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Abstract:
The rapid densification of IEEE 802.11 Wireless Local Area Networks (WLANs) has lead to higher interfer-
ences among Basic Service Sets (BSSs) and has negatively impacted their performance. Spatial reuse methods
such as Dynamic Sensitivity Control (DSC) or Transmit Power Control (TPC) help mitigate the hidden and
exposed terminals issues in these dense deployments. In this work, a Reinforcement Learning (RL) based
method with adaptive timestep and action space is proposed to enhance the spatial reuse in dense WLANs.
In particular, the problem is modeled through Multi-Armed Bandits (MABs) and the Thompson Sampling
strategy is employed. In this scheme, a learner first observes the Received Signal Strengths (RSSs) it can
sense and derives a set of Carrier Sense Thresholds (CSTs) from these. It then applies Thompson Sampling
with the computed set and updates the model after a specified number of transmissions or a predefined
timeout. Simulation results show that the proposed scheme is able to improve the fairness compared to a
previous RL scheme while providing a considerable aggregate throughput.

1. Introduction

In recent years, the increasing demand for wireless com-

munication encouraged more WLANs deployments and as

a result, the overall performance degraded due to higher

interferences among basic service sets (BSSs). In par-

ticular, the popular IEEE 802.11 standard, which imple-

ments Carrier Sense Multiple Access with Collision Avoid-

ance (CSMA/CA), experiences severe throughput degrada-

tion and unfairness in dense deployments [1]-[3].

Two issues arising in dense scenarios are the hidden and

exposed terminal problems [4]. The hidden terminal prob-

lem consists in a collision between two packets at the receiver

due to the transmitters not being able to sense each other

and transmitting simultaneously. On the other hand, an

exposed terminal is a node which experiences low transmit

opportunities due to excessive carrier sensing.

Two spatial reuse methods for improving the perfor-

mance under dense deployments are Transmit Power Con-

trol (TPC) and Dynamic Sensitivity Control (DSC). TPC

consists in adapting the transmit power while DSC adapts

the Carrier Sense Threshold (CST). Both methods aim to

optimize the spatial reuse of radio resources and decrease

hidden and exposed terminals for improved performance.

However, tackling the spatial reuse problem with TPC

and DSC is not a trivial task, especially in uncoordinated

environments. As the density of WLANs increase, the inter-

actions between uncoordinated nodes become very complex

to model and it is therefore very challenging to devise a

performing algorithm. Moreover, wireless communications
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are dynamic by nature which adds another layer of com-

plexity. Although many previous studies use traditional al-

gorithms, there has been an increasing interest in learning

based methods for applying spatial reuse [5]-[7]. In fact, Ma-

chine Learning (ML) has been a very promising technology

over the last years as it has proved its potential to achieve re-

sults similar or even better than classic approaches without

requiring overly complex models and much knowledge of the

environment. In particular, Reinforcement Learning (RL) is

a method where the learning is carried on while interacting

with the environment and the computational cost can be

kept low compared to other learning algorithms. Learning

based methods are therefore appealing for dynamic environ-

ments such as WLANs.

In this paper, we continue on studying the potential of us-

ing RL for improving the throughput and fairness in dense

WLANs scenarios. In particular, we focus on IEEE 802.11

networks in uncoordinated environments, e.g. residential

buildings. We propose a spatial reuse scheme based on

Multi-Armed Bandits (MABs) which adapts its learning

timestep and action space to efficiently control the CST at

each Access Point (AP). First, each learner, i.e. AP, ob-

serves all the Received Signal Strengths (RSSs) it is able

to sense. It then derives a set of CST values from these

observed RSS values and performs the Thompson Sampling

algorithm to find the optimal CST from this set. Every

learning step consists in selecting one CST and observing

the experienced throughput when applying this threshold

for a certain number of transmissions or until a predefined

timeout. Adapting the timestep and the set of CSTs (ac-

tions) for each learner allows to focus on relevant threshold

values and improve the learning process.
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The remainder of this paper is structured as follows: re-

lated works are presented in Section 2. The MAB framework

is detailed in Section 3. The proposed scheme is specified

in Section 4. The performance of the proposed scheme is

evaluated in Section 5. Finally, the conclusion of this paper

is given in Section 6.

2. Related Work

In the literature, researchers have applied TPC, DSC or

both to enhance spatial reuse in dense scenarios [8]-[10]. Al-

though many algorithms are traditional, in the sense that

they do not use ML, there has been an increase in learning

based methods [5]-[7].

I. Jamil et al. [5] proposed a centralized solution based on

multilayer perceptron to jointly adapt the transmit power

and the CST. Their artificial neural network architecture

aims to model the relationship between the throughput

achieved by the nodes and their transmit power and CST.

It is composed of the input layer, 1 hidden layer and the

output layer. The cost function is the sum of a fairness cost

and a throughput cost as they aim to achieve a minimum

average throughput per device while maintaining fairness.

Although their solution showed an improvement in the ag-

gregate throughput and the fairness, it requires a central

controller to perform the learning. This is not necessarily

feasible in uncoordinated environments such as residential

scenarios.

F. Wilhelmi et al. [6] proposed a decentralized Reinforce-

ment Learning approach to spatial reuse. More specifically,

the authors apply a stateless variation of Q-learning to con-

trol the transmit power and the channel used based on the

experienced throughput. Their approach showed the poten-

tial of improving the aggregate throughput although the in-

dividual throughputs experience high variability due to the

competition among learners. The algorithm’s performance

was evaluated in a relatively simple scenario, containing few

nodes, mainly to check the potential of using RL for spatial

reuse so further study is necessary.

The work of F. Wilhelmi et al. [7] considers an RL ap-

proach based on Multi-Armed Bandits (MABs) and the

Thompson Sampling action-selection strategy. In their

framework, each learner has the objective of maximiz-

ing its throughput by exploring and finding the optimal

combination of transmit power, CST and frequency chan-

nel. They evaluated two selection strategies: selfish and

environmental-aware learning. The first one consists in hav-

ing a reward based solely on the throughput experienced

by the node itself. In the second case, the reward is based

on the max-min throughput achieved in the entire network.

They showed that selfish learning has the potential of max-

imizing the aggregate performance although it can generate

unfair situations. On the other hand, environmental-aware

learning allows to solve fairness issues but does not guar-

antee the optimal solution and may drastically limit the

aggregate performance. It is also worth noting that their

environmental-aware approach assumed perfect estimation

of the neighboring nodes’ throughput, which may not be

feasible or accurate in real settings. Moreover, they do not

specify any timestep and assume a perfect estimation of the

expected rewards and their simulations only use a simple set

of 2 CSTs for all learners.

In summary, although learning based spatial reuse meth-

ods of previous studies could achieve improved performance,

it remains a challenge to achieve high aggregate throughput

while preserving fairness among nodes in uncoordinated en-

vironments. Selfish decentralized learning is prone to gen-

erate unfair situations while collaborative learning seems

promising to maintain fairness but needs to overcome some

practical issues.

3. Multi-Armed Bandits

The MAB problem is a classic RL problem where re-

sources need to be allocated to a set of choices in a way

to maximize the reward in the long run. The learner only

has limited knowledge about each choice at the time of allo-

cation and acquires additional information about one choice

the more it allocates resources to it. In the context of spatial

reuse, a node trying to learn which parameters, such as the

transmit power or the CST, maximizes its throughput can

therefore be described by the MAB problem. In the case

where there are multiple learners and they compete for the

same resources at the same time, it can be modeled as an

adversarial MABs. This is exactly the situation where mul-

tiple Wireless Local Area Networks (WLANs) contend for

accessing the channel and the transmit power and CST are

two parameters which influence this contention.

It has been shown that the MAB framework is able to deal

with the exploration-exploitation dilemma under high uncer-

tainty [11]. It is therefore suitable for decentralized spatial

reuse as each node has very little or no information regarding

the environment. Moreover, it is worth noting that wireless

communications are sensitive to delay and more computa-

tionally intensive algorithms such as Deep Learning are thus

not feasible.

3.1 Thompson Sampling

One existing selection strategy which has proved to effi-

ciently address the exploration-exploitation trade-off in the

context of wireless networks is Thompson Sampling (TS)

[12]. It is a Bayesian algorithm which builds a probabilis-

tic model of the expected reward for each action. Initially,

it assumes a prior distribution for the expected reward of

each action and after playing a certain action, the model

is updated with the posterior distribution given the actual

observed reward. For each learning step, every action has a

probability of being selected which match its probability of

being the optimal action. This strategy can be implemented

by sampling from the posterior distribution of each action

and playing the one associated with the sampled value yield-

ing the highest expected reward.
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Fig. 1 Algorithm of the proposed scheme

Algorithm 1 Thompson Sampling

Input: Set of possible actions {1, ...,K}
1: Initialize:

2: t← 0

3: r̂k(t)← 0, k = 1, ...,K

4: nk(t)← 0, k = 1, ...,K

5: while true do

6: Sample N
(
r̂k(t), σ2

k(t)
)

and get θk(t), k = 1, ...,K

7: Play action k = argmax
k

θk(t)

8: Observe the throughput

9: Compute the reward rk(t)

10: r̂k(t)←
r̂k(t) · nk(t) + rk(t)

nk(t) + 1
11: nk(t)← nk(t) + 1

12: t← t+ 1

13: end while

4. Learning based Spatial Reuse with

Adaptive Timestep and Action Space

In this section, we propose a scheme based on Thomp-

son Sampling which adapts its learning timestep and action

space to allow an agent to efficiently learn its optimal CST

and to enhance the spatial reuse. An overview of the pro-

posed scheme is shown in Figure 1. The Thompson Sampling

algorithm is also given in Algorithm 1.

In this work, the agents are the Access Points (APs). Each

AP has the goal to learn its optimal CST from a set of CST

choices to maximize a certain reward function based on the

experienced throughput. This set of CST choices depends

on the perceived RSSs of each learner as it will be explained

later. Regarding the throughput, it is the throughput in

transmission and only packets which were successfully trans-

mitted, i.e. for which an acknowledgement (ACK) has been

received, are counted in it.

As mentioned in Section 3, Thompson Sampling starts by

assuming a prior distribution for the expected rewards and

in this scheme, a Gaussian prior is assumed, similar to the

work of Wilhelmi et al. [7]. The posterior distribution in

this case is thus also Gaussian with mean r̂k(t) and variance

σ2
k(t)

r̂k(t) =

t∑
w=1

rk(w)

nk(t) + 1
and σ2

k(t) =
1

nk(t) + 1
, (1)

where nk(t) is the number of times action k was played until

time t.

Regarding the reward, the selfish reward presented in [7]

is reused in this work. The latter defines the reward rw(t)

of a learner w at timestep t as

rw(t) =
Γw(t)

Γ∗
w

(2)

where Γw(t) is the throughput and Γ∗
w is an upper bound

value for normalization. This upper bound may not be

known by the learner as it depends on the spatial configu-

ration of the nodes as well as many other parameters. Con-

sequently, the maximum throughput achievable, i.e. when

there are no interferences, given the Modulation and Coding

Scheme (MCS) is used as the upper bound instead.

4.1 Adaptive timestep

The duration of one learning step is a crucial parameter

in the Thompson Sampling algorithm and should be wisely

chosen as it directly influences the learning process. In fact,

a short timestep avoids playing bad performing action for

a long period of time and allows more exploration but pro-

vides a less accurate long-term estimation of the action’s

performance. A long timestep yields the opposite.

One simple way to implement Thompson Sampling is to

try different fixed timesteps and select the best. However,

this method could yield inaccurate performance estimations.

For example, if a learner starts to send a packet during a

learning step but does not finish before the end of the step,

this packet will not be counted in the throughput compu-

tation of the current step even if it succeeds later on. A

long timestep mitigates this issue as the number of packets

observed is increased so that the last one should have min-

imal influence on the throughput but as noted above, the

amount of exploration is decreased so that the performance

estimations are less accurate. Moreover, the “best” timestep

could vary from scenario to scenario. A more complex situa-

tion with many WLANs should require a longer duration to

acquire a good long-term estimate than a more simple one.

In this work, a variable timestep has been considered. The

idea is to observe n transmission(s) or until a predefined

maximum timeout to during one learning step. The latter

is therefore adjusted to some degree to a learner’s local en-

vironment. One transmission ends when either the learner

receives an ACK or timeouts if the ACK is not received.

Moreover, the additional timeout to prevents a learner get-

ting stuck with one action indefinitely.

4.2 Adaptive action space

The set of CST choices is another aspect which influences

the learning process. Essentially, the Thompson Sampling
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algorithm considers each action as independent from the

others and having its own reward distribution. In conse-

quence, fewer actions decreases the amount of exploration

and leads to more accurate estimations although more per-

forming actions might exist. On the other hand, more ac-

tions could potentially lead to the optimal performance but

involves more time in exploring all the different possibil-

ities. To illustrate this slowdown, suppose there is a fixed

amount of learning steps n. If there is only one action, every

step will play this value and the variance at the end will be

σ2 = 1
n+1 (Eq. 1). If there are two actions, one action will

be selected at maximum n times but will be in general less

than n. Its variance is thus higher meaning the estimation

of the expected reward is less accurate.

Some choices might also be similar in terms of perfor-

mance. For example, a CST of -80 dBm or -79 dBm will

yield the same result if a node does not sense any signal

between these two values. Furthermore, every learner ex-

periences different RSSs depending on the location of their

neighbors so a distinct set of CST choices for each one could

potentially lead to more efficient learning.

Real life wireless communication is subject to fading and

shadowing so the perceived RSSs are constantly changing in

time. However, the study of these effects is out of the scope

of this paper. Therefore, they are assumed to be constant

hereafter.

Based on the ideas above, the proposed scheme imple-

ments a different set of CST possibilities for each learner

which depends on their perceived RSSs. The process is di-

vided into two phases: an initial phase and a learning phase.

During the initial phase, each learner does not apply RL and

saves all the different RSSs [dBm] it senses. This set of saved

values S (different for each AP) is then used to derive the

set of CST choices A as follows:

A = {g(s) | s ∈ S and − 82 ≤ s} (3)

with g : [−82,∞)→ [−82,−62] defined as

g(x) =

{
bxc, if x < −62

−62, otherwise
(4)

The number of perceived RSSs, i.e. sensed neighbors, is thus

different for each CST choice. The use of the floor function

limits the number of choices (actions) to avoid a large action

space which would require a lot of exploration.

Once the set of actions is derived, the learners enter the

learning phase and apply Thompson Sampling with these

actions.

5. Evaluation

5.1 Simulation settings

The proposed scheme was evaluated using the ns-3 sim-

ulator [13] in 50 random scenarios based on the residential

scenario described by IEEE 802.11ax TG [14]. Every sce-

nario consists in one floor of 10 × 2 apartments, each of size

10 m × 10 m × 3 m as shown in Figure 2. One BSS is placed

Fig. 2 Scenario layout

Table 1 Simulation parameters

Wi-Fi standard 802.11ac
Frequency band 5 GHz
Channel number 38

Channel bandwidth 20 MHz
Spatial stream(s) 1

MCS 7
Rate control None

Propagation loss Residential building loss [14]
Shadowing None

Mobility model Static
Traffic model CBR
Traffic load Full buffer DL
MPDU size 1544 bytes

Max Aggregation 64
RTS/CTS Disabled

Max retransmissions 7
Transmit power AP: 23 dBm, STA: 15 dBm

CST
AP: -82 dBm (initialization),

STA: -82 dBm
Antenna gain AP: 0 dBi, STA: 0 dBi

Capture effect threshold 5 dBm
Floor noise level -101 dBm

Noise figure 7 dBm
Simulation duration Initialization: 10 s, learning: 100 s

randomly in the xy plan in each room and consists of one

AP and one station (STA). All nodes are at height z = 1.5

m from the floor and have a static mobility. An overview

of the simulation parameters are shown in Table 1. Regard-

ing the number of transmissions considered for the learning

step, simulations for various values have been performed to

evaluate its influence and find an optimal value.

The performance metrics used are the aggregate through-

put and the Jain’s Fairness Index (JFI). The latter is com-

puted as

J (x1, x2, ..., xn) =

(
n∑

i=1

xi

)2

n ·
n∑

i=1

x2i

, (5)

where xi is the throughput experienced by the ith AP and

n is the total number of APs. Moreover, the proposed

scheme is compared to the standard IEEE 802.11ac method

(Legacy), which uses a static maximum transmit power (23

dBm) and carrier sensitivity range (-82 dBm), and the work

of Wilhelmi et al. [7]. For the latter, the selfish reward, a

fixed timestep of 0.5 s and an action set composed of CST

values only {−82,−77,−72,−68,−62} have been used.

5.2 Influence of the number of transmissions

Figures 3 and 4 show the mean and standard deviation

of the aggregate throughput and the JFI obtained using the

proposed scheme with a learning step of 1, 4, 20, 40 and

60 transmission(s). The throughput is maximal when con-
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Fig. 3 Average aggregate throughput of the proposed scheme for
different number of transmissions
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Fig. 4 Average Jain’s Fairness Index of the proposed scheme for
different number of transmissions

sidering only 1 transmission and decreases as the number

of transmissions considered increases until 20. It increases

again afterwards.

Regarding the fairness, it increases when the number

of transmissions observed increases until 20 and decreases

again afterwards. Consequently, there seems to be a trade-

off between the aggregate throughput and the fairness. One

way to understand this is as follows: if a small number of

nodes monopolize the channel and are able to experience

maximum throughput for extended period of time, the to-

tal throughput will therefore be high at the detriment of

some nodes which cannot communicate at all. Although

some nodes will naturally experience lower throughput due

to their poor location, it is essential to maintain a certain

level of fairness.

Hereafter, only 1 and 20 transmissions will be retained

as they yield the highest aggregate throughput and fairness

respectively.

5.3 Comparison with previous schemes

The mean and standard deviation for the aggregate

throughput and Jain’s Fairness Index obtained after 50 ran-

Legacy Wilhelmi et al. Proposed scheme
(1 transmission)

Proposed scheme
(20 transmissions)
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Fig. 5 Average aggregate throughput for all schemes
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Fig. 6 Average Jain’s Fairness Index for all schemes

dom scenarios for each of the considered schemes are shown

in Figures 5 and 6. First, the proposed scheme with 1 trans-

mission yields a throughput improvement of 108.66 Mbps

(52.88% increase) and 9.64 Mbps (3.17% increase) compared

to the legacy and Wilhelmi’s schemes respectively. In terms

of fairness, it yields a similar fairness (only a 1.35% increase)

as the legacy scheme while performing worse (by 5.21%)

than Wilhelmi’s scheme. When considering 20 transmis-

sions, the throughput increased by 49.40 Mbps (24.04%)

compared to the legacy algorithm while it is worse (by

16.29%) than Wilhelmi’s scheme. Regarding the fairness,

it is 26.01% and 17.86% higher compared to the same pre-

vious schemes. It is also worth mentioning that the stan-

dard deviation in the aggregate throughput is smaller for

the proposed scheme with 20 transmissions than the other

RL methods. In addition, the variability is similar for all

learning schemes when looking at the fairness and smaller

than the legacy case. The proposed scheme with 20 trans-

mission performs thus more consistently across all random

scenarios.

Wilhelmi’s scheme apply Thompson Sampling with the

same set of actions for all learners and a fixed timestep and

is able to highly increase the aggregate throughput (48.18%)
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compared to the legacy scheme. However, it does not im-

prove much the fairness (6.92%). On the other hand, our

proposed scheme which uses a different set of actions and

a variable timestep yields a higher aggregate throughput

but a lower fairness when observing for 1 transmission and

vice-versa for 20 transmissions. In particular, their scheme

always observes for the same duration (0.5 second) for every

agent and action and the beginning of every step is done at

the same moment for every learner (synchronized). In our

proposed scheme, the beginning of each step can vary from

learner to learner and the observation time is at most 0.5

second but can be shorter if a predefined number of trans-

missions have been observed.

In fact, across all random scenarios, our scheme observes

for 0.0190 and 0.3009 second in average when considering

1 and 20 transmissions respectively. Despite having an av-

erage timestep much smaller than Wilhelmi’s scheme, our

proposal with 1 transmission performs roughly the same as

theirs. One explanation is that a shorter timestep results in

more learning steps performed during the same amount of

time so the standard deviation for the expected rewards (Eq.

1) could be smaller. This potentially means a more accu-

rate estimation of the actions’ performance. However, a too

small timestep would considerably lower the accuracy of the

estimated long-term reward and seems to have a detrimental

effect regarding the fairness.

Furthermore, our proposed scheme focus the training only

on the relevant CST values for each learner instead of a com-

mon defined set used for Wilhelmi et al.’s work. Every AP

in the simulation scenario is subject to a different spatial

configuration of its neighbors so it will perceive different

RSS values. As mentioned in Section 4, two CSTs for which

the set of sensed neighbors is the same will likely produce

similar performance. Our scheme prevents such happening

and improve the learning process, thus leading to a higher

performance.

In summary, the simulation results show that the basic

IEEE 802.11 scheme does not exploit the spectrum resources

to their fullest and a more efficient usage of these is possible

via our learning based spatial reuse scheme. With our pro-

posal, each AP efficiently learns its optimal CST by using

an adaptive learning step and an appropriate set of CST val-

ues so that both the aggregate throughput and the fairness

are improved compared to the legacy scheme. The proposed

scheme also outperforms Wilhelmi et al.’s one [7] in terms of

fairness by sacrificing some throughput while using a selfish

reward.

6. Conclusion

In this paper, we proposed a Reinforcement Learning

based spatial reuse scheme with adaptive timestep and ac-

tion space to perform Dynamic Sensitivity Control. A

learner first gathers all its perceived RSSs during an initial-

ization phase then computes the set of CST values which

will be used during the learning phase. During the latter,

the Thompson Sampling algorithm is performed and each

learning step lasts until a certain number of transmissions

have been observed or a predefined timeout is reached. The

proposed scheme has been evaluated through simulations

and the results demonstrated the potential of applying Re-

inforcement Learning to improve the aggregate throughput

while maintaining fairness in dense WLANs. In particular,

an increase of 24.04% and 26.01% in the overall throughput

and fairness respectively could be achieved compared to the

legacy IEEE 802.11ac scheme. When compared to a previ-

ous RL scheme, it achieves a higher fairness by sacrificing

some of the aggregate throughput.

Future work could consider the collaboration between

learners in order to further improve the fairness among them.

Moreover, the learning could be extended to take into ac-

count the configuration of the stations.
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