proposed
method could also extract the object region and improve the depth
measurement in a scene with a general background.
4.4.2 Experiments with synthesized data

To investigate the effectiveness in more varied scenes, we eval-
uated the proposed method with synthesized data. The proce-
dure of generating the synthesized data is shown in Fig. 32. We
assume that a scattering component does not depend on object
depth, and thus we observed a direct component and a scatter-
ing component separately and then combined them into a synthe-
sized image. A foggy scene includes calibration objects for the
estimation of the scattering coefficient. We also observed a scene
without fog, which was used for the direct component after being

(a) Scene

(b) Scattering estimation of amplitude

(c) Scattering estimation of phase

(d) Depth and object mask estimation

Fig. 31 Results of other real scene. (a) Target scene without and with
fog. (b)(c) Left to right: input image, estimated scattering compo-
nent, and IRLS weight for amplitude and phase image, respectively.
(d) Left to right: depth without fog, depth with fog, reconstructed
depth, masked reconstructed depth, and estimated object mask.

Scene with fog

Phase image

Amplitude image

Scattering component

β
Scattering 

coefficient

Phase image

Amplitude image

Synthesized image

Fig. 32 Procedure of synthesizing images. First, we captured scene that
has calibration objects in foggy scene and masked region of cali-
bration objects manually. After that, we compensated for defective
region to estimate scattering component. Using observation without
fog, scattering coefficient can be computed. Images of target scene
without fog were captured separately, and attenuated direct compo-
nent and estimated scattering component were combined into syn-
thesized images.

(a) Scene

(b) Scattering estimation of amplitude

(c) Scattering estimation of phase

(d) Depth and object mask estimation

Fig. 33 Results of synthesized data. (a) Target scene. (b)(c) Left to right:
input image, estimated scattering component, and IRLS weight for
amplitude and phase image, respectively. (d) Left to right: depth
without fog, depth with fog, reconstructed depth, masked recon-
structed depth, and estimated object mask.

attenuated by the scattering coefficient. We combined the attenu-
ated signal and the scattering component to synthesize amplitude
and phase images.

The results are shown in Fig. 33. We show (a) the target scene,
(b)(c) the estimated scattering component and the IRLS weight
for the amplitude and phase image, and (d) the result of the depth
reconstruction. The proposed method effectively extracted the
object region and estimated the scattering component. We also
show a failure case in Fig. 34. In a scene that has a large object
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(a) Scene

(b) Scattering estimation of amplitude

(c) Scattering estimation of phase

(d) Depth and object mask estimation

Fig. 34 Failure case.

region, our method was less effective because a quadratic func-
tion also fits to values in the object region. In Fig. 34, a large
textureless object region exists on the left side. In addition, the
global symmetrical prior did not work in this region because the
object occupied the pixels from top to bottom in the image.

4.5 Conclusion

In this chapter, we discussed ToF-based depth measurement in
scattering media. The proposed method simultaneously estimates
an object region and depth with the observation of a continuous-
wave ToF camera, which consists of an amplitude image and
phase image. We modeled the effect of scattering media in ampli-
tude and phase space. We leveraged the saturation of a scattering
component and the attenuation of a direct component from a dis-
tant point in a scene. The formulation with a robust estimator and
the IRLS optimization scheme allows us to estimate the scattering
component and object region simultaneously.

5. Conclusion

In this paper, we discussed 3D reconstruction in scattering me-
dia. Image degradation due to light scattering and attenuation in
scattering media deteriorates the accuracy of traditional 3D re-
construction methods. Thus, image degradation should be taken
into account when developing 3D reconstruction methods in scat-
tering media. We divided the 3D reconstruction methods into
three categories on the basis of their principles i.e., disparity-,
shading-, and ToF-based methods. Each method was applied to
scattering media with an appropriate scattering model.

The proposed methods rely on some assumptions about the
physical phenomena of scattering media, e.g., homogeneous scat-
tering media. On the other hand, scattering media is often inho-
mogeneous or dynamically changing in the real world. A typical
example is flowing water or smoke. Such problem should be ad-
dressed in order to further enhance the real-world applicability of
the proposed method.
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