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Reformist Envy-Free Item Allocations:
Algorithms and Complexity
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Abstract: We introduce the concept of reformist envy-free item allocations when each agent is assigned a
single item. Given an envy-free item allocation, we consider an operation to exchange the item of an agent
with an unassigned item preferred by the agent that results in another envy-free item allocation. We repeat
this operation as long as we can. Then, the resulting allocation is called a reformist envy-free item allocation.
We prove that a reformist envy-free item allocation uniquely exists modulo the choice of an initial envy-free
item allocation, and can be found in polynomial time. Therefore, we study a shortest sequence to obtain the
reformist envy-free item allocation from an initial envy-free item allocation. We prove that the computation
of a shortest sequence is computationally hard. On the other hand, we give polynomial-time algorithms for
some special cases.
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1. Introduction

In this paper, we consider the problem of allocating in-

divisible items to agents that have preferences over accept-

able items. Especially, we consider the situation where each

agent is assigned a single item. The resulting item alloca-

tion is evaluated based on the preferences. This problem

is often called the house allocation problem (see, e.g., [1]).

Several desirable properties for item allocations have been

proposed. For example, Pareto optimality (see, e.g., [2]) is

one of the most fundamental properties of item allocations.

This property guarantees that we cannot make the situation

of any agent better without making that of another agent

worse. In this paper, we focus on the property called envy-

freeness (see, e.g., [3]). This property guarantees that any

agent does not have envy for the other agents on the cur-

rent item allocation. Envy-freeness of an item allocation has

been studied from the algorithmic viewpoint. For example,
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Gan, Suksompong, and Voudouris [3] considered the prob-

lem of checking the existence of an envy-free item allocation

in the situation where any agent accepts all the items and

the preferences may contain ties. They proved that we can

determine whether there exists an envy-free item allocation

in polynomial time. Furthermore, Beynier et al. [4] consid-

ered envy-freeness on an envy relationship network.

It is not difficult to see that in the house allocation prob-

lem, there may exist multiple envy-free item allocations.

Thus, even if we are given some envy-free item allocation,

the current envy-free item allocation may not be satisfying.

Thus, in this paper, we consider the problem of improving

the current envy-free item allocation via exchanging items

under the condition that we keep the current item alloca-

tion envy-free. Here we have to carefully choose the def-

inition of an exchanging operation. This is because it is

not realistic for a large number of agents to simultaneously

exchange the items. Thus, we should consider more local

exchange operations. More concretely, we consider an oper-

ation to exchange the item of an agent with an unassigned

item preferred by the agent that results in another envy-

free item allocation. We repeat this operation as long as

we can. Then, we call the resulting allocation a reformist

envy-free item allocation. We first prove that a reformist

envy-free item allocation uniquely exists modulo the choice

of an initial envy-free item allocation, and can be found in

polynomial time. Therefore, we study a shortest sequence

to obtain the reformist envy-free item allocation from an ini-

tial envy-free item allocation. We call a sequence to obtain
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the reformist envy-free item allocation a reformist sequence,

and we call the problem of finding a shortest reformist se-

quence the shortest reformist sequence problem. We prove

that the shortest reformist sequence problem is computa-

tionally hard. On the other hand, we give polynomial-time

algorithms for some special cases.

Our contribution is summarized as follows. We first prove

that a reformist envy-free item allocation uniquely exists

modulo the choice of an initial envy-free item allocation,

and can be found in polynomial time. Then we consider the

shortest reformist sequence problem. We define the decision

version of the shortest reformist sequence problem as the

problem in which we are given a positive integer ` and we

determine whether there is a reformist sequence of length at

most `. In what follows, we denote by n (resp., m) the num-

ber of agents (resp., items). Furthermore, for each agent i,

we denote by mi the number of items acceptable to i.

• There is an instance such that the ratio of the output

of a simple greedy algorithm to an optimal solution can

get worse to any extent.

• The decision version of the shortest reformist sequence

problem is NP-complete even for the case when mi ≤ 4

for every agent i ∈ N and each item is acceptable to at

most three agents.

• If mi ≤ 3 for every agent i, then the shortest reformist

sequence problem can be solved in polynomial time.

• If every item is acceptable to at most two agents, then

the shortest reformist sequence problem can be solved

in polynomial time.

• The shortest reformist sequence problem is inapprox-

imable in polynomial time within a factor of c lnn for

some constant c unless P = NP.

• It is W[1]-hard to determine whether there exists a re-

formist sequence of length at most n + k when k is a

parameter.

• The shortest reformist sequence problem parameterized

by m− 2n is fixed-parameter tractable.

Problems of improving a given item allocation via some

operations have been considered in the study of item alloca-

tions. For example, Gourvés, Lesca, and Wilczynski [5] con-

sidered the problem of determining whether a target item

allocation can be reached via rational swaps on a social net-

work. Furthermore, they considered that the problem of

determining whether some specified agent can get a target

item via rational swaps (see also [6], [7]).

Furthermore, the shortest reformist sequence problem is

closely related to the study of combinatorial reconfigura-

tion. In combinatorial reconfiguration, we consider prob-

lems where we are given an initial configuration and a target

configuration of some combinatorial objects, and the goal is

to check the reachability between these two configurations

via some specified operations. The study of algorithmic as-

pects of combinatorial reconfiguration was initiated in [8].

See, e.g., [9] for a survey of combinatorial reconfiguration.

2. Preliminaries

Throughout this paper, a finite set of n agents is denoted

by N , and a finite set of m items is denoted by M . Each

agent i ∈ N is associated with a subset Mi ⊆M and a strict

total order �i on Mi: Mi represents the set of acceptable

items for i, and �i represents the preference of i over Mi.

For each agent i ∈ N , we define mi := |Mi|. For each agent

i ∈ N and each pair x, y ∈ M of items, we write x �i y if

x �i y or x = y. Note that �i satisfies transitivity, i.e., if

x �i y and y �i z, then x �i z.

An injective mapping µ : N → M is called a matching if

µ(i) ∈ Mi for every agent i ∈ N . For each matching µ, an

item x ∈ M is assigned if there exists an agent i ∈ N such

that µ(i) = x; otherwise x is unassigned. A matching µ is

envy-free if there exists no pair i, j ∈ N of distinct agents

such that µ(j) ∈ Mi and µ(j) �i µ(i). For each matching

µ, we denote the set of unassigned items for µ by Mµ.

For two envy-free matchings µ, σ, we write µ; σ if there

exists an agent i ∈ N with the following two conditions:

(E1) σ(i) �i µ(i);

(E2) µ(j) = σ(j) for every agent j ∈ N \ {i}.
Intuitively, if items are assigned to the agents according to

µ and µ; σ, then σ(i) ∈Mµ and i has an incentive to ex-

change her item µ(i) with σ(i) and the resulting matching is

still envy-free. This way, the operation “;” unilaterally im-

proves the current envy-free matching µ to a new envy-free

matching σ.

Let µ, σ be envy-free matchings. If there exist envy-free

matchings µ0, µ1, . . . , µ` such that

• µ0 = µ, µ` = σ,

• µt ; µt+1 for each t ∈ {0, 1, . . . , `− 1}, and

• there exists no envy-free matching µ′ such that µ` ; µ′,

then σ is called a reformist envy-free matching with re-

spect to µ. Intuitively, a reformist envy-free matching with

respect to µ is an envy-free matching that is obtained from

µ as an outcome of the iterative improvement.

3. Existence and Uniqueness

Here we prove the existence and uniqueness of a reformist

envy-free matching with respect to a given envy-free match-

ing.

Theorem 1. Let µ be an envy-free matching. A reformist

envy-free matching with respect to µ uniquely exists.

Proof. The existence is immediate from the definition. We

prove the uniqueness. Suppose to the contrary that there

exist reformist envy-free matchings σ, τ with respect to µ

such that σ 6= τ . Without loss of generality, we can assume

that there exists an agent i ∈ N such that σ(i) �i τ(i).

Suppose that

µ = σ0 ; σ1 ; σ2 ; · · ·; σ` = σ.

Since τ is a reformist envy-free matching with respect to µ,

we have τ(j) �j σ0(j) for every agent j ∈ N . Let t be the

minimum integer in {1, 2, . . . , `} such that σt(i) �i τ(i) for
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some agent i ∈ N . Then it holds that τ(j) �j σt(j) for

every agent j ∈ N \ {i}.
If there exists an agent j ∈ N \{i} such that τ(j) = σt(i),

then τ(j) �i τ(i), which contradicts that τ is envy-free.

Thus, τ(j) 6= σt(i) holds for every agent j ∈ N \{i}. Hence,

under the matching τ , the agent i can exchange τ(i) with

σt(i). Since τ is a reformist envy-free matching, the result-

ing matching, denoted by τ ′, is not envy-free. That is, there

exists an agent j ∈ N \ {i} such that τ ′(i) �j τ(j). For

such an agent j ∈ N \ {i}, we have

σt(i) = τ ′(i) �j τ(j) �j σt(j).

However, this means that the agent j has envy for i on σt,

which contradicts the fact that σt is envy-free. This com-

pletes the proof.

4. Shortest Reformist Sequence

The definition of a reformist envy-free matching gives a

decentralized algorithm. Namely, given an envy-free match-

ing, while there exists an agent who has an item among the

unassigned items that she prefers to the currently assigned

item, she exchanges the items as long as the exchange does

not violate envy-freeness. This process eventually termi-

nates, and the obtained envy-free matching is a reformist

envy-free matching, which is unique by Theorem 1. How-

ever, the number of steps in this process is not discussed

yet.

With a decentralized algorithm, we may end up with an

extremely long sequence of envy-free matchings until we ob-

tain a reformist envy-free matching. On the other hand,

if there is coordination among the agents, they may quickly

obtain a reformist envy-free matching. Coordination is mod-

eled as a centralized algorithm in which a central authority

declares who should exchange an item next, and agents obey

the declarations of the central authority. Since a reformist

envy-free matching is unique (Theorem 1), there is no reason

for agents to deviate from the orders of the central authority.

To formalize the discussion, we consider the following type

of algorithms. Until a reformist envy-free matching is ob-

tained, an agent is nominated at each step. Let i be the

nominated agent. Then, i exchanges the currently assigned

item with an unassigned item that is most preferred by i

such that after exchange the resulting matching is still envy-

free. Namely, if the current envy-free matching is µ, then

we define the envy-free matching µ′ that satisfies µ ; µ′

and µ′(i) �i x for all x ∈ Mµ such that exchanging µ(i)

with x yields an envy-free matching. Note that exchanging

µ(i) with some item x′ ≺i µ′(i) is a redundant step, i.e., ex-

changing µ(i) with x′ can be replaced with µ; µ′ without

increasing the number of steps.

The choice of nominated agents can change the number

of steps. In the decentralized setting the choice will be done

arbitrarily while in the centralized setting the choice is sup-

posed to be done cleverly to minimize the number of steps.

Thus, we examine the minimum number of steps to obtain

a reformist envy-free matching with respect to a given envy-

free matching.

In what follows, we call a sequence of exchanges to obtain

the reformist envy-free matching a reformist sequence, and

we call the problem of finding a shortest reformist sequence

the shortest reformist sequence problem. Furthermore, we

define the decision version of the shortest reformist sequence

problem as the problem in which we are given a positive inte-

ger ` and we determine whether there is a reformist sequence

of length at most `.

We first show that coordination sometimes makes sense

by giving an example in which the maximum number of

steps can be arbitrarily larger than the minimum number of

steps. On the other hand, we later prove that the minimum

number of steps is hard to compute.

Theorem 2. For any positive integer p, there exists an

instance of the shortest reformist sequence problem with 3

agents and 2p+3 items such that a decentralized algorithm

may take 2p− 1 steps to obtain a reformist matching while

the optimal reformist sequence has length 4.

5. Results

First, we state our hardness results on the shortest re-

formist sequence problem. We prove the NP-completeness

of the decision version of the shortest reformist sequence

problem by reduction from the vertex cover problem.

Theorem 3. The decision version of the shortest re-

formist sequence problem is NP-complete even when mi ≤
4 for every agent i ∈ N and |{i ∈ N | x ∈ Mi}| ≤ 3 for

every item x ∈M .

Then we prove the W[1]-hardness of the decision version of

the shortest reformist sequence problem by reduction from

the multi-colored clique problem.

Theorem 4. It is W[1]-hard to decide whether there exists

a reformist sequence of length at most n + k when k is a

parameter.

We also prove the inapproximability of the shortest re-

formist sequence problem by reduction from the set cover

problem.

Theorem 5. The shortest reformist sequence problem is

inapproximable in polynomial time within a factor of c lnn

for some constant c > 0, unless P = NP.

Next, we state our positive results for some special cases.

The following positive results can be considered as the com-

plement to Theorem 3.

Theorem 6. If mi ≤ 3 for every agent i ∈ N , then the

shortest reformist sequence problem can be solved in poly-

nomial time.

Theorem 7. If |{i ∈ N | x ∈ Mi}| ≤ 2 for every item

x ∈ M , then the shortest reformist sequence problem can

be solved in polynomial time.

Finally, we prove a fixed-parameter algorithm for the

shortest reformist sequence problem.

Theorem 8. The shortest reformist sequence problem pa-

rameterized by m− 2n is fixed-parameter tractable.
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Mehlhorn, K.: Pareto Optimality in House Allocation Prob-
lems, Proceedings of the 15th Annual International Sympo-
sium on Algorithms and Computation, Lecture Notes in Com-
puter Science, Vol. 3341, pp. 3–15 (2004).

[3] Gan, J., Suksompong, W. and Voudouris, A. A.: Envy-
Freeness in House Allocation Problems, Mathematical Social
Sciences, Vol. 101, pp. 104–106 (2019).

[4] Beynier, A., Chevaleyre, Y., Gourvès, L., Harutyunyan, A.,
Lesca, J., Maudet, N. and Wilczynski, A.: Local envy-freeness
in house allocation problems, Autonomous Agents and Multi-
Agent Systems, Vol. 33, No. 5, pp. 591–627 (2019).

[5] Gourvès, L., Lesca, J. and Wilczynski, A.: Object Allocation
via Swaps along a Social Network, Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pp.
213–219 (2017).

[6] Brandt, F. and Wilczynski, A.: On the Convergence of Swap
Dynamics to Pareto-Optimal Matchings, Proceedings of the
15th Conference on Web and Internet Economics Web and
Internet Economics, Lecture Notes in Computer Science,
Vol. 11920, pp. 100–113 (2019).

[7] Huang, S. and Xiao, M.: Object reachability via swaps under
strict and weak preferences, Autonomous Agents and Multi-
Agent Systems, Vol. 34, No. 2, p. 51 (2020).

[8] Ito, T., Demaine, E. D., Harvey, N. J. A., Papadimitriou,
C. H., Sideri, M., Uehara, R. and Uno, Y.: On the complexity
of reconfiguration problems, Theoretical Computer Science,
Vol. 412, No. 12-14, pp. 1054–1065 (2011).

[9] Nishimura, N.: Introduction to Reconfiguration, Algorithms,
Vol. 11, No. 4, p. 52 (2018).

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-183 No.3
2021/5/7


