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Abstract: Backtracking-based load balancing is a promising method for task parallel processing with work stealing.
Tascell is a framework for developing applications with backtracking-based load balancing. Users are responsible for
ensuring the consistent behavior of Tascell programs when backtracking is triggered in the Tascell runtimes. Nev-
ertheless, the operational semantics for Tascell programs have not been formally studied. Moreover, no extensional
equivalence between Tascell programs is provided. In this paper, we formally specify operational semantics for Tascell
programs and define extensional equivalence between Tascell programs using the Church–Rosser modulo equivalence
notion in abstract rewriting theory. We propose left invertibility and well-formedness properties for Tascell programs,
which ensure extensional equivalence between sequential and concurrent behaviors of Tascell programs. We also pro-
pose a domain-specific language based on reversible computation, which allows only symmetric pre/post-processing
to update states. Tascell programs written in our language have left invertibility and well-formedness properties by
construction. Finally, we confirm that Tascell programs to solve typical search problems such as pentomino puzzles,
N-queens, and traveling salesman problems can be written in our language.
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1. Introduction

Task parallel processing is a promising method for using a
huge number of computational nodes for solving search problems
such as those related to data parallel processing. Unfortunately,
task parallel processing often has the load imbalance problem

whereby tasks of uneven sizes are assigned to computing work-
ers, unlike data parallel processing, in which tasks assigned to
workers are usually of uniform size. The most straightforward
method for addressing the load imbalance problem is to create
numerous fine-grained tasks to be assigned to workers and put
them into pools, called task pools, in advance. However, such a
method raises the overhead of task creation and complicates task
pool management.

Lazy task creation (LTC) is a well-known method for reduc-
ing the overhead for fine-grained task parallel programs. In LTC,
a worker logically defines tasks at task creation points but does
not create real tasks. When a task is stolen by another worker,
it is embodied as a real task. Consequently, the cost of task cre-
ation can be delayed until the task is required. Mohr et al. used
this technique to implement so-called future construct of Multil-
isp [28]. Although they drastically reduced the overhead of task
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creation, they described that pools are still required for logical
tasks.

Inspired by work of Mohr et al., Frigo et al. adopted LTC in the
implementation of the Cilk-5 multithreaded language [13]. Cilk-
5, an extension of the C programming language [21], is extended
mainly with two additional constructs, namely, spawn for creat-
ing parallel tasks and sync for synchronizing tasks. In Cilk-5,
doubly ended queues called ready deques are used as logical task
pools that workers have. Although they demonstrated some ex-
periments that show high performance of task parallel processing
in Cilk-5, considerable overhead remains necessary for managing
the logical task pools.

Backtracking-based load balancing is a promising alternative
technique in task parallel processing [19]. A worker performs se-
quential computation without creating any logical task until it re-
ceives a task request from another idle worker. Although it might
seem that the worker cannot create a large task to be sent if the
computation by the worker has proceeded beyond the execution
point where it can create the task, we use an example to demon-
strate later that this is not the case in backtracking-based load
balancing.

Let us consider depth-first backtrack search for solving pen-
tomino puzzles (cf., Golomb’s book [14]), which consist of one
board and 12 pieces, each of which has 5 cells. The board has
60 cells. A solution is a board on which the 12 pieces are placed
without overlap or gaps. The two panels in Fig. 1 show a search
tree. Squares denote boards. Pieces are put on the boards. Every
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Fig. 1 Search tree for a pentomino puzzle.

plain line denotes an operation that puts one piece on a board.
A case is considered in which a worker called a victim that

handles the leftmost board in the left panel receives a task re-
quest from another worker called a thief. If the victim creates
a task without backtracking to a former state, then the task will
correspond to the sub-search tree on the right-hand side, i.e., the
task will be small. To enlarge the task to be created, the victim
1) temporarily backtracks to the former state, 2) creates the task
to execute part of unexecuted iterations of the loop over pieces at
the state and sends it to the thief, 3) returns from the temporary
backtracking to the original state immediately, and 4) resumes its
own search. The right panel in Fig. 1 presents an execution state
after the victim sent the task to the thief. The right-hand search
tree of the wavy line has been assigned to the thief.

By definition, the backtracking-based load balancing technique
eliminates the overhead caused by unnecessary task creation and
task pool management. Another advantage of this technique is
that we can delay various additional operations that are required
for parallelization. For example, when the backtrack search for
pentomino puzzles is implemented with LTC, a worker must allo-
cate a workspace for managing the board states and initialize it by
making a copy of the current board state for each logical task cre-
ation. When using the backtracking-based technique, however,
the cost for such operations can be delayed until a task request,
which considerably reduces total allocation/initialization cost and
improves the locality of reference.

Careful readers might think that backtrackings to create tasks
are more expensive than LTC. However, because the number of
task creation in LTC is much larger than the number of work
steals in most cases, the backtracking-based technique can im-
prove the overall performance considerably, as experimentally
demonstrated [19].

The Tascell framework, which is intended for developing ap-
plications with backtracking-based load balancing, consists of a
language, a compiler, and runtimes. Like Cilk-5, the Tascell
language is an extension of the C programming language. The
Tascell language has special clauses before, body, and after for
backtracking. Users develop Tascell programs using these spe-
cial clauses according to conventions described in a natural lan-
guage in the original paper [19]. Users are responsible for ensur-
ing the consistent behavior of Tascell programs when backtrack-
ing is triggered in the Tascell runtimes. In fact, not all tasks that
can be executed in parallel without backtracking-based load bal-

ancing can be executed correctly in the Tascell runtimes because
of backtracking.

In this paper, we provide operational semantics for Tascell pro-
grams and define extensional equivalence between Tascell pro-
grams using the Church–Rosser modulo equivalence notion in
abstract rewriting theory [38]. Although semantics for task paral-
lel programs have been reported [5], [12], our extensional equiv-
alence is not only novel but also theoretically simple and elegant
based on abstract rewriting theory.

We propose left invertibility and well-formedness properties
for Tascell programs, which ensure extensional equivalence be-
tween the sequential and concurrent behaviors of Tascell pro-
grams. The construction of the proof flow is also a contribution
to the task parallel programming research field.

We also design a domain-specific programming language for
task parallel processing with backtracking-based load balancing
that ensures left invertibility by construction. A key idea is to
use reversible computation [4], [25], [39]. The language pro-
vides only descriptions to execute reversible computation in be-
fore clauses. Operations that should be described in after clauses
are generated from descriptions in before clauses. Consequently,
left invertibility is ensured by construction. Error-prone descrip-
tions in after clauses are unnecessary.

Finally, we confirm that Tascell programs to solve typical
search problems such as pentomino puzzles, N-queens, and trav-
eling salesman problems can be written in our language.

The remainder of this paper is organized as follows. Section 2
introduces the Tascell language, operational semantics, and ex-
tensional equivalence. Section 3 describes several proposed prop-
erties such as left invertibility and well-formedness properties for
extensional equivalence. In Section 4, a domain-specific lan-
guage is proposed based on reversible computation. In Section 5,
we present experimentally obtained results. In Section 6, we dis-
cuss related work to clarify the contributions of this paper. In
Section 7, we conclude the paper by identifying future research
directions.

2. Tascell

This section introduces Tascell task parallel programming with
backtracking-based load balancing, along with its formal defini-
tions.
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Fig. 2 Task definition and its search function in the Tascell program for
solving pentomino puzzles.

2.1 Example
We introduce the Tascell language intuitively using an exam-

ple program. The Tascell language is an extension of the C pro-
gramming language *1. Figure 2 presents an example of a Tascell
program *2 for solving pentomino puzzles, as introduced in Sec-
tion 1.

Lines 1–6 define the task pentomino. Variables and arrays
have the attribute out or in. Variables with the attribute out hold
values that are used for outputs. The variables and arrays with the
attribute in are used to find solutions. Variable k denotes the next
empty cell on the board. Variable i0 denotes the next piece that
is to be put on the board. Variables i1 and i2 respectively denote
the first and last pieces. It is checked whether the range of pieces
can be put on the board.

Array a is used to manage unused pieces. There are 12 kinds
of pieces. The array b denotes the board, which consists of
60 = 6 · 10 cells with sentinels at the x-axis. The array size is
70.

Lines 8–39 define the worker function search.

*1 The Tascell compiler takes programs written in an extension of the SC-0
language [17], which consists of S-expressions and which has exactly the
same semantics as those of the C programming language. We can define
an extension of SC-0 as explained in Section 4.2. It is easier to do so
than to modify a parser directly for C programs.

*2 Strictly speaking, although Tascell programs consist of S-expressions, as
described above, the example program is written in C-like notation in
this paper for readers who are familiar with the standard C notation.

Lines 10–36 specify a loop statement. Tascell has loop state-
ments of two kinds: for and do. The for loop statements are
standard loop statements of C, which are executed sequentially
by one worker. Therefore, the so-called doall and doacross
statements (cf., Ref. [10]) can be written as for loop statements.
do loop statements are divisible into multiple iterations, which

can be stolen by thief workers. Iterations of do loop statements
must be defined to be executed in parallel. The results will not be
ensured to be the same as those obtained when the iterations are
sequentially executed if this is not done.
do loop statements consist of do_two and do_many statements.

do_two statements have exactly two iterations; do_many state-
ments have zero or more iteration.

Lines 18–34 describe a dynamic_wind statement, for which
semantics are derived from those in Scheme [23]. dynamic_wind
statements have before, body, and after clauses in Tascell. If no
work stealing occurs, then statements in before, body, and after
clauses, are executed sequentially.

Statements in before and after clauses are executed atomically;
that is, while a victim worker executes them, thief workers cannot
steal tasks from the victim worker. While a victim worker exe-
cutes statements in a body clause, thief workers can steal tasks
from the victim worker. In a straightforward strategy, the victim
worker would create a task at the current state. Also, the task
would be very small. In backtracking-based load balancing, the
victim worker backtracks to a former state at which large tasks
can be created. A procedure for backtracking to a former state is
described in the after clause. In fact, do statements can have mul-
tiple and nested dynamic_wind statements. The victim worker
backtracks to a former state by executing (multiple) statements in
(multiple) after clauses and creates tasks. The thief worker steals
some tasks. The victim worker reverts to the original state by
executing the statements in the before clause.

In the example, lines 19–22 specify statements in the before
clause that choose a piece and update the board. Lines 23–30
specify statements in the body clause that judge whether a solu-
tion exists and if not, continue to search for solutions. Lines 31–
34 specify statements in the after clause that restore the board.

A problem with the Tascell language is that the user is respon-
sible for keeping the consistency between statements of before,
body, and after clauses. If the consistency is destroyed, then se-
quential and concurrent behaviors of the program do not exten-
sionally coincide, that is, a search tree processed by one worker
does not coincide with a search tree processed by multiple work-
ers.

Line 36 describes a detailed procedure for creating tasks. It is
omitted from the discussion presented in this paper.

Finally, we note that we specifically examine search trees only.
We regard counting of the number of solutions, printing solutions
to the standard output, etc. as side effects in this paper.

2.2 Syntax
We define a sub-language of the Tascell language specific to

search problems. Figure 3 presents Tascell statements. State-
ments consist of user statements and other statements that are
useful for describing operational semantics. The user statements
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Fig. 3 Sub-language of the Tascell language.

are written by Tascell users.
Expressions consist of constants c, variables x, arrays x[e],

and expressions composed by binary operators e0 ⊗ e1. Constant
c ranges over non-negative integers. Variables and array elements
are initially zero-cleared. Arrays are indexed by integers starting
from zero. The binary operators addition, subtraction, bitwise
exclusive OR operation (that is, 0ˆ0 = 0, 0ˆ1 = 1, 1ˆ0 = 1,
and 1ˆ1 = 0), conjunction, disjunction, equality, inequality, less
than, and greater than are defined in a standard manner. The
truth value “true” is represented by any non-zero integer; the truth
value “false” is represented by zero.

Statement skip denotes no operation. The statement
assert(e) means if(e==0) exit; written in the C program-
ming language. The statements x = e and x[e0] = e1 are assign-
ments.

Raw statements consist of no operation, assertions, assignment
statements, concatenations of raw statements, and conditional
statements.

User statements consist of raw statements, concatenations of
user statements, conditional statements, for loop statements, do
loop statements, dynamic-wind statements, mark statements,
and unmarked statements. Strictly speaking, we must distin-
guish constructors for concatenations of statements and condi-
tional statements in the definition of user statements from those in
the definition of raw statements. However, we do not use different
notation because meaning is readily apparent from the context.

The difference between for and do loop statements is ex-
plained in Section 2.1. Loop variable x ranges over the expression
list es. Symbol nil denotes the empty list and :: denotes the
list constructor “cons”. We assume the so-called variable con-
vention that loop variables are fresh using alpha-conversions. Al-
though this assumption can also be satisfied by introducing the
local variable notion in statements, we implicitly assume the con-
vention.

The statement dynamic-wind (rbefore,u,rafter) denotes the
dynamic-wind statement consisting of rbefore, u, and rafter in the
statements in the before, body, and after clauses. The mark state-
ment records the current node. Tascell is a domain-specific lan-
guage for search problems. A node in a search tree is defined by a
memory. We assume that a concrete method to make nodes from
memories, which is represented as a function nd(·), and which
is introduced in Section 2.3, is given externally. The unmarked
statement unmarked{u} is a conditional statement. If the node
which is defined by the memory is not marked, then u is executed.

Fig. 4 Local semantics for raw statements.

Fig. 5 Local semantics.

Otherwise, it is no operation.
Non-user statements are not written by Tascell users but are

introduced to define operational semantics for Tascell programs.
Statement enddo denotes the endpoint of a do statement. State-
ment pop denotes the pop operation for raw statement stacks,
which are introduced into Section 2.3. The statement finish j

returns marked nodes to the victim worker j.

2.3 Local Semantics
We define transitions that are raised by the actions of a worker,

which in turn are the executions of statements, as shown in Figs. 4
and 5.

Letting R be a relation, we R∗ for its reflexive and transitive
closure of R.

We define transition systems between configurations

〈s, ds, stt〉 j. Configurations are indexed by the worker iden-
tifier j, which ranges over non-negative integers. They consist of
statements s, do lists ds, and states stt. Transitions are written as
�l. Specifically, transitions by raw statements are written as�r.
Configurations are simplified to what are necessary. The place-
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holder denotes an arbitrary statement, an arbitrary expression,
etc. Statements were defined as explained in Section 2.2.

A do list records nested do statements that the worker exe-
cutes. An element d is 〈do(x,es){u}, val, rs〉, where a raw state-

ment stack rs comprises pairs of raw statements. We also use the
notation for lists nil and :: to represent raw statement stacks.

States consist of pairs of marked nodes ς and memories σ.
Marked nodes ς are a set of nodes that are marked. Memories
σ are functions from variables x and pairs 〈x, i〉 of variables and
integers to values val. In this paper, values are integers. The node
nd(σ) is a node made from σ. We assume that the function nd(·)
is given externally.

A function σ[x � val] is an update function of σ with the
substitution [x � val] such that (σ[x � val])(x) = val and
(σ[x � val])(x′) = σ(x′) if x′ ∈ dom(σ) \ {x}, where dom(σ)
is the domain of σ. Similarly, we define updates for 〈x, i〉.

The assertion assert(e) checks if e is satisfied on the current
memory. If it is not satisfied, then the computation gets stuck.

Assignment statements, concatenations of statements, condi-
tional statements, and for statements are defined in a standard
manner, where [[e]]σ is defined as shown below.

[[c]]σ = c [[x]]σ = σ(x)

[[x[e]]]σ = σ(〈x, [[e]]σ〉) [[e0 + e1]]σ = [[e0]]σ + [[e1]]σ · · · .
Therein, c is an integer denoted by c, such as 1 = 1.

The mark statements update marked nodes from the current
states. The unmarked statements are conditional statements
about marked nodes.

The statement is pushed to its do list with nil for its after pro-
cessing if worker j meets a do statement for which the loop range
is not nil to be executed. It confirms the loop range of the head
of its do list if the worker meets enddo. The worker executes
the loop iteration with the loop variable assigned to e if the loop
range is e::es. The do statement at the head is removed if the
loop range is nil.

Statement pop is used to define semantics for dynamic-wind
statements.

If a worker meets dynamic-wind (rbefore,u,rafter), then rbefore

is first executed and rafter is pushed to the last d in its do list.
Next, u is executed. The head of d is removed by executing pop.
This mechanism enables backtracking-based load balancing, as
explained in Section 2.4.
Proposition 2.1. Assuming that 〈s, ds, stt〉 j �l 〈s′, ds, stt′〉 j,

then, for any ds′, 〈s, ds′, stt〉 j �l 〈s′, ds′, stt′〉 j holds.

Proof. By induction on�l. A point is that any transition which
depends on ds changes ds. �

A relation R is called deterministic if 〈A0, A1〉 ∈ R and
〈A0, A2〉 ∈ R imply A0 = A2. A deterministic relation� is called
terminating if no infinite sequence exists with respect to�.
Proposition 2.2. The relation�l is deterministic.

Proof. By induction on�l. �
Proposition 2.3. The relation�l is terminating.

Proof. We define a weight function || · || inductively as shown
below.

||es|| : ||nil|| = 1

||e::es|| = 3 · ||es|| + 1

||ds|| : ||nil|| = 1

||〈do(x,es){u}, val, rs〉::ds|| = ||1 + u||||es|| · ||ds||
||s|| : ||skip|| = ||enddo|| = 1

||assert(e)|| = ||x = e|| = ||x[e0] = e1|| = 2

||mark|| = ||pop|| = ||finish j|| = 2

||unmarked{u}|| = 1 + ||u||
||if(e)then{u0}else{u1}|| = ||u0|| + ||u1||

||s0;s1|| = ||s0|| + ||s1||
||for(x,es){u}|| = 1 + ||es|| · ||u||
||do(x,es){u}|| = 2 · ||1 + u||||es||

||dynamic-wind (r0,u,r1)|| = 3 + ||u||

We also define ||〈s, ds〉|| as ||s|| · ||ds||. One can readily confirm
that 〈s, ds, stt〉 j �l 〈s′, ds′, stt′〉 j implies ||〈s, ds〉|| > ||〈s′, ds′〉||.
A point is that loop ranges of do loop statements are heavily
weighted. Therefore, the relation�l is terminating. �

Readers who are familiar with proofs for termination might
think of using exponentials to define the weight function as an
application of Occam’s razor. However, we extend the weight
function in another proof for termination in Section 2.4.

2.4 Global Semantics
We define transitions�g that are performed by multiple work-

ers that execute statements.
Let N be the number of workers. We use the abbrevia-

tion cfg j �d cfg′j, which describes only a difference, for
〈〈cfg0, . . . , cfg j, . . . , cfgN−1〉, 〈cfg0, . . . , cfg′j, . . . , cfgN−1〉〉 ∈ �g.
We also use the abbreviation cfg j, cfgk �d cfg′j, cfg′k for
〈〈cfg0, . . . , cfg j, . . . , cfgk, . . . , cfgN−1〉, 〈cfg0, . . . , cfg′j, . . . , cfg′k,
. . . , cfgN−1〉〉 ∈ �g. The transition on N-tuples of configurations
is defined as presented in Fig. 6.

The state init is defined as 〈∅, 	→ 0〉, where 	→ 0 denotes the
constant function to 0.

Local transitions are global transitions, as shown at (local j).
The transition rule (steal j0 , j1 ) shows work stealing. Worker

j1 with the initial state requests tasks from worker j0. Worker
j0 executes after statements to backtrack to a state in which
the outermost do statement for which the loop range is more
than one is executed, and create tasks where |es| is the length
of the list es and after(〈rn,before, rn,after〉; . . . ;〈rk,before, rk,after〉) de-
notes rn,after; . . . ;rk,after.

Fig. 6 Global semantics.
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Worker j1 steals the tasks and starts to execute tasks with
the state 〈∅, σ1〉. Worker j0 executes before statements
to revert to the original state, where before(〈rk,before, rk,after〉;
. . . ;〈rn,before, rn,after〉) denotes rk,before; . . . ;rn,before. In fact, state
σ1 is not generally ensured to be the state in which the do state-
ment was formerly executed. The state σ0 is not generally en-
sured to be the original stateσ. We introduce sufficient conditions
to ensure these in Section 3. Worker j0 has some tasks stolen; its
current tasks are ds0.

The transition rule (merge j0 , j1 ) shows a merging of states when
tasks are completed. Worker j1 returns ς1, which is a set of
marked nodes. Marked nodes are merged. Worker j1 prepares
to request tasks if necessary.

The relation�g is generally non-deterministic. A relation�
is called strongly normalizing if there exists no infinite sequence
with respect to�. By Proposition 2.3, the deterministic relation
�l is strongly normalizing.
Proposition 2.4. The relation�g is strongly normalizing.

Proof. We extend the weight function ||〈s, ds〉|| in the proof of
Proposition 2.3 to that for the N-tuples of pairs such that

||〈〈s0, ds0〉, . . . , 〈s j, ds j〉, . . . , 〈sN−1, dsN−1〉〉||
=
∏
{ ||〈s j, ds j〉|| | 0 ≤ j < N }

where
∏

is the multiplication operator for sets of integers.
It is readily apparent that �g transitions by (local j) and

(merge j0 , j1 ) are decreasing. Next, we can consider the tran-
sition 〈s, ds, 〉 j0 , 〈skip, nil, init〉 j1 �d 〈s, ds0, 〉 j0 , 〈enddo;
finish j0, ds1, 〉 j1 by (steal j0 , j1 ).

A point is that the divisions of loop ranges of do loop state-
ments reduce weights, i.e., loop ranges that consist of elements
of a loop range are weighted more lightly than the original loop
range. Because

n||em::...::e0::nil|| > 3 · n||em::...::e� m
2 ::nil||+||e� m

2 −1::...::e0::nil||

holds for any n ≥ 2 and m > 0,

||〈s, ds〉, 〈skip, nil〉||
= ||s|| · ||ds||
> ||s|| · ||ds||/||dk || · (1 + ||uk ||)||em::...::e� m

2 ::nil||·
3 · (1 + ||uk ||)||e� m

2 −1::...::e0::nil||

= ||〈s, ds0〉, 〈enddo;finish j0, ds1〉||
holds. Therefore, the relation�g is strongly normalizing. �

Because the relation �g is non-deterministic, a Tascell pro-
gram can generally return multiple states. We expect that a cor-
rect Tascell program returns multiple answers that can be re-
garded as extensionally equivalent. In Sections 3, we define some
properties for Tascell programs. We also demonstrate that Tascell
programs which satisfy the nice properties return states that are
extensionally equivalent.

2.5 Extensional equivalence
We define an extensional equivalence on configurations. Be-

cause our targets are search problems, the extensional equiva-
lence respects the equality between solutions of search problems.

Some notions of abstract rewriting theory must be re-
called [38]. 〈A,�〉 is called an abstract rewriting system if A is a
set and� is a relation on A. Letting ∼ be an equivalence relation
on A, then one can write ≈ for (∼ ∪� ∪ { 〈b, a〉 | 〈a, b〉 ∈� })∗.
A0, A1 ∈ A are called joinable modulo ∼ if there exist A2, A3 ∈ A
such that A0 �∗ A2, A1 �∗ A3, and A2 ∼ A3. 〈A,�〉 is called
locally confluent modulo ∼ if for any A0, A1, A2 ∈ A, A0 � A1

and A0 � A2 imply that A1 and A2 are joinable. 〈A,�〉 is called
locally coherent modulo ∼ if for any A0, A1, A2 ∈ A, A0 � A1

and A0 ∼ A2 imply that A1 and A2 are joinable. 〈A,�〉 is called
Church–Rosser modulo ∼ if for any A0, A1 ∈ A, A0 ≈ A1 implies
A0 and A1 are joinable.

We define that an N-tuple consisting of { cfg0, j | 0 ≤< N } is
related to an N-tuple consisting of { cfg1, j | 0 ≤ j < N } by ∼g if
there exists a permutation f (i.e., a bijection on { j | 0 ≤ j < N })
such that the N-tuple consisting of { cfg0, j | 0 ≤ j < N } is the
same as the N-tuple consisting of { f (cfg1, j) | 0 ≤ j < N }, where
f (〈s, ds, stt〉 j) = 〈 f (s), ds, stt〉 f ( j) and

f (u) = u f (enddo) = enddo

f (pop) = pop f (finish j) = finish f ( j)

f (s0;s1) = f (s0); f (s1) .

Intuitively, ∼g is the relation up to differences between worker
identifiers.

We define that S is a set of N-tuples of configurations that
are extensionally equivalent if 〈S,�g〉 is Church–Rosser modulo
∼g. It means that every concurrent behavior with work stealing is
equal to its sequential behavior with no work stealing.

3. Properties for Extensional Equivalence

This section introduces several properties of Tascell programs,
which are used to ensure consistent behaviors of Tascell pro-
grams.

First, a statement 〈s, ds〉 is called parallelizable if for any

〈enddo, 〈do(x,e::es){u}, , rs〉::ds′, 〈ς, σ〉〉 j

�l
∗ 〈enddo, 〈do(x,es){u}, [[e]]σ, rs〉::ds′, 〈ς′, σ′〉〉 j or

〈enddo;s′, 〈do(x,e::es){u}, , rs〉::ds′, 〈ς, σ〉〉 j

�l
∗ 〈enddo;s′, 〈do(x,es){u}, [[e]]σ, rs〉::ds′, 〈ς′, σ′〉〉 j

that occurs in the sequence of the transitions from 〈s, ds, init〉 j,
σ[x � [[e]]σ] = σ′ holds. The parallelizability of a statement
enables the parallel processing of do loop statements in the state-
ment because no iterations change states except values of loop
variables at its entry and exit. Programs that have no paralleliz-
ability are beyond the scope of Tascell.

Next, we propose the backtrackability notion, which is used
to ensure that backtrackings do not change states. A triple
〈s, ds, σ〉 is called backtrackable if for any σ1 and 0 ≤
i ≤ n, 〈xn = valn;after(rsn); . . . ;xi = vali;after(rsi), σ〉 �r

∗

〈skip, σ1〉 implies that 〈xi = vali;before(rsi); . . . ;xn = valn;

before(rsn), σ1〉 �r
∗ 〈skip, σ〉 where ds ≡ dn:: . . . ::di::

. . . ::d0::nil and di ≡ 〈do(xi,esi){ui}, vali, rsi〉 (0 ≤ i ≤ n).
We note that 〈s, nil, σ〉 is backtrackable by definition for any s

and σ.
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A pair 〈rbefore, rafter〉 is called left invertible if 〈rbefore;

rafter, σ〉 �r
∗ 〈skip, σ〉 for any σ. A statement s is

called left invertible if 〈rbefore, rafter〉 is left invertible for any
dynamic-wind (rbefore,u,rafter) that occurs in s.
Proposition 3.1. Let 〈rbefore, rafter〉 be left invertible. If

〈rbefore, σ〉 �r
∗ 〈skip, σ′〉 holds, then 〈rafter;rbefore, σ

′〉 �r
∗

〈skip, σ′〉 holds.

Proof. By left invertibility and the assumption,
〈rbefore;rafter;rbefore, σ〉 �r

∗ 〈skip, σ′〉 holds. By determi-
nacy of�r and the assumption, 〈rafter;rbefore, σ

′〉�r
∗ 〈skip, σ′〉

holds. �
A pair 〈s, ds〉 is called well-formed if
• there exists w such that 〈s, ds〉 ≡ 〈w, nil〉 holds or there ex-

ists p such that s ≡ p holds,
• for any do(x,es){u} that occurs in ds, there exists t such that

u ≡ t, and
• for any do(x,es){t} that occurs in 〈s, ds〉, t has no assign-

ment to x

where w, p, and t are defined as shown below.

w� r | p | w;w
p� t | p;p | enddo | pop | finish j

t� skip | assert(e) | t;t | if(e)then{t}else{t}
| for(x,es){t} | do(x,es){t}
| dynamic-wind (r,t,r) | mark | unmarked{t} .

Intuitively, well-formed pairs of statements and do lists are
generated by statements that have no assignment statement ex-
cept at top levels, in before or after clauses of dynamic-wind,
and which has no assignment to loop variables in do loop state-
ments. Therefore, the following holds:
Proposition 3.2. Let 〈s, ds〉 be well-formed, where ds � nil. If

〈s, ds, 〈ς, σ〉〉 j �l 〈s′, ds, 〈ς′, σ′〉〉 j holds, then σ and σ′ coincide

except the values on the loop variables in s.

Proof. Statements that do not update do-lists cannot update
memories except the values on the loop variables. �

Left invertibility and well-formedness can easily be checked
statically because they are preserved by transitions as follows:
Proposition 3.3. 1) Left invertibility is preserved by�l,

2) left invertibility is preserved by�g,

3) well-formedness is preserved by�l, and

4) well-formedness is preserved by�g.

Proof. The former holds because �l and �g raise no new
dynamic-wind statements. The latter immediately holds by def-
inition. �

Left invertibility and well-formedness preserve backtrackabil-
ity as follows.
Proposition 3.4. Assuming that 〈s, ds, σ〉 is backtrackable, s is

left invertible, and 〈s, ds〉 is well-formed, then if 〈s, ds, 〈ς, σ〉〉 j �l

〈s′, ds′, 〈ς′, σ′〉〉 j holds, 〈s′, ds′, σ′〉 is backtrackable.

Proof. By case analysis of s. �
Proposition 3.5. Assuming that 〈s j, ds j, σ j〉 is backtrack-

able, s j is left invertible, and 〈s j, ds j〉 is well-formed for any

0 ≤ j < N, then if 〈s0, ds0, 〈ς0, σ0〉〉0, . . . , 〈s j, ds j, 〈ς j, σ j〉〉 j

, . . . , 〈sN−1, dsN−1, 〈ςN−1, σN−1〉N−1〉 �g 〈s′0, ds′0, 〈ς′0, σ′0〉〉0,
. . . , 〈s′j, ds′j, 〈ς′j, σ′j〉〉 j, . . . , 〈s′N−1, ds′N−1, 〈ς′N−1, σ

′
N−1〉〉N−1 holds,

then 〈s′j, ds′j, σ′j〉 is backtrackable for any 0 ≤ j < N.

Proof. This proposition immediately holds by the definition of
�g and Proposition 3.4. �

Left invertibility and well-formedness imply parallelizability
as follows.
Proposition 3.6. Assume that s is left invertible and 〈s, ds〉 is

well-formed. Then, 〈s, ds〉 is parallelizable.

Proof. Let us take a transition:

〈enddo, 〈do(x,e::es){t}, , rs〉::ds′, 〈ς, σ〉〉 j

�l
∗ 〈enddo, 〈do(x,es){t}, [[e]]σ, rs〉::ds′, 〈ς′, σ′〉〉 j or

〈enddo;p, 〈do(x,e::es){t}, , rs〉::ds′, 〈ς, σ〉〉 j

�l
∗ 〈enddo;p, 〈do(x,es){t}, [[e]]σ, rs〉::ds′, 〈ς′, σ′〉〉 j

that occurs in the sequence of the transitions from 〈s, ds, init〉 j. It
is noteworthy that well-formedness and Proposition 3.4 ensures
that we can write t (instead of u) for the body of the loop state-
ment. Because t has no assignment, left invertibility ensures co-
incidence of σ and σ′ except values on the loop variable x. �

At a glance, the left invertibility and well-formedness prop-
erties seem too strong. However, it is noteworthy that typical
search problems such as pentomino puzzles, N-queens, and trav-
eling salesman problems can be solved by Tascell programs that
are left invertible and well-formed, as explained in Section 5.

An objective is to show that we can obtain unique set of marked
nodes for any execution trace of a Tascell program with back-
tracking.

The following is a well-known theorem about Church–Rosser
modulo equivalence.
Theorem 3.7 (Huet [20]). Assuming that 〈A,�〉 is strongly nor-

malizing, locally confluent modulo ∼, and locally coherent mod-

ulo ∼, then, 〈A,�〉 is Church–Rosser modulo ∼.

Let U be the set of N-tuples of configurations that are reachable
from elements in

{ 〈u, nil, init〉0 | u is left invertible and 〈u, nil〉 is well-formed }.

As seen in Fig. 5, we adopt the integer 0 as the default value for
loop variables. Because it is tedious to distinguish loop variables
from non-loop variables on states that corresponds to the variable
convention for loop statements introduced in Section 2.2, we con-
sider abstract rewriting systems consisting of configurations that
are reachable from the state init only. Also, we consider abstract
rewriting systems consisting of configurations that are reachable
from the empty do list nil because non-empty do list may change
the initial state.
Proposition 3.8. Any triple 〈s, ds, σ〉 such that 〈s, ds, 〈ς, σ〉〉 j be-

longs to U for some ς and 0 ≤ j < N, is backtrackable.

Proof. By Proposition 3.5. We note that 〈u, nil, 	→ 0〉 is back-
trackable for any u. �
Lemma 3.9. 〈U,�g〉 is locally confluent modulo ∼g.

Proof. We show the lemma by case analysis of pairs of �g-
transition rules. A key case is that an N-tuple of configurations
transits to two distinct N-tuples by (local j0 ) and (steal j0 , j1 ) where
j0 and j1 are distinct. Let

〈s, ds, 〈ς, σ〉〉 j0 �d 〈s′, ds′, 〈ς′, σ′〉〉 j0
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〈s, ds, 〈ς, σ〉〉 j0 , 〈skip, nil, init〉 j1 �d

〈s, ds0, 〈ς, σ〉〉 j0 , 〈enddo;finish j0, ds1, 〈∅, σ1〉〉 j1

be the transitions by (local j0 ) and (steal j0 , j1 ), respectively, where

ds ≡ dn:: . . . ::d0::nil

di ≡ 〈do(xi,esi){ti}, vali, rsi〉 for any 0 ≤ i ≤ n 0 ≤ k ≤ n

m > 0 esk ≡ em:: . . . ::e0::nil |esi| ≤ 1 for any 0 ≤ i < k

〈xn = valn;after(rsn); . . . ;xk = valk;after(rsk), σ〉�r
∗ 〈skip, σ1〉

〈xk = valk;before(rsk); . . . ;xn = valn;before(rsn), σ1〉
�r
∗ 〈skip, σ〉

ds0 ≡ dn:: . . . ::〈do(xk,em:: . . . ::e� m
2 ::nil){tk}, valk, rsk〉

:: . . . ::d0::nil

ds1 ≡ 〈do(xk,e� m
2 −1:: . . . ::e0::nil){tk}, valk, nil〉::nil.

It is noteworthy that backtrackability ensures that the state reverts
to σ after backtracking. We do case analysis of ds′.
i) Assume ds′ ≡ 〈do(xn,esn){un}, valn, rs′n〉::dn−1:: . . . ::nil

where there exist rbefore and rafter such that rsn ≡
〈rbefore, rafter〉::rs′n. Then, s is a statement beginning with
pop, 〈rafter, σ〉�r

∗ 〈skip, σ′〉, and ς = ς′ hold.
We also assume k < n. Let ds′0 be 〈do(xn,esn){un}, valn, rs′n〉

:: . . . ::〈do(xk,em:: . . . ::e� m
2 ::nil){tk}, valk, rsk〉:: . . . ::d0

::nil. The two N-tuples can transit to

〈s′, ds′0, 〈ς, σ′〉〉 j0 , 〈enddo;finish j0, ds1, 〈∅, σ1〉〉 j1 .

Cases of k = n are similar.
ii) Assume ds′ ≡ 〈do(xn,es′n){tn}, valn, rsn〉::dn−1:: . . . ::d0::

nil where esn ≡ e::es′n. Then, s is a statement beginning with
enddo, rsn ≡ nil, σ′ = σ[xn � [[e]]σ], and ς = ς′.
a) Assume that k < n. Then, the two N-tuples can transit to

〈s′, 〈do(xn,es′n){tn}, valn, rsn〉:: . . .
::〈do(xk,em:: . . . ::e� m

2 ::nil){tk}, valk, rsk〉::dn−1:: . . .

::d0::nil, 〈ς′, σ〉〉 j0 , 〈enddo;finish j0, ds1, 〈∅, σ1〉〉 j1 .

b) Assume that k = n and m is an even integer. Then, the two
N-tuples can transit to

〈s′, 〈do(xk,em−1:: . . . ::e� m
2 ::nil){tk}, valk, rsk〉::dn−1:: . . .

::d0::nil, 〈ς′, σ〉〉 j0 , 〈enddo;finish j0, ds1, 〈∅, σ1〉〉 j1 .

c) Assume that k = n and m = 1. Then, there exists s′′ such that
s′ ≡ tn;enddo;s′′. Also, ds′ ≡ 〈do(xn,e′::nil){tn}, valn, rsn〉
::dn−1:: . . . ::d0::nil, ς = ς′ hold where esn ≡ e::e′::nil.
Since rsn ≡ nil holds, σ = σ1 holds.

By Propositions 2.3, there exist ς0 and ς1 such that

〈s, ds0, 〈ς, σ〉〉 j0 , 〈enddo;finish j0, ds1, 〈∅, σ〉〉 j1

�d
∗ 〈s′′, dn−1:: . . . ::d0::nil, 〈ς0, σ[xn � 0]〉〉 j0 ,
〈finish j0, nil, 〈ς1, σ[xn � 0]〉〉 j1

holds using (local j0 ) and (local j1 ). By Proposition 3.6, the mem-
ories after the enddos are executed coincide with σ except values
on xn. Therefore, using (local j0 ),

〈enddo;tn;enddo;s′′, ds, 〈ς, σ〉〉 j0

�l
∗ 〈enddo;s′′, ds′, 〈ς0, σ[xn � [[e]]σ]〉〉 j0

�l
∗ 〈enddo;s′′, 〈do(xn,nil){tn}, valn, rsn〉::dn−1:: . . .

::d0::nil, 〈ς0 ∪ ς1, σ[xn � [[e′]]σ]〉〉 j0

holds. It is noteworthy that the obtained marked nodes ς0 and ς1

are invariant to worker identifiers since σ = σ1 holds. The two
N-tuples can transit to

〈s′′, dn−1:: . . . ::d0::nil, 〈ς0 ∪ ς1, σ[xn � 0]〉〉 j0 ,
〈skip, nil, init〉 j1 .

d) Assume that k = n and m is an odd integer more than 1. Since
rsn ≡ nil holds, σ = σ1 holds. Similar to the case (c), there exist
s′′, ς0, and ς1 such that

〈s, ds0, 〈ς, σ〉〉 j0 , 〈enddo;finish j0, ds1, 〈∅, σ〉〉 j1

�d
∗ 〈s′′, dn−1:: . . . ::d0::nil, 〈ς0, σ[xn � 0]〉〉 j0 ,
〈finish j0, nil, 〈ς1, σ[xn � 0]〉〉 j1 .

Similar to the case (c), we also obtain

〈s′, ds′, 〈ς, σ〉〉 j0

�l
∗ 〈s′′, dn−1:: . . . ::d0::nil, 〈ς0 ∪ ς1, σ[xn � 0]〉〉 j0 .

Therefore, the two N-tuples can transit to

〈s′′, dn−1:: . . . ::d0::nil, 〈ς0 ∪ ς1, σ[xn � 0]〉〉 j0 ,
〈skip, nil, init〉 j1 .

The other cases are also similar. �
Sufficient conditions for Church–Rosser modulo equivalence

have been energetically studied (e.g., Refs. [2], [16], [22]) be-
cause the original theorem by Huet cannot be as-is applied to
various abstract rewriting systems as discussed in some litera-
tures (cf., Section 7.7 in Ref. [16]). A reason is that Theorem 3.7
assumes local coherence modulo equivalence, which is often dif-
ficult to be checked. However, we can directly use Theorem 3.7
because local coherence modulo ∼g is easy to be checked as fol-
lows:
Lemma 3.10. 〈U,�g〉 is locally coherent modulo ∼g.

Proof. This lemma is derived from two facts: the transition rules
in Figure 4–6 are defined to be polymorphic to worker identifiers
and ∼g is the relation up to the differences between worker iden-
tifiers. �
Theorem 3.11. 〈U,�g〉 is Church–Rosser modulo ∼g.

Proof. This theorem is derived from Proposition 2.4, Lem-
mas 3.9 and 3.10, and Theorem 3.7. �

4. A Reversible Computation Programming
Language: RTascell

This section presents design and implementation of a program-
ming language based on reversible computation [4], [25], [39].
Programs written in the language are translated into left invert-
ible and well-formed statements in the Tascell language.
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Fig. 7 The RTascell language.

Fig. 8 Local semantics for reversible raw statements.

4.1 Design
A key idea to ensure left invertibility is to restrict statements

in before clauses to reversible statements such as compound as-
signments x += e, which is x = x+e. We adopt a syntactic rule
that guarantees the reversibility of assignments that is adopted by
Refs. [44] and [43]. For any assignment to x, there exists no x on
the right-hand side. Similarly, for any assignment x[e] �= e′,
there exists no x in the expressions e and e′. We also intro-
duce reversible conditional statements, which are fixed-form con-
ditional statements with assertions in a standard manner of re-
versible computation.

We formally define a reversible computation programming lan-
guage called RTascell, as shown in Fig. 7. Symbols r, x, e, and es

are the same as those in Fig. 3. Operators � are either +, -, or ˆ.
First, reversible raw statements consist of no operation, as-

sertions, reversible assignment statements, concatenations of re-
versible raw statements, and reversible conditional statements.
As described above, we assume the syntactic rule (∗).

Operational semantics for reversible raw statements are natu-
rally induced as shown in Fig. 8. We write �r for transitions
by reversible raw statements in RTascell because it is clear from
context.

Readers who are familiar with reversible computation might
wonder if the so-called swap function is definable in the language.
Swap statement swap(z, z′) swaps the values of z and z′. Swap
statement swap(z, z′) is definable as r-if(z != z′)then{z ˆ=
z′;z′ ˆ= z;z ˆ= z′}else{skip}fi(z != z′) in the language, where
z and z′ are variable or an array, as follows.
Proposition 4.1. If 〈swap(z, z′), σ〉 �r 〈skip, σ′〉 holds, then

σ(z) = σ′(z′), σ(z′) = σ′(z), and σ � {z, z′}c = σ′ � {z, z′}c
hold where σ � {z, z′}c denotes the partial function for which the

domain is the restriction of the domain of σ by removing {z, z′}.
Proof. It immediately holds by definition. �

Next, we define an inverse statement (R)−1 for any reversible
raw statement R as shown in Fig. 9. Reversible raw statements

Fig. 9 Inverse statements of reversible raw statements.

Fig. 10 Translation from RTascell into Tascell.

have reversibility, i.e., for a transition by any statement, its in-

verse statement raises the reverse transition as explained below.
Proposition 4.2. 〈R, σ〉 �r 〈skip, σ′〉 implies 〈(R)−1, σ′〉 �r

〈skip, σ〉.
Proof. By induction on R. �
Proposition 4.3. (·)−1 is involutive. That is, ((R)−1)−1 is the same

as R.

Proof. By induction on R. �
Finally, we give a translation ι(·) from RTascell into Tascell

as shown in Fig. 10. The following is the main theorem in this
section.
Theorem 4.4. 1) ι(S ) is left invertible and

2) 〈ι(S ), nil〉 is well-formed.

Proof. By induction on S . We use Propositions 4.2 and 4.3 in
the base cases. �

4.2 Implementation
We implemented an RTascell compiler by modifying the Tas-

cell compiler available at GitHub [18]. The Tascell compiler
is implemented using the SC Language Framework [17]. This
framework, which is implemented in Common Lisp [35], pro-
vides a compiler from the SC-0 language, which features an S-
expression based syntax and the C semantics, into C, and an in-
terpreter of pattern matching-based transformation rules over S-
expressions. A language developer can implement a language as
a translator to C by writing such transformation rules. Program-
mers can get executable files using this translator and a C com-
piler. The Tascell compiler is also implemented as such a transla-
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Fig. 11 Transformation rule for implementing RTascell.

tor defined by transformation rules. Therefore, we implemented
an RTascell compiler by modifying those rules.

Figure 11 portrays a transformation rule for implementing the
RTascell compiler. A transformation rule named rule-name is de-
finable as shown below.
(extendrule rule-name ruleset-name

(#?pattern1 lisp-forms1) . . . (#?patternn lisp-formsn))

A transformation rule is applicable in the same manner as for
an ordinary Common Lisp function that takes a single argument.
When a rule is applied, the argument is tested to ascertain whether
it is matched by pattern1, . . . , or patternn in this order.

Each pattern is written using notation similar to backquote
macros of Common Lisp. ,symbol and ,@symbol in a pattern
respectively match a single list element and zero or more list el-
ements. When patternk first matches the argument, lisp-formsk

are evaluated by a Common Lisp evaluator. The value of the
last form is returned as the transformation result. This evalua-
tion is executed in an environment where a part of the argument
S-expression that matched ,symbol or ,@symbol is bound to sym-

bol.
For example, the pattern in line 29 matches any list with five

elements whose first element is the symbol r-if. The Lisp form
in lines 30–33 is evaluated in an environment where the second,
third, fourth, and fifth element of the argument S-expression are

bound respectively to exp1, exp2, stat1, and stat2.
The tilde (˜) characters used in lines 24, 31, and 38 function

almost identically as a backquote (‘) character, which signals that
the backquote macro is applied to the following expression, ex-
cept that symbols appearing in the expression are treated as those
in a special namespace for SC code.

To implement our transformation ruleset for RTascell by modi-
fying the original ruleset for Tascell, we added patterns for the
r-dynamic-wind (lines 17–27) and r-if (lines 29–33), and
swap (lines 35–42) statements to the statement transformation
rule.

The transformation rule for r-dynamic-wind statements fol-
lows the translation in Fig. 10. It generates inverse statements
of the statements in the given :before clause in line 20–21.
It constructs a dynamic-wind statement by placing the result-
ing inverse statements to its :after clause in lines 24–27. This
dynamic-wind statement is applied to the statement rule re-
cursively so that it is transformed to SC-0 by employing exist-
ing transformation rules written for the Tascell compiler. Here,
r-statement used in line 20 is another transformation rule we
defined, which takes a statement and returns its inverse statement
following the definition in Fig. 9.

The transformation defined for r-if statements follows the
last rule in Fig. 10. A given r-if statement is transformed to
a Tascell’s if statement that contains asserts at the ends of its
then and else clauses.

The transformation defined for swap statements generates code
for swapping values of two variables using a fresh temporary vari-
able in a standard manner. Although we confirmed that the swap
statements are definable using an r-if statement and bitwise ex-
clusive OR operations, we did not adopt the implementation be-
cause it has shortcomings in terms of performance.

We also made a minor modification to the transformation de-
fined for dynamic-wind statements (lines 5–12) so that the com-
piler aborts when a dynamic-wind statement appears in a user
program, because RTascell has no dynamic-wind statements.
This transformation is applicable only to a dynamic-wind state-
ment generated from a r-dynamic-wind statement in lines 24–
27. We implemented this mechanism using the dynamic variable
*dynamic-wind-allowed*. We can also implement the lan-
guage that has both dynamic-wind and r-dynamic-wind state-
ments only by removing the code at lines 9–10.

5. Experiments

In this section, we demonstrate experiments. First, we show
that typical search problems that can be written in Tascell can
also be written in RTascell. We next present differences between
the Tascell and RTascell programs to confirm reduction of de-
scriptions. Finally, we confirm that only small differences exist
in performance between the Tascell and RTascell programs.

5.1 Writing Programs in RTascell
We employ three programs: Pentomino, Nqueens, and TSP.

Pentomino and Nqueens respectively represent implementations
of simple backtracking search algorithms for pentomino puz-
zles [14] and N-queens problems. These programs were used
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Fig. 12 dynamic wind statement in Pentomino in Tascell.

for performance evaluations in the original paper on Tascell [19].
Nqueens is often used as a benchmark program or as an exam-
ple for task parallel systems [8], [11], [13], [26]. The source code
of these Tascell programs is bundled with the Tascell Implemen-
tation. It is available on GitHub [18]. Also, TSP is a traveling
salesman problem solver using a simple backtracking algorithm.
We implemented a Tascell program for TSP, which is representa-
tive of a Tascell implementation of a graph algorithm.
5.1.1 Pentomino

Pentomino is a parallel program that finds all solutions for pen-
tomino puzzles. Figure 12 presents the dynamic_wind state-
ment that appears in the Pentomino program and corresponds to
lines 18–34 in Fig. 2, except for the difference that this program
counts solutions using the variable s as a counter.

In the before clause, a worker first puts the p-th pentomino
piece by setting the five elements of tsk->b[], corresponding to
the five cells which form the piece, to p+’A’. Here, the variable
ps is used for calculating the positions of the cells filled by the p-
th piece. ’A’ is used only to make the values of tsk->b[] print-
friendly. Then, the worker updates tsk->a[] to record the fact
that the p-th piece has been used by swapping tsk->a[p] and
tsk->a[j0]. The local variable ap, which has been initialized
to the value of tsk->a[p] when the before clause is executed, is
used as a temporary variable for this swapping operation.

In the body clause, the worker checks the number of filled cells
on the board. We introduce variable s only to count solutions, that

Fig. 13 r dynamic wind statement in Pentomino in RTascell.

is, s is defined on the domain of the marked nodes. If the board
is full, the worker increments s to count the solutions. It cor-
responds to remembering the current state to get solutions later
using mark explained in Section 2.3. Counting the solutions can
be implemented in the Pentomino code because no state is doubly
visited. Then, the worker performs a recursive call to try the re-
maining pieces unless it is clear that no space exists to place any
piece.

In the after clause, the worker undoes the update to tsk->a[]
by swapping tsk->a[p] and tsk->a[j0] again by reusing ap
as a temporary variable. The worker removes the piece put in the
before clause by setting the five elements of tsk->b[] to 0.

We wrote an RTascell program for Pentomino. Figure 13
shows the r_dynamic_wind statement in the RTascell. No dif-
ference exists between the Tascell and RTascell programs except
for that shown in Figs. 12 and 13.

Because we cannot write assignment expressions in the be-
fore clause, we used increment operations to update tsk->b[]
in lines 5–9, and a swap statement for swapping tsk->a[p] and
tsk->a[j0] at line 10. The elements of tsk->b[] to be up-
dated has been always initialized to 0 when the before clause is
executed. By executing this before clause, a worker performs the
same updates as that in the Tascell program.

After executing the body clause, the worker undoes the updates
to tsk->b[] by executing the inverse operations of the series of
increments at lines 5–9 in reverse order: tsk->b[ps] -= p+’A’;
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Fig. 14 dynamic wind statement in Nqueens in Tascell.

Fig. 15 r dynamic wind statement in Nqueens in RTascell.

ps -= pss[3]; tsk->b[ps] -= p+’A’; . . . ps -= pss[0];

tsk->b[ps] -= p+’A’;. The worker also undoes the updates
to tsk->a[] by executing the inverse operation of the swapping:
swapping the same two values again.

In summary, this RTascell program is no different from the Tas-
cell one in the sense that the series of changes in tsk->a[] and
tsk->b[] are the same in both programs. It is apparent that the
code size can be reduced using RTascell.
5.1.2 Nqueens

Nqueens is a parallel program that finds all solutions for the
N-queens problem. Figure 14 shows the dynamic-wind state-
ment that appears in the Nqueens program in Tascell. In the be-
fore clause, a worker sets the k-th queen at the (i, k)-th square by
updating tsk->lb[], tsk->rb[], and tsk->a[]. In the body
clause, the worker performs a recursive call to set the remaining
queens. In the after clause, the worker undoes the updates in the
before clause.

As we did for Pentomino, we wrote an RTascell program
for Nqueens using increment operations and the swap func-
tion instead of assignment operations. Figure 15 shows the
r_dynamic_wind statement in the RTascell program. The Tas-
cell and RTascell programs show no difference except for those
shown in Figs. 14 and 15. We can reduce the code size using
RTascell.
5.1.3 TSP

TSP is a parallel program that solves traveling salesman prob-
lems, that is, it finds the shortest possible path in a given weighted
graph that visits each vertex exactly once and returns to the orig-

Fig. 16 dynamic wind statement in TSP in Tascell.

Fig. 17 r dynamic wind statement in TSP in RTascell.

inal vertex.
Figure 16 shows the dynamic-wind statement that appears in

the TSP program in Tascell. Letting V = {v0, . . . , v|V |−1} be the set
of all the vertices of the given graph, then in this program, t[]
and u[] represent a path. Setting t[k] to i represents that the k-th
visited vertex in the path is vi. Setting u[i] to 1 represents that vi
is included in the path. Also, u[] is redundant, but it is used so
that a worker can know instantly whether a vertex is included in
the path.

The worker traverses the graph using the depth-first strategy
updating t[] and u[]. In the before clause, the worker adds vnext
to the path as the k-th visited vertex. In the body clause, it per-
forms a recursive call to traverse the remaining part of the graph
and updates dis, which represents the shortest length of the re-
maining path starting from vt[k-1]. In the after clause, the worker
removes vnext from the path. Here, the worker need not undo the
update to t[k] because this element will not be referenced before
the next update.

We wrote an RTascell program for TSP using increment op-
erations instead of assignment operations, as was done for Pen-
tomino and Nqueens. Figure 17 shows the r_dynamic_wind
statement in the RTascell program.

In this program, a worker performs almost identical computa-
tions to those of the Tascell program, but performs additional op-
erations for undoing updates to t[k] by t[k]+=next at line 3.
Furthermore, whereas a worker need not initialize the elements of
t[] to 0 at the beginning of the search in Tascell, this initializa-
tion is necessary for RTascell. We expect that the effects on per-
formance which are imposed by these additional operations are
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not considerable. This supposition is confirmed in Section 5.2.
No difference exists between the Tascell and RTascell pro-

grams except for those shown in Figs. 16 and 17, and the initial-
ization of t[]. The code size can be reduced using RTascell also
for TSP.

5.2 Performance Evaluation
We compared the performance of Tascell and RTascell using

the Pentomino, Nqueens, and TSP programs. We also measured
the performance of sequential C programs and Cilk-5 programs
for these applications.

The C and Cilk-5 programs we used are the same as were used
in the experiments in the original paper on Tascell [19] for Pen-
tomino and Nqueens. We wrote C and Cilk-5 programs for TSP.

As discussed in Section 1, when backtrack search algorithms
are implemented with LTC, a worker must allocate a workspace
and initialize it by a copying operation for each logical task cre-
ation. Although this applies to Cilk-5, we can reduce the num-
ber of such workspace allocations by exploiting a pseudovariable
SYNCHED [36], which tells us whether there are any uncompleted
tasks created in a current procedure. All of the Cilk-5 programs
are implemented using this technique. Nevertheless, we would
like to note that such allocations cannot be completely removed
unlike Tascell.

We solved pentomino puzzles with 14 pieces (using two ad-
ditional pieces and an expanded board as described in the origi-
nal paper on Tascell [19]) using Pentomino, 16-queens problems
using Nqueens, and traveling salesman problems for a 2D-torus
with 62 vertices using TSP.

We used two Xeon E5-2695 v4 processors, each of which has
18 cores. We used Cilk 5.4.6 for compiling the Cilk-5 programs.
Like Tascell and RTascell, this Cilk-5 compiler is implemented
as a translator to C. We used a GCC Compiler 9.3.0 with the
-O3 option for compiling the C programs. We also used it as a
backend compiler for Tascell, RTascell, and Cilk-5. We measured
execution times of one-worker and 36-worker executions for each
parallel program. We executed the program three times for each
measurement setting and presented the median of the execution
times. The relative errors of the median samples were less than
±3.28% for every setting.

Table 1 presents the measured results. The execution times
of the Cilk-5 programs (tC) were worse than those of the Tascell
programs (tT) due to costs for managing logical task pools and
allocating/initializing additional workspaces. The differences in
the execution times between Cilk-5 and Tascell were larger for
TSP due to larger cost for workspace initialization. These results
reconfirm the advantages of Tascell over Cilk-5.

The execution times of the RTascell programs (tR) were slightly
worse than those of the Tascell programs (tT) for Pentomino and
TSP because increment and decrement operations are used in-
stead of assignment operations in the r_dynamic_wind state-
ments. They can prevent optimization of the C compiler and can
cause overhead. On the other hand, the execution times of the
RTascell program for Nqueens are almost the same as those of the
Tascell program. This is probably because the overhead caused
by increment/decrement operations is quite small for Nqueens.

Table 1 Execution times of Cilk-5, Tascell and RTascell programs.

Execution time [s]

Program nw ts tC tT tR tR/tT

Pentomino
1 65.5 102.5 70.1 74.8 1.07

36 — 2.86 2.04 2.17 1.06

Nqueens
1 63.6 145 81.2 81.1 0.999

36 — 4.30 2.32 2.32 1.00

TSP
1 415 4035 574 601 1.05

36 — 119 16.0 16.8 1.05

nw: # of workers
ts: Execution time of sequential C programs
tC: Execution time of Cilk-5 programs
tT: Execution time of Tascell programs
tR: Execution time of RTascell programs

In summary, slight differences were found between the Tascell
and RTascell programs in terms of the performance, but the dif-
ferences are not remarkable.

6. Related Work and Discussion

Flanagan and Felleisen were the first to provide formal oper-
ational semantics for concurrent programs in task parallel pro-
cessing [12]. Their programs consist of so-called future con-
structs for task creation (e.g., Ref. [15]). They defined transition
rules using evaluation contexts to construct an abstract machine.
The transition rules consist of sequential and concurrent transi-
tions similar to our�r,�l, and�g transitions. They also veri-
fied touch optimization by showing equivalence between original
and optimized programs on the abstract machine. Although their
work and our work share the same motivation (i.e., to define op-
erational semantics for task parallel programs), they have some
mutual differences. In the present paper, we provided small-step
operational semantics for concurrent programs with task parallel
processing, adopted Church–Rosser modulo equivalence to de-
fine observable equivalence, and verified backtracking-based load
balancing.

Yasugi provided denotational and operational semantics for se-
quential and concurrent programs, respectively, and described
safety in task parallel processing and synchronization [42]. How-
ever, he did not provide any sufficient condition for the safety
unlike the present study.

Moore and Grossman provided small-step operational seman-
tics for concurrent programs [29]. They studied transactions.
They constructed a type system and proved that every typable
program has the same result under its sequential and concur-
rent executions. There are three important differences compared
to our work. They studied transactions, not backtracking-based
load balancing. Another difference is that they used typabil-
ity, not backtrackability, to specify programs that have consis-
tent behavior. Furthermore, they adopted the coincidence of re-
sults under two transition relations to define their equivalence re-
lation, whereas we used Church–Rosser modulo equivalence of
the unique transition relation�g.

Burckhardt and Leijen provided operational semantics for task
parallel programs with concurrent revisions rather than locks or
transactions [7]. For that research, equivalence is defined us-
ing confluence in abstract rewriting theory. Burckhardt et al.
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also clarified that their concurrent revision model can be imple-
mented efficiently enough to achieve satisfactory parallelization
speedups [6]. Their work and ours share similar methods and
contributions. However, whereas they studied concurrent revi-
sions for determinacy and consistency of concurrent programs,
we studied sufficient conditions for consistency of concurrent
programs with backtracking-based load balancing in the present
study. Their work and ours illustrate that abstract rewriting the-
ory is useful to define various equivalences between concurrent
programs.

Khaldi et al. defined intermediate representations for parallel
processing, including so-called spawn instructions, with opera-
tional semantics [24]. They demonstrated that future constructs
can be supported by their intermediate representations in the X10
programming language [9]. These representations are used in
high-performance computing. However, they did not formally
prove that sequential and concurrent behaviors coincide. Atzeni
and Gopalakrishnan provided operational semantics for OpenMP
programs, which are used in high-performance computing [3].
However, they did not define equivalence between OpenMP pro-
grams.

Church–Rosser modulo equivalence is useful to define equiv-
alence in theoretical work, for example, to define λ-terms in λ-
calculi (e.g., Ohta and Hasegawa’s paper [31]). There is also
some work in more applied computer science. The work de-
scribed herein demonstrated that task parallel processing with
work stealing is one interesting application.

Various verifications of task parallel programs [37], [40] and
several static verifications of task parallel programs [27], [30]
have been reported recently. For example, Mercer et al. proposed
a method for verification of ensuring deadlock freedom and data
race freedom based on model checking [27]. Such studies differ
from ours. Our definition of correctness is equivalence between
behaviors in sequential and parallel executions. In addition, be-
cause we designed a domain-specific language and implemented
a compiler with lightweight checking for correctness, our verifi-
cation theory is not based on heavyweight verification methods
such as model checking.

It is possible to define parallelizability for programs in
task parallel programming languages such as Cilk-5 [13] and
OpenMP [33] and confirm extensional equivalences between se-
quential and concurrent behaviors of programs that are paralleliz-
able more easily because their sequential and concurrent execu-
tions share the same states without temporal backtrackings. That
is, it is sufficient to write operational semantics (like our previ-
ous work [1] for an OpenMP-like language XcalableMP [41]) and
define properties corresponding to the parallelizability and well-
formedness properties without considering backtrackability or
left invertibility. Thus, although Cilk-5 and OpenMP are theoret-
ically easier to tame, backtracking-based load balancing neither
keeps nor copies states and Tascell has benefits of performance
over other task parallel processing languages, as reported [19].

7. Conclusion and Future Work

As described herein, we provided operational semantics for
Tascell programs and defined extensional equivalence between

Tascell programs using Church–Rosser modulo equivalence in
abstract rewriting theory. We characterized the left invertible
and well-formedness properties to ensure consistent behaviors
of Tascell programs. In addition, we verified the correctness
of backtracking-based load balancing, i.e., programs that sat-
isfy the properties return the same results irrespective of whether
backtracking-based load balancing is activated. We also designed
and implemented a programming language RTascell based on re-
versible computation to ensure that their programs have left in-
vertible and well-formedness properties. To confirm the effective-
ness of our work, we also demonstrated experiments using typical
search problems such as pentomino puzzles, N-queens problems,
and traveling salesman problems.

We have found that some programs cannot be described in
RTascell. For example, Okuno et al. proposed more efficient al-
gorithms [32] that solve the itemset-sharing subgraph extraction
problem [34] proposed by Sese et al. A graph for which the ver-
tices are labeled by their own sets of items (itemsets for short)
and a threshold are given. A solution is a connected subgraph
in the graph that satisfies the condition that the cardinality of its
common itemset, i.e., the intersection of the itemsets of all of its
vertices, is not less than the given threshold. The ISS extraction
problem is to extract all solutions. This kind of graph mining is
applicable to real problems such as the analysis of social and bio-
logical networks. Because the algorithms use aggressive pruning

with global tables to remember traversed graphs, we cannot cur-
rently describe them in RTascell. The construction of a theory
that can describe such algorithms remains as a great challenge
for future work.
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[8] Castelló, A., Seo, S., Mayo, R., Balaji, P., Quintana-Ortı́, E.S. and
Peña, A.J.: GLT: A Unified API for Lightweight Thread Libraries,
Proc. Euro-Par, pp.470–481 (2017).

[9] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Ebcioglu, K., von Praun, C. and Sarkar, V.: X10: An Object-Oriented
Approach to Non-Uniform Cluster Computing, SIGPLAN Notices,
Vol.40, No.10, pp.519–538 (2005).

[10] Cytron, R.: DOACROSS: Beyond Vectorization for Multiprocessors,
Proc. ICPP, pp.836–844 (1986).

[11] Duran, A., Corbalán, J. and Ayguadé, E.: Evaluation of OpenMP Task
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