
情報処理学会研究報告
IPSJ SIG Technical Report

分散処理によるTopswopsの最大手数の発見

木村健斗1,a) 高橋篤生1 荒木徹也1,b) 天野一幸1,c)

概要：Topswopsとは,ランダムに重ねられた, 1から 𝑛の番号が書かれた 𝑛枚のカードのデッキが与えられ
た時,デッキの一番上のカードが 1になるまで,次の操作を行うカードゲームのことである: もし,一番上
のカードが 𝑘 ならば,一番上のカードから数えて 𝑘 枚のカードの並びを逆順に並び替える. 問題は, 𝑛 枚の
カードが与えられた時,操作が終わるまでの最大手数をもつデッキを見つけることである. 本研究は, Knuth
によって開発されたアルゴリズムを分散処理として適用することで, 18枚と 19枚のカードでの最大手数を
もつデッキを発見した.

キーワード：Topswops,最大手数,順列,平衡探索木,完全順列

Maximum Number of Steps of Topswops on 18 and 19 Cards

Kento Kimura1,a) Atsuki Takahashi1 Tetsuya Araki1,b) Kazuyuki Amano1,c)

Abstract: Let 𝑓 (𝑛) be the maximum number of steps of Topswops on 𝑛 cards. In this note, we report our computational
experiments to determine the values of 𝑓 (18) and 𝑓 (19) . By applying an algorithm developed by Knuth in a parallel
fashion, we conclude that 𝑓 (18) = 191 and 𝑓 (19) = 221.

Keywords: Topswops, maximum number of steps, permutation, well-balanced search tree, derangement

1. Introduction

Consider a deck of 𝑛 cards numbered 1 to 𝑛 arranged in
random order, which can be viewed as a permutation on
{1, 2, . . . , 𝑛}. Continue the following operation until the top
card is 1. If the top card of the deck is 𝑘 , then turn over a
block of 𝑘 cards at the top of the deck. This card game is called
Topswops, which was originally invented by J.H. Conway in
1973. See e.g., the introduction of [4] for a short history of the
game.

The problem is to find an initial deck that requires a max-
imum number of steps until termination, for a given number
of cards. For a positive integer 𝑛, let 𝑓 (𝑛) be the maximum
number of steps until termination for Topswops on 𝑛 cards. We

1 Department of Computer Science, Gunma University
Kiryu, Gunma 376–8515, Japan

a) t192d003@gunma-u.ac.jp
b) araki.tetsuya@gunma-u.ac.jp
c) amano@gunma-u.ac.jp

call an initial deck that needs 𝑓 (𝑛) steps largest. For example,
the deck (3, 1, 4, 5, 2) is largest for 𝑛 = 5. The game goes as

(3, 1, 4, 5, 2) → (4, 1, 3, 5, 2) → (5, 3, 1, 4, 2)

→ (2, 4, 1, 3, 5) → (4, 2, 1, 3, 5) → (3, 1, 2, 4, 5)

→ (2, 1, 3, 4, 5) → (1, 2, 3, 4, 5), (1)

and terminates after 𝑓 (5) = 7 steps.
The best known upper bound on 𝑓 (𝑛) is 𝐹 (𝑛 + 1) −

1 = 𝑂 (1.618𝑛), where 𝐹 (𝑘) is the 𝑘-th Fibonacchi num-
ber [2], Problems 107–109 and the best known lower
bound is Ω(𝑛2) [4]. The gap is exponential. The
exact values of 𝑓 (𝑛) for 𝑛 ≤ 17 have been obtained
by an exhaustive search with some pruning techniques.
The sequence is (0, 1, 2, 4, 7, 10, 16, 22, 30, 38, 51, 65, 80, 101,
113, 139, 159) for 𝑛 = 1, 2, . . . , 17. See the sequence A000375
of OEIS [5].

In this note, we describe our effort for extending this list for

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-183 No.10
2021/5/7



情報処理学会研究報告
IPSJ SIG Technical Report

𝑛 = 18 and 19. Namely, by applying an algorithm developed by
Knuth [3] in a parallel fashion, we conclude that 𝑓 (18) = 191
and 𝑓 (19) = 221. We also find that the number of initial decks
that attain the maximum for 𝑛 = 18 is one and that for 𝑛 = 19
is four, respectively. Note that the values for 𝑛 ≤ 17 are listed
as the sequence A123398 at OEIS [5].

The rest of this note is as follows. In Section 2, we give a brief
explanation of Knuth’s algorithm [2]. Then, in Section 3, we
describe our computational experiments for determining 𝑓 (18)
and 𝑓 (19). The code used in our experiments can be viewed
on GitLab at https://gitlab.com/kkimura/tswops.

2. Knuth’s algorithm

In this section, we explain an algorithm for finding a largest
deck for Topswops used in our experiment, which was devel-
oped by Knuth [2], Solution of Problem 107 (see also [3] for
the code itself). Three algorithms were described there and we
use the most efficient one, which is referred to as a “better"
algorithm.

For a natural number 𝑛, let [𝑛] denote the set {1, 2, . . . , 𝑛}.
For an initial deck 𝐴, let 𝑆(𝐴) be a list (𝑑1, 𝑑2, . . . , 𝑑𝑘 ) (𝑘 ≤ 𝑛)
where 𝑑𝑖 is the 𝑖-th card that appeared at the top of the deck
in the game starting from 𝐴. For example, 𝑆((3, 1, 4, 5, 2)) =
(3, 4, 5, 2, 1) (see Eq. (1)) and 𝑆((3, 5, 4, 1, 2)) = (3, 4, 1). No-
tice that the length of 𝑆(𝐴) depends on 𝐴, but the last element of
𝑆(𝐴) is always 1. An important property is that if 𝐴 is largest,
then the length of 𝑆(𝐴) must be 𝑛. This can be verified by seeing
that if 𝑆(𝐴) = (𝑑1, . . . , 𝑑𝑘−1, 1) for some 𝑘 < 𝑛, then we can
always create another deck 𝐴′ such that the first 𝑘 elements of
𝑆(𝐴′) is (𝑑1, . . . , 𝑑𝑘−1, 𝑑

′) for 𝑑 ′ ∈ {2, . . . , 𝑛}\{𝑑1, . . . , 𝑑𝑘−1}
and that the game for 𝐴′ is strictly longer than the one for 𝐴.

Let 𝑃 be the set of all lists 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) such that 𝑝
is a permutation on [𝑛] and 𝑝𝑛 = 1. Given a list 𝑝 ∈ 𝑃, we
can get an initial deck 𝑆−1 (𝑝) by the following algorithm. In
Algorithm 1, the minus value −𝑖 in 𝐴 means that the 𝑖-th card
in a deck is not specified yet.

Algorithm 1 Generate an Initial Deck
1: procedure GenInitDeck(𝑝)
2: Let 𝐴 be an array with (−1, −2, . . . , −𝑛) .
3: for 𝑖 = 1, 2, . . . , 𝑛 do
4: 𝑎−𝐴1 B 𝑝𝑖
5: 𝐴1 B 𝑝𝑖
6: while 𝐴1 > 1 do
7: Turn over a block of 𝐴1 cards of 𝐴.
8: return (𝑎𝑖)𝑖∈[𝑛]

The above arguments suggest that we can determine 𝑓 (𝑛)
by examining all (𝑛 − 1)! lists in 𝑃 together with Algorithm 1.
Essentially, Knuth’s algorithm enumerates these lists as well

as corresponding decks in a depth-first fashion. Moreover, the
algorithm applies two pruning criteria to reduce the size of the
search tree.

The first pruning is based on the fact that a largest deck must
be a derangement, i.e., the 𝑘-th card from the top is not 𝑘 for
every 𝑘 ∈ [𝑛]. In order to explain the second pruning, we need
some definitions. Let 𝐴 be an initial deck and let 𝐴𝑐 be the
deck obtained from 𝐴 by executing 𝑐 steps of the game. Let
𝑇 (𝐴𝑐) denote the largest integer 𝑘 such that the cards numbered
1, 2, . . . , 𝑘 are located at positions at 1, 2, . . . , 𝑘 (in an arbitrary
order) in the deck 𝐴𝑐 . It is obvious that if 𝑓 (𝑇 (𝐴𝑐)) +𝑐 < 𝑓 (𝑛),
then 𝐴 is not largest. Although 𝑓 (𝑛) is not known beforehand,
we can use any lower bound ℓ(𝑛) on 𝑓 (𝑛) in the right hand side
of inequalities for pruning.

Note that the depth of the search tree without pruning is
(𝑛 − 1) and each node at depth 𝑘 has 𝑛 − 1 − 𝑘 children.

3. Experiments and Results

Since the search tree of Knuth’s “better" algorithm is well-
balanced, it is easy to be parallelized. First, we generate the
search tree for the first few levels, which corresponds to the first
few elements of the list 𝑝 explained in the last section. Then,
distribute the leaves of the tree to many threads and resume
the generation in parallel by letting a given leaf as a root of a
subtree.

For 𝑛 = 18, we truncate the tree at level two and divide it
into 240 subtrees. For 𝑛 = 19, we truncate the tree at level
three and divide it into 3, 952 subtrees. Each of these num-
bers is slightly smaller than the one in the original search tree,
i.e., 272(= 17 × 16) or 4, 896(= 18 × 17 × 16), because of the
pruning.

In our experiments, we use up to 172 threads in parallel
spreading out over nine standard PCs. The computation takes
about 7 hours for 𝑛 = 18 (using 132 threads), and about 6
days for 𝑛 = 19 (using 172 threads). This means that, if we
run the code on a single thread, then the computation would
take approximately 103 days for 𝑛 = 19. The total numbers
of traversed nodes are 43, 235, 268, 208, 065 for 𝑛 = 18 and
933, 351, 108, 741, 643 for 𝑛 = 19, respectively. The ratios to
the number of nodes in the search tree without pruning, i.e.,∑𝑛−1

𝑖=0
∏𝑖

𝑗=1 (𝑛 − 𝑗), are 4.47% and 5.36%, respectively. The
breakdown of the number of traversed nodes for 𝑛 = 19 with
respect to the levels of the tree is shown in Table 1.

By examining the result, we conclude that 𝑓 (18) = 191 and
𝑓 (19) = 221. The largest initial deck for 𝑛 = 18 is unique. It is

(6 14 9 2 15 8 1 3 4 12 18 5 10 13 16 17 11 7),
which terminates at the sorted position (1 2 3 . . . 18). There
are four largest initial decks for 𝑛 = 19. These are

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-183 No.10
2021/5/7



情報処理学会研究報告
IPSJ SIG Technical Report

(9 4 19 17 10 1 11 15 12 8 5 2 18 13 16 7 3 14 6),
(12 15 11 1 10 17 19 2 5 8 9 4 18 13 16 7 3 14 6),
(12 1 18 11 3 14 2 6 8 16 5 4 15 10 13 17 19 7 9),
(12 1 18 11 2 3 14 6 8 16 5 4 15 10 13 17 19 7 9).

Interestingly, all these decks terminate at a same non-sorted
position (1 10 9 8 7 6 5 4 3 2 11 12 13 14 15 16 17 18 19).
The largest initial deck that terminates at the sorted position is
known to take 207 steps (see A000376 of OEIS [5]), which is
fourteen less than the value of 𝑓 (19).

Table. 1 The number of traversed nodes for 𝑛 = 19.
Level # of traversed nodes | Level # of traversed nodes

0 1 10 46335514956

1 17 11 304773283939

2 272 12 1716889839183

3 3952 13 8059154346527

4 52861 14 30428256670076

5 653126 15 89242470628183

6 7419100 16 200111553921243

7 77075852 17 326581145735086

8 726678384 18 276853558861087

9 6158057798 -----------------------------

10 46335514956 Total 933351108741643

Acknowledgements

This work was partially supported by JSPS Kakenhi Grant
Numbers 18K11152 and 18H04090.

References

[1] D. Berman, M. S. Klamkin and D. E. Knuth, Problem 76-17.
A reverse card shuffle, SIAM Review 19, pp. 739–741 (1977)

[2] D.E. Knuth, The Art of Computer Programming Volume 4
Fascicle 2, Addison-Wesley Prof., pp. 119 (2005)

[3] D.E. Knuth, “topswops-fwd.w” (the source code of a “bet-
ter" algrithm), https://www-cs-faculty.stanford.edu/
~knuth/programs/topswops-fwd.w, (accessed Mar. 3,
2021)

[4] L. Morales, H. Sudborough, A quadratic lower bound for
Topswops, Theoretical Computer Science, Vol. 411, pp. 3965–
3970 (2010)

[5] OEIS Foundation Inc., The On-Line Encyclopedia of Integer
Sequences, http://oeis.org (2021)

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-183 No.10
2021/5/7


