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On Tractable Problems of Diversity Optimization
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Abstract: Finding diverse solutions in combinatorial problems recently has received some attention. In this
paper we study the following type of problems: given an integer k, the problem asks for k solutions such that
the sum of pairwise Hamming distances between these solutions is maximized. We investigate the tractabil-
ity of the “diverse version” of several classical combinatorial problems, such as finding bases of matroids,
arborescences in directed graphs, bipartite matchings, shortest st-paths in directed graphs, and minimum
cuts of undirected graphs.

1. Introduction

In many combinatorial problems, we usually seek a sin-

gle solution satisfying some prescribed constraints and/or

optimizing given an objective function. However, such a

solution may not be adequate for real-world problems since

several intricate constraints emerging in real-world problems

are overly simplified or even ignored to make those problem

amenable. To address this issue, seeking multiple solutions

is a straightforward but promising approach. One of the

best known approaches to do this is k-best enumeration [9].

Here, an algorithm is called a k-best enumeration algorithm

for some optimization problem if given an integer k, the al-

gorithm finds k feasible solutions S = {S1, . . . , Sk} such

that every feasible solution not in S is not strictly better

than that in S. There are many k-best enumeration al-

gorithms for various optimization problems (see [9] for a

survey). One potential drawback of k-best enumeration al-

gorithms is the lack of diversity of solutions. Most of k-best

enumeration algorithms, such as Lawler’s framework [18],

recursively generate solutions from a single optimal solu-

tion X = {x1, x2, . . . , xt} by finding a solution including

{x1, . . . , xi−1} and excluding xi for each 1 ≤ i ≤ t. This

implies that solutions tend to be similar to each other in

nature.

Motivated by this, (explicitly) optimizing diversity of so-

lutions has received considerable attention in the literature.

There are many results for finding “diverse” CSP or MIP

solutions [6], [15], [19], [22], [23]. According to [3], Michael

Fellows proposed the Diverse X Paradigm, where X is a

placeholder for an optimization problem. Based on this pro-

posal, they studied the parameterized complexity of several

diverse versions of combinatorial problems, such as Vertex
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Cover, Feedback Vertex Set, and d-Hitting Set, and

showed that these problems are fixed-parameter tractable

parameterized by the solution size plus the number of solu-

tions [3]. Baste et al. [2] also discussed the fixed-parameter

tractability of diverse versions of several combinatorial prob-

lems on bounded-treewidth graphs.

Before describing our results, we need to define known di-

versity measures and discuss known results relevant to our

results. There are mainly two diversity measures in these

theoretical studies. Let U be a finite set. Let S1, . . . , Sk be

(not necessarily disjoint) subsets of U . We define

d(S1, . . . , Sk) =
∑

1≤i<j≤k

|Si4Sj |,

where4 is the symmetric difference of two sets. Also, define

dmin(S1, . . . , Sk) = min
1≤i<j≤k

|Si4Sj |.

Fomin et al. [10] showed that the problem of finding two

maximum matchings M1,M2 maximizing its symmetric dif-

ference in bipartite graphs can be solved in polynomial

time, whereas it is NP-hard on general graphs and gave an

FPT-algorithm with respect to parameter |M14M2|. Also,

Fomin et al. [11] gave FPT-algorithms for finding k solutions

for several problems related to matroids and matchings such

that the weighted symmetric difference between any pair of

them is at least d, parameterized by k+ d (i.e., the running

time of these algorithms is f(k, d)nO(1), where f is some

computable function and n is the input size). In particular,

they showed that finding k bases of a matroid maximizing

the weighted version of dmin is NP-hard even on uniform ma-

troids. Contrary to this hardness result, Hanaka et al. [14]

showed that finding k bases of a matroid maximizing d is

solvable in polynomial time.*1

*1 In this problem setting, we assume that the independent oracle
can be evaluated in polynomial time.
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In this paper, we expand the tractability border of the

diverse version of classical combinatorial optimization prob-

lems.

Let S ⊆ 2U be a set of solutions. The common goal of our

problems is to find a set of k solutions S1, S2, . . . , Sk ∈ S
maximizing dw(S1, . . . .Sk), where dw is the weighted ver-

sion of the diversity measure d (see Section 2). We show that

if S consists of either (1) the bases of a matroid, (2) the ar-

borescences of a directed graphs, (3) the set of t-matchings

of a bipartite graph, or (4) the set of st-paths in a directed

graph, then the problem can be solved in polynomial time.

The algorithm for (1) is a straightforward extension of the

algorithm of [14] to the weighted Hamming distance and that

for (3) is an extension of [10] that allows to find more than

two diverse bipartite matchings in polynomial time. On the

negative side, we show that if S consists of the set of mini-

mum cut of a graph, then the problem is NP-hard even if the

size of a minimum cut is three. To tackle this intractability,

we study Diverse Minimum Cuts from the perspective of

fixed-parameter tractability. We show that Diverse Min-

imum Cuts is polynomial-time solvable if the input graph

G has a minimum cut of size at most two, fixed-parameter

tractable parameterized by k plus the edge-connectivity of

G, and W[1]-hard parameterized by k only.

2. Preliminaries

Let G = (V,E) be a (directed) graph. We denote by V (G)

and E(G) the sets of vertices and edges of G, respectively.

For X ⊆ V , the set of edges between X and V \X is denoted

by EG(X,V \X).

Let U be a finite set and let w : U → N≥0. Let S1, . . . , Sk
be (not necessarily disjoint) subsets of U . We define

dw(S1, . . . , Sk) =
∑

1≤i<j≤k

w(Si4Sj),

where w(X) =
∑
x∈X w(x). This notation extends the di-

versity measure d defined in the previous section.

Let k be a positive integer and let S ⊆ 2U be sub-

sets of U . We expand each element e in U into k copies:

Let U∗ = {e1, . . . , ek : e ∈ U}. We define a function

f : U∗ → U such that f(ei) = e for all ei ∈ U∗. We say that

S∗ ⊆ U∗ is a k-packing of U∗ with respect to S if S∗ can be

partitioned into S1, . . . , Sk such that {f(e∗) : e∗ ∈ Si} ∈ S
for all 1 ≤ i ≤ k.

We consider a weight function w∗ : U∗ → Z such that

w∗(ei) = w(e) · (k− 2i+ 1) for e ∈ U and 1 ≤ i ≤ k. Then,

we have the following lemma.

Lemma 1. There are S1, . . . , Sk ∈ S with

dw(S1, . . . , Sk) ≥ t if and only if there is a k-packing

S∗ of U∗ with respect to S such that w∗(S∗) ≥ t.

Proof. Suppose that there are S1, . . . , Sk ∈ S with

dw(S1, . . . , Sk) ≥ t. For each e ∈ U , we denote by m(e) the

number of occurrences of e in the collection {S1, . . . , Sk}.
Then, we have

dw(S1, . . . , Sk) =
∑
e∈U

(w(e) ·m(e) · (k −m(e)))

=
∑
e∈U

(w(e) ·
∑

1≤i≤m(e)

(k − 2i+ 1))

=
∑
e∈U

∑
1≤i≤m(e)

w∗(ei)

= w∗(S∗).

Conversely, assume that there is a k-packing S∗ of U∗

with respect to S with w∗(S∗) ≥ t. We assume more-

over that, for each e ∈ U , S∗ contains consecutive ele-

ments e1, . . . , em for some m, that is, {e1, . . . , em} ⊆ S∗

and {em+1 . . . , ek}∩S∗ = ∅. This assumption is legitimate

as w(ei) > w(ej) for 1 ≤ i < j ≤ k. We denote the multi-

plicity m of e by m(e). Let {S∗1 , . . . , S∗k} be a partition of

S∗ such that Si = {f(e∗) : e∗ ∈ S∗i } ∈ S for 1 ≤ i ≤ k.

For each e ∈ U , the contribution of e to w∗(S∗) is indeed

w(e) ·
∑

1≤i≤m(e)(k − 2i+ 1). Hence, we have

w∗(S∗) =
∑
e∈U

∑
1≤i≤m(e)

w∗(ei)

= dw(S1, . . . , Sk)

as in the “only-if” direction.

3. Diverse Matroid Bases

As an application of Lemma 1, we consider the following

problem.

Definition 1. Given a matroid M = (E, I) with a weight

function w : E → N≥0 and an integer k, Weighted Di-

verse Matroid Bases asks for k bases B1, . . . , Bk of M
such that dw(B1, . . . , Bk) is maximized.

In [14], they consider a special case of Weighted Di-

verse Matroid Bases where each element in the ground

set E has a unit weight and give a polynomial-time algo-

rithm for it, assuming that the independence oracle I can

be evaluated in polynomial time. This result is obtained by

reducing the problem to that of finding disjoint bases of a

matroid, which can be solved in polynomial time.

Theorem 1 ([7], [21]). LetM = (E, I) be a matroid and

let w : E → Z. Suppose that the membership of I can

be checked in polynomial time. Then, the problem of de-

ciding whether there is a set of mutually disjoint k bases

B1, . . . , Bk of M can be solved in polynomial time. More-

over, if the answer is affirmative, we can find such bases

that maximize the total weight (i.e.,
∑

1≤i≤k
∑
e∈Bk

w(e))

in polynomial time.

By applying Lemma 1, we have a polynomial-time algo-

rithm for Weighted Diverse Matroid Bases as well.

Theorem 2. Weighted Diverse Matroid Bases can

be solved in polynomial time.

Proof. The proof is almost analogous to that in [14]. Let

M = (E, I) be a matroid and let e ∈ E. Define J =

I ∪ {(F \ {e})∪{e′} : F ∈ I ∧ e ∈ F}. Then, (E ∪{e′},J )
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is also a matroid [14], [20]. We define k copies e1, e2, . . . , ek
for each e ∈ E and E∗ = {e1, . . . , ek : e ∈ E}. Then, the

pair M∗ = (E∗, I∗) is a matroid if I∗ consists of all sets

F ⊆ 2E
∗

such that F contains at most one copy of e1, . . . , ek
for each e ∈ E and

⋃
ei∈F f(ei) ∈ I, where f(ei) = e for

e ∈ E and 1 ≤ i ≤ k.

To find a set of k bases B1, . . . , Bk of M maximizing

dw(B1, . . . , Bk), by Lemma 1, it suffices to find a maximum

weight k-packing with respect to the base family ofM∗ un-

der a weight function w∗ with w∗(ei) = w(e) · (k − 2i + 1)

for e ∈ E and 1 ≤ i ≤ k, which can be solved in polynomial

time by Theorem 1.

4. Diverse Arborescences

Theorem 2 allows us to find diverse spanning trees in undi-

rected graphs as the set of spanning trees of a graph forms

the set of bases of a graphic matroid. In this section, we

develop a polynomial-time algorithm for a directed version

of this problem. Let G = (V,E) be a directed graph and let

r ∈ V . We say that a subgraph T of G is an arborescence

(with root r) if for every v ∈ V , there is exactly one directed

path from r to v in T . In other words, an arborescence is a

spanning subgraph of G in which each vertex except r has

in-degree one and its underlying undirected graph is a tree.

In this section, we consider the following problem.

Definition 2. Given an arc-weighted directed graph D =

(V,A) with weight function w : A → N≥0, r ∈ V , and

an integer k, Weighted Diverse Arborescences asks

for k arborescences T1, . . . , Tk of D with root r such that

dw(E(T1), . . . , E(Tk)) is maximized.

Theorem 3. Weighted Diverse Arborescences can

be solved in polynomial time.

The proof of Theorem 3 is almost analogous to that in

Theorem 2. We define a directed graph D∗ with vertex set

V from D = (V,A) such that for e = (u, v) ∈ A, we add k

parallel arcs e1, . . . , ek directed from u to v to D′. Then,

we set w∗(ei) = w(e) · (k− 2i+ 1) for e ∈ A and 1 ≤ i ≤ k.

By Lemma 1, it is sufficient to find a maximum weight k-

packing of the arc set of D∗ with respect to the family of

arborescences of D∗, which can be found in polynomial time

by the following result.

Theorem 4 ([8]). Given an arc-weighted directed multi-

graph D = (V,A) with weight function w : A → Z,

r ∈ V , and an integer k, the problem of finding k arc

disjoint arborescences T1, . . . , Tk with root r maximizing

w(
⋃

1≤i≤k E(Ti)) is solved in strongly polynomial time.

5. Diverse Bipartite Matchings

A matching of a graph G = (V,E) is a set M ⊆ E of

edges such that no two edges share their end vertices. In

this section, we consider the following problem.

Definition 3. Let G = (A ∪B,E,w) be an edge-weighted

bipartite graph with w : E → N≥0, where A and B are color

classes of G. Let k, p be positive integers. We denote byM

the collection of all matchings of G with cardinality exactly

p. Diverse Bipartite Matchings asks for k matchings

M1, . . . ,Mk ∈M maximizing dw(M1, . . . ,Mk).

As mentioned in Section 1, the problem of finding

two edge-joint perfect matchings in a general graph is

known to be NP-complete [16]. In this section, we de-

sign a polynomial-time algorithm for Diverse Bipartite

Matchings by applying Lemma 1.

We construct a bipartite multigraph G∗ from G by re-

placing each edge e = {a, b} ∈ E with k parallel edges

e1, . . . , ek. We set w∗(ei) = w(e) · (k − 2i + 1) for each

e ∈ E and 1 ≤ i ≤ k. By Lemma 1, it suffices to show

that there is a polynomial-time algorithm that computes a

maximum weight k-packing of E∗ with respect toM, where

M is the collection of matchings M of G with cardinality

exactly p. This problem can be solved in polynomial time

by reducing to the minimum cost flow problem as follows.

Let G∗ = (A ∪B,E∗) be bipartite and let w∗ : E∗ → Z.

We construct a directed acyclic graph from G∗ by orienting

each edge {a, b} of G∗ directed from a to b, where a ∈ A
and b ∈ B. Each arc (a, b) in G∗ has capacity one and cost

−w∗({a, b}). We also add a source vertex s, sink vertex t,

and then arcs (s, a) for each a ∈ A and (b, t) for each b ∈ B.

The arcs incident to the source or the sink have capacity

k and have weight zero. Now, we set the flow requirement

from s to t to kp. Thanks to the integral theorem of the min-

imum cost flow problem, we can find, in polynomial time, a

maximum weight subgraph H∗ of G∗ such that H∗ has ex-

actly kp edges and each vertex has degree at most k. From

this subgraph H∗, we need to construct a maximum weight

k-packing of E∗ with respect to M. The following lemma

ensures that it is always possible.

Lemma 2. Let H∗ be a bipartite graph with kp edges.

Suppose the maximum degree of a vertex in H∗ is at most

k. Then, the edges of H∗ can be partitioned into k match-

ings of cardinality exactly p. Moreover, such a partition can

be computed in polynomial time from H∗.

Proof. It is known that every bipartite graph of maxi-

mum degree at most k has a proper edge-coloring with k

color, and such an edge-coloring can be computed in poly-

nomial time [5], [12]. We can assume that each color is

used at least once by recoloring an edge whose color is

used at least twice. Then, the edges of H∗ can be de-

composed into k non-empty matchings M1, . . . ,Mk. If

|M1| = · · · = |Mk| = p, we are done. Suppose that there

is a pair of matchings Mi and Mj with |Mi| > p and

|Mj | < p. The union of Mi and Mj induces a subgraph

of H∗ of maximum degree at most two. As |Mi| > |Mj |,
the subgraph contains an augmenting path P = (v1, . . . , vt)

with {v`, v`+1} ∈ Mi for odd ` and {v`, v`+1} ∈ Mj

for even `. Let M ′i = (Mi \ E(P )) ∪ (E(P ) ∩ Mj) and

M ′j = (Mj \ E(P )) ∪ (E(P ) ∩Mi). Then, we have match-

ings M ′i and M ′j with |M ′i | = |Mi|− 1 and |M ′j | = |Mj |+ 1.

By repeating this argument, we have a desired set of match-

ings.
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Therefore, E(H∗) = M1 ∪ · · · ∪Mk is a maximum weight

k-packing of E(H∗) with respect to M, which implies the

following theorem.

Theorem 5. There is a polynomial-time algorithm that,

given a bipartite graph G and positive integers k, p,

computes (not necessarily edge-disjoint) k matchings

M1, . . . ,Mk with cardinality p such that dw(M1, . . . ,Mk)

is maximized.

6. Diverse Shortest st-Paths

This section is devoted to solving the following problem.

Definition 4. Let G = (V,E) be a directed graph with

specified vertices s, t ∈ V . Let ` : E → N≥0 be a length

function on edges. Let P be the set of all shortest paths

from s to t in (G, `). Given an integer k and a weight func-

tion w : E → N≥0, Diverse Shortest st-Paths asks for

k paths P1, . . . , Pk ∈ P such that dw(E(P1), . . . , E(Pk)) is

maximized.

Theorem 6. Diverse Shortest st-Paths can be solved

in polynomial time.

We first compute the shortest distance label dist : V →
N≥0 from s in polynomial time. For each edge e = (u, v) ∈
E with dist(u) 6= dist(v) + `(e), we remove it from G. We

also remove vertices that are not reachable from s in the

removed graph. This does not change the optimal solutions

since every path in P does not include such vertices and

edges. Then, the obtained graph, denoted by G′ = (V ′, E′),

has no directed cycles, and every path from s to t belongs

to P. From this directed acyclic graph G′, we construct

an weighted directed multigraph G∗ by replacing each edge

e = (u, v) with k copies e1, . . . , ek and setting w∗(ei) to

w(e)(k − 2i+ 1) for e ∈ E′ and 1 ≤ i ≤ k. By Lemma 1, it

is sufficient to find a maximum weight k-packing of E∗ with

respect to P.

Lemma 3. Let G∗ and w : E∗ → N≥0 be as above. Then,

there is a polynomial-time algorithm that finds a maximum

weight k-packing of E∗ with respect to P.

Proof. We reduce the k-packing problem to the minimum-

cost flow problem, which can be solved in a polynomial time.

The source and the sink vertices of G∗ are defined as s and t,

respectively. For each e ∈ E∗, we assign the capacity value

of 1 (to prevent edge sharing) and the cost value of −w∗(e).
The flow requirement is set to k. Then we can find a flow

f : E∗ → R≥0 maximizing
∑
e∈E∗ f(e) · w∗(e) in polyno-

mial time. Moreover, it is well known that f is integral, that

is, f(e) ∈ N≥0 for every e ∈ E∗, as the capacity is integral.

Since the all of the edges in E∗ has a capacity of 1, f can be

decomposed into k edge-disjoint st-paths P1, . . . , Pk, which

implies that the maximum weight k-packing with respect to

P can be found in polynomial time as well.

7. Diverse Minimum Cuts

In previous sections, we design polynomial-time algo-

rithms for several diverse version of well-known combinato-

rial problems. In this section, we discuss the diverse version

of the minimum cut problem.

Definition 5. Let G = (V,E) be an edge-weighted graph

with weight function w : E → N≥0, and let k be an inte-

ger. Diverse Minimum Cut asks for k minimum edge cuts

C1, . . . , Ck ⊆ E such that dw(C1, . . . , Ck) is maximized.

In contrast to results in previous sections, Diverse Mini-

mum Cut is intractable. Let λ(G) be the size of a minimum

cut of G.

Theorem 7. Diverse Minimum Cut is NP-complete even

if λ(G) = 3.

The problem obviously belongs to NP. The NP-hardness is

shown by performing a polynomial-time reduction from the

maximum independent set problem on cubic graphs, which

is known to be NP-complete [13]. For a graph H, we denote

by α(H) the maximum size of an independent set of H. Let

H be a graph in which every vertex has degree exactly three.

Let H ′ be the graph obtained from H by sudividing each

edge twice, that is, each edge is replaced by a path of three

edges. The set of vertices in H ′ that do not appear in H

is denoted by D. The following folklore lemma ensures that

the value of α increases exactly by m.

Lemma 4 (folklore). Let m be the number of edges in H.

Then, α(H ′) = α(H) +m.

We construct a graph G from H ′ by adding a new ver-

tex v∗ and connecting v∗ and a vertex in D. Note that the

degree of v∗ in H ′ is more than three.

Lemma 5. G has k edge-disjoint cuts of size three if and

only if H ′ has an independent set of size k.

Proof. Let G = (V,E). Suppose first that H ′ has an

independent set S of size k. Since every vertex in S ap-

pears also in G, we can construct a cut of the form Ci =

EG({vi}, V \ {v}) for each vi ∈ S. As S is an independent

set of G, these k cuts are edge disjoint. Moreover, these cuts

have exactly three edges since every vertex in S has degree

three in G.

Conversely, suppose G has k edge-disjoint cuts

C1, C2, . . . , Ck ⊆ E with |Ci| = 3 for 1 ≤ i ≤ k.

It is sufficient to prove that each of these cuts forms

Ci = EG({v}, V \ {v}) for some v ∈ V \ {v∗}. Let

Ci = EG(X,V \ X) for some X ⊆ V . Without loss of

generality, we assume that v∗ ∈ V \X. In the following, we

show that X contains exactly one vertex. Since every vertex

in D is adjacent to v∗, X contains at most three vertices of

D. Suppose first that |X ∩D| = 3. Since every vertex of D

has a neighbor in D, V \ X has a vertex in D that has a

neighbor in X ∩ D. However, as every vertex of X ∩ D is

adjacent to v∗, there are at least four edges between X and

V \X, contradicting to the fact that |Ci| = 3.

Suppose next that |X ∩ D| = 2. Let u, v ∈ X ∩ D
be distinct. If u is not adjacent to v, there are two

vertices u′ and v′ in (V \ X) ∩ D that are adjacent
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to u and v, respectively. This implies Ci contains four

edges {u, u′}, {v, v′}, {u, v∗}, {v, v∗}, yielding a contradic-

tion. Thus, u is adjacent to v. Let u′ and v′ be the

vertices in V \ (D ∪ {v∗}) that are adjacent to u and

v, respectively. Observe that at least one of u′ and v′,

say u′, belongs to X as otherwise there are four edges

({u, u′}, {v, v′}, {u, v∗}, {v, v∗}) between X and V \ X.

Since |X ∩ D| = 2 and u′ has three neighbors in D, the

other two neighbors of u′ belongs to V \ D, which ensures

at least four edges between X and V \X.

Suppose that |X ∩D| = 1. Let u ∈ X ∩D. In this case,

we show that X = {u}. To see this, consider the neighbors

of u. Since v∗ ∈ V \X and |X ∩D| = 1, at least two neigh-

bors of u, which are v∗ and a vertex in D, belong to V \X.

If the other neighbor v is in X, then by the assumption that

|X ∩D| = 1, the two neighbors of v other than u belong to

V \X, which implies there are at least four edges between

X and V \X. Thus, all the neighbors of u belong to V \X.

Since G is connected, all the vertices except for u belong to

V \X as well. Thus, we have Ci = EG({u}, V \ {u}).
Finally, suppose that X ∩ D = ∅. In this case, at

least one vertex of V \ (D ∪ {v∗}) is included in X. Let

u ∈ X \ (D ∪ {v∗}). Since X ∩D = ∅, every neighbor of u

belongs to V \ D. Similarly to the previous case, we have

X = {u}, which completes the proof.

Note that the proof of Lemma 5 also proves that G has

no cut of size at most two. Therefore, by Lemmas 4 and 5,

Theorem 7 follows.

When λ(G) = 1, then Diverse Minimum Cut is trivially

solvable in polynomial time: We can select (not necessarily

edge-disjoint) k bridges maximizing dw. If λ(G) = 2, the

problem in fact is solvable in polynomial time as well.

Theorem 8. Diverse Minimum Cut is polynomial time

solvable if λ(G) ≤ 2.

We reduce the problem to that of finding a subgraph of

prescribed size with maximizing the sum of convex functions

on their degrees of vertices.

Theorem 9 ([1]). Given an undirected graph H, an inte-

ger k, and convex functions fv : N≥0 → Q for v ∈ V (H),

the problem of finding k-edge subgraph H ′ of H maximizing∑
v∈V (H) fv(dH′(v)) is solvable in polynomial time, where

dH′(v) is the degree of v in H ′.

We first enumerate all minimum cuts of G in polynomial

time. Then, we construct a graph H whose vertex set corre-

sponds to E, and the edge set of H is defined as follows. For

each pair e, f ∈ E, we add k parallel edges between e and

f to H if {e, f} is a cut of G. Obviously, the graph H can

be constructed in polynomial time. For each e ∈ E, we let

fe(i) := w(e)·i·(k−i) for 0 ≤ i ≤ k and fe(i) =∞ for i > k.

Clearly, the function fe is convex. Let C1, . . . , Ck ⊆ E be

k cuts of G. For each e, we denote by m(e) the number of

occurrences of e among C1, . . . , Ck. Since each edge in E

contributes w(e) ·m(e) · (k −m(e)) to dw(C1, . . . , Ck), we

immediately have the following lemma.

Lemma 6. H has a subgraph H ′ of k edges such that∑
v∈V (H) fe(dH′(e)) ≥ t if and only if there are k edge

cuts C1, . . . , Ck ⊆ E of G with |Ci| = 2 for 1 ≤ i ≤ k such

that dw(C1, . . . , Ck) ≥ t.

By Lemma 6 and Theorem 9, Diverse Minimum Cut

can be solved in polynomial time, provided λ(G) ≤ 2.

We also obtain the following fixed-parameter tractability

and intractability results, which are omitted in this paper.

Theorem 10. There is an 2O(k+λ(G))nO(1)-time algorithm

for Diverse Minimum Cuts, where n is the number of ver-

tices in G.

In other words, Diverse Minimum Cuts is fixed-

parameter tractable parameterized by k + λ(G). The proof

of this theorem is made by combining algorithm for enu-

merating all minumum cuts in graphs [17] and a general

FPT result due to [14]. In contrast to this tractability, we

can show that the problem is unlikely to be fixed-parameter

tractable when parameterized by k only.

Theorem 11. Diverse Minimum Cuts is W[1]-hard pa-

rameterized by k.

Similarly to Theorem 7, we can reduce Independent Set

on d-regular graphs, which is known to be W[1]-hard [4], to

Diverse Minimum Cuts.
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