IEMMIBFSHYEFE 7075327 Vol.14 No.2 28 (May 2021)
HREIE

KRBT — 2N S RIEFR LN F) IEAAD
FaA—XrLTya—x0Oa— FERK
e 75 A1)

20201029 %R

Web 77 D27 547 v b EF—"DiifE121% HTTP, WebSockets % Ex2 AL, 7= %20 &b
T5., ERIIDETORINAFIERTZ IAT7 Y N =NTRAS2DIFETT 7T ENT A
T—=8ENAF)BT —F, 72— FT0EXZHL. 77)VDOT—5RP 6N F) EAUE
WTx5HDE L TJISON, XML, Protocol Buffers 22 &S5 5. JSON, XML Z7 ¥ A b7 —%
THY, WGEREDNAF) T—5 % &0 51213 basebd 7 EOFRE S SN S HITIULE S LV 7z0%
BWKELRY, 29472 M —NTHOSEEZME LT — s Mok gEs be 2 LEND
4. Protocol Buffers I3HE D A ¥ —~< ATk L, MR EDNA F) 7= D% 4 A& i, Sik
B OIS A DE 24T > T NBY, (BT Mz EEGOLZ LI TER v, LW T— 7 IEdH
NRAEWRY =226 LT, =825 0r 03 {FxbbDiZ. ZOMFE TR L 72 definy-core D
OJ— FEREREZHEZIE 1 2OERTHERE AN FIVEANOTFTI-%, Tra—-FOa— FEAEKT
&b, AFXF—vOERL I FERIZT-FTI) 720, BESHEOANIEORELXZIT2 LN TE,
I Z IR BT A LB R, I— FERAERT 2 IEF % E KIS T & 5. HAE TypeScript
D= FEFO A A= LTWAh. definy-core HEDFEFD definy-core AV TESL LTV 5. Web
T =2 a DO LA, FALUSOHET .

Presentation Abstract

Code Generation for Type Definitions, Binary Format Decoders,
and Encoders from Algebraic Data Types

HiDETO NARUMIH'®)

Presented: October 29, 2020

The client and the server communicate using communication methods such as HT'TP and WebSockets to
exchange data. What is passed is in binary format, and the client and the server need to encode and decode
the data exchanged by the application in some way to the binary format. JSON, XML, Protocol Buffers,
etc. are used as the ones that can be converted from the application data type to binary format. JSON and
XML are text data, and if you want to include binary data such as images, you need to use a format such
as base64, which will increase the size of the data. Protocol buffers have their schema and maintain the
size of binary data such as images, and do not need to write multiple languages, can not include algebraic
data types directly. Algebraic data types are designed to reduce impossible patterns and to make the data
easier to understand. The code generator of definy-core, which we have developed in this study, allows us
to generate type definitions and codes for decoders and encoders to binary formats with a single definition.
Since the schema definition and code generation are done in code, we can benefit from the input support of
the existing languages and there is no need to provide editor extensions and the order of code generation
is flexible. Currently, only TypeScript code generation is supported. Definy-core’s type definitions are also
made with definy-core. Although it is designed for web applications, it can be used for other purposes as
well.

This is the abstract of an unrefereed presentation, and it

should not preclude subsequent publication.

b RO AR BRI A 7 TR EERa a7
v IMRE
Cyber Phisical System Lab, Department of Information Sys-
tems and Multimedia Design, School of Science and Technol-
ogy for Future Life, Tokyo Denki University, Adachi, Tokyo
120-8551, Japan

2) narumincho@cps.im.dendai.ac.jp

© 2021 Information Processing Society of Japan

28

