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Abstract: This paper presents a robust unsupervised factory activity recognition technique using accelerom-
eter data collected from wearable sensors. In line-production systems, each worker repeatedly performs an
ordered operation series predefined by factories. Because the working process frequently changes, it’s imprac-
tical to update labeled training data for every workers over time, unsupervised learning technique has been
attracting attention. However, prior studies applying unsupervised factory activity recognition methods are
vulnerable to outlying activities performed by the workers which usually occur in real manufacturing. In this
study, we propose a robust unsupervised learning technique that makes use of two types of sensor data motifs
to track the starting time of each operation in every iteration of work periods. A period motif only occurs
once in each work period that is used to roughly detect the duration of work periods. An action motif occurs
many times in each work period, corresponding to some basic actions in the period. A temporal structure is
then constructed based on the temporal distances among motifs in the first period, which is used to improve
motif tracking in the following periods as well as roughly detect the location of outliers. We run particle
filters to track the starting time of operations and select a best particle series based on the extracted motifs.
We evaluate the proposed method using sensor data collected from workers in actual factories and achieved
state-of-the-art performance.

1. Introduction

This study aims to recognize working activities done by

a worker in factory settings. One common feature found in

many factory works is that workers need to repeat a pre-

defined sequence of work processes in a line-production sys-

tem when a product passes by, such as removing film from

a board and then screwing parts onto the board. It is im-

portant to recognize a working class performed by a target

person during a given period of time, such as detecting an

activity class corresponds to a screwing operation in a work

process in order to maintain the work efficiency. Having de-

tected time location and timing of the operations, we can

then support many useful applications, such as monitoring

the status of workers and detecting outlier activities. Be-

cause large numbers of workers are often involved in line

production systems, it can be difficult for managers to mon-

itor all of their workers simultaneously; therefore, automated

monitoring systems for factory-work activities are in high

demand by manufacturers, with several previous studies in

the ubicomp community having proposed solutions that are

based on supervised activity recognition [1, 2, 3, 4, 7]. How-

ever, collecting labeled training data for supervised learning

can be prohibitively costly when applied to factory-work ac-

tivities because training data must be collected for every

worker, who often performs a different sequence of opera-

tions.
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Figure 1 shows an example acceleration data collected

from a smartwatch worn by a working labor. In this case, a

period, which represents a complete work process, contains

6 operations, with consistent sequence predefined by man-

agers. However, in the second period, there is an undefined

data segment called “Outlier” which usually happens in real

factory works. Existing studies on unsupervised learning

techniques for activity recognition is difficult to deal with

outliers. For example, the latest research by Xia et al. [14]

uses a single characteristic sensor data segment motif (e.g.,

m11) to recognize the starting time of operations. However,

it is difficult to correctly estimate the operations using a sin-

gle motif when outliers occur. In our proposed method, we

extract multiple period motifs (three in this example) and

consider the temporal structure of the period motifs (e.g.,

temporal distance between motifs) to narrow down the lo-

cation of outliers and use the occurrences of action motifs,

which correspond to frequent actions such as screwing, to

calculate the similarity between identified operations in dif-

ferent periods.

The contributions of this research are listed as follows.

(1) We propose a robust unsupervised learning approach

that applies two types of motifs (period motif and action mo-

tif) and the temporal structure to track the starting time of

operations.

(2) Our method shows significant improvement in activity

recognition accuracy with data collected in real factory sce-

nario, especially when outlying activities exist, comparing

with previous studies using unsupervised learning methods

[14].

(3)We measure the similarity between two operations us-
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Fig. 1: Example acceleration data collected from a worker. The red, green and blue lines show the x-, y- and z-axis data,

respectively. The rectangles below show the fround truth labels of the operations. The duration of each operation period is

about 59s. Each worker period consists of six operations, which are defined in the process instructions. Three period motifs

are extracted in this example, mxy shows the y-th occurrence of the x-th motif.

ing information about the occurrences of action motifs, e.g.,

the number of occurrences, instead of using time consuming

dynamic time warping.

2. Related Work

Techniques for recognizing and supporting factory work

using sensor technologies have been actively studied [1, 2, 3,

4, 7] due to the recent growing interest in Industry 4.0 and

smart manufacturing [5, 9, 11]. For example, Koskimäki

et al. [8] analyzed sensor data from a wrist-worn inertial

sensor devices to ensure that all necessary operations were

performed. In addition, Stiefmeier et al. [13] analyzed as-

sembly work on automobiles using inertial sensors attached

to several locations on workers’ bodies, such as the upper

and lower arms. They classified sensor data segments by us-

ing the computed distance between the collected segments

and sensor data templates prepared in advance. Stiefmeier

et al. [12] also analyzed work on bicycle repair by recog-

nizing motion sensors and ultrasonic hand tracking employ-

ing HMMs. All of these factory activity recognition studies

relied on supervised machine learning and so required the

creation of labeled training data.

However, supervised machine learning technologies rely

on training data in advance. Several studies aim to balance

the trade-off between the recognition accuracy and the costs

of labeling data by applying unsupervised machine learning.

For example, Maekawa et al. [10] measured the duration of

each work period on a production line system in an unsu-

pervised manner. This method tracked a motif that appears

only once in each work period using a particle filter to es-

timate the duration of the work periods. Xia et al. [14]

estimated the starting and ending times of each operation

which makes up of work periods based on the tracked motif

with the help of information derived from process instruc-

tions. However, as mentioned in the introduction section,

these methods are vulnerable to deal with outlier activities,

which usually exist in factory work.

3. Unsupervised Factory Recognition

with Structure of Motifs

Figure 2 shows an overview of the proposed method. It

mainly consists of three phases: (i) discovering motifs, (ii)

building motif temporal structure, and (iii) tracking period

motifs as well as starting time of operations. In the motif

discovery phase, we first preprocess sensor data and then se-

lect period and action motifs among motif candidates that

randomly generated in an initial segment of the sensor data

(i.e., the first t minutes). We build a temporal structure to

describe the relationship of each pair of period motifs in the

first work period and apply it in the following work periods.

Finally, we generate first particle filter to track period mo-

tifs and combine it with action motifs to improve the second

particle filter for tracking starting time of operations. The

starting time of operations is then recognized based on the

best particle series of the second particle filter.

3.1 Preliminaries

Before applying this method, we need to build operation

flow models to specify the order and standard duration of

every operations for each work. This work model is a tree

structure, each node corresponds to an operation including

with it’s standard working duration, the edge represents the

every possible sequence of operations. As the figure 3 shows,

the first node represents the first operation (e.g., Op.1 is a

packing operation) in this work with standard duration of

3.5 seconds, the next Op.2 (e.g., a screwing operation) fol-

lows after Op.1 and connects to Op.3 as well as Op.4. Op-

tional operation Op.4 is represented as a branch, which has

the same possibility with Op.3 appearing after Op.2.

Fig. 2: Overview of the proposed method.
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Fig. 3: Example of operation flow model for a work.

3.2 Discovering Motifs

3.2.1 Preprocessing Sensor Data

In order to reduce computation costs, we first symbolize

the input acceleration data based on previous factory activ-

ity recognition methods [10, 14]. In brief, we convert each

of downsampled numerical acceleration values into a symbol

based on the value range associated with each symbol. We

then segment the sensor data to identify the likely starting

locations for operations using a Bayesian nonparametric ver-

sion of HMM called the hierarchical Dirichlet process HMM

(HDP-HMM) [6]. The segmentation boundaries in the re-

sults output by HDP-HMM give us the locations of trend

changes in the sensor data. These detected trend changes

are then used to estimate the start times of operations in

the tracking phase. Figure 4 shows example output from

this segmentation method when applied to acceleration data

collected from a factory worker. The overlaid color rectan-

gles show the segments generated by this method. The dash

lines corresponds to the ground truth of operations start

times for the work. Although this segmentation method re-

sulted in many false positives for operation start times, the

number of false negatives is generally low. Therefore, we can

use this segmentation method to generate candidates for op-

eration start times, but they will require further refinement

by later processes.

Fig. 4: Example segmentation results for acceleration data

when using HDP-HMM to segment the data in an unsuper-

vised manner.

3.2.2 Finding period motifs

We start by finding period (and action) motifs within the

first tdm minutes of sensor data starting from the begin-

ning of collection. Having already preprocessed the data as

described above, we randomly extract candidate period mo-

tifs with a length of lm from the first tinit minutes of the

sensor data, with tinit < tdm. For each candidate period

motif, we then compute a time series of similarity values.

We compute the similarity between each candidate period

motif and consecutive data segments in the first tdm min-

utes of sensor data using a sliding window, which results

in a new time series S of similarity values for the first tdm
minutes of data. Note that the similarity metric is com-

puted based on the Levenshtein distances between segments

of symbolized data. Using the similarity time series S, we

are now able to choose good period motifs from amongst the

candidates. Figure 5 shows two examples of such similarity

time series, with (a) showing the raw acceleration data and

(b) and (c) each showing the similarity times series for a

different candidate motif. Figure 5 (b) shows an example

of a good candidate for a period motif, with the location of

the motif’s template indicated by a rectangle background.

Meanwhile, Figure 5 (c) shows an example of a bad candi-

date for a period motif, with the template again indicated

by a rectangle background. In the case of Figure 5 (b), we

can find large peaks in the similarity values at the end of

each work period, with a clear differentiation between the

values in those peaks and the similarity values in rest of the

work periods. This means that the waveform of the candi-

date motif is dissimilar to unrelated segments and appears

consistently throughout the periods. In contrast, in Figure

5 (c), the differences between the similarity values at peaks

and at other times are relatively small, making it difficult

to detect occurrences of the motif. As this example shows,

candidates that yield clear peaks should be selected.

We select the top-kp best period motifs from amongst the

candidates using a combination of two scores: (1) As shown

in Figure 5 (b), the similarity values at peaks should be much

larger than those at other times in the periods. Therefore,

we compute the first score based on the difference between

the peak similarity value and similarity values at the other

time slices. (2) The occurrence of a period motif in the fol-

lowing work periods should be similar to that of in the first

period. Therefore, the second score for candidate motifs is

calculated based on the maximum peak values in other pe-

riod segments.

3.2.3 Finding action motifs

Just as with period motifs, we start our process of select-

ing a good action motif by first extracting candidate motifs

and then computing a similarity time series S for each can-

didate using the first tdm minutes of sensor data. Figure

6 shows two examples of such similarity time series, with

(a) showing the raw acceleration data and (b) and (c) each

showing the similarity times series for a different candidate

motif, with (b) showing an example of a good candidate and

(c) showing an example of a bad candidate. In Figure 6 (b),

the motif corresponds to a screwing action and the presence

of clear peaks that repeat within each work period make it a

good candidate. The thin peaks shown in this example are

indicative of a good candidate for an action motif, as they

make it easier to differentiate the peaks from background

noise. In contrast, in Figure 6 (c), there is not a clear dif-

ferentiation between similarity values at the peaks versus

at other times in the work period, indicating that the cor-

responding actions are similar to the surrounding actions,
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(a) Three-axis acceleration data
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Fig. 5: Comparing the similarity time series for candidate pe-

riod motifs. (a) The raw three-axis acceleration data. (b) and

(c) are the similarity time series for a good and bad candidate

for a period motif, respectively.
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(b) Time-series of similarities of an example action motif 1
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(c) Time-series of similarities of an example action motif 2
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Fig. 6: Comparing the similarity time series for candidate ac-

tion motifs. (a) The raw three-axis acceleration data. (b) and

(c) are the similarity time series for a good and bad candidate

for an action motif, respectively.

which is therefore hard to detect.

We select the best action motif from the amongst the

candidates using score based on the average prominence of

peaks in the similarity time segment. The peak prominence

is the height of the peak’s summit above the lowest con-

tour line but containing no higher summit, showing the dif-

ference between the action motif and the surrounding data

segments.

3.3 Building Temporal Models

Using the processes described in the previous subsection,

we are able to select good candidates for period motifs (and

action motifs). Here we build a model of the motifs’ tem-

poral structure (T ) that captures the temporal distances

between pairs of period motifs. This model represents the

temporal structure using lists of observed temporal distances

between the nearest occurrences of each of the motifs. Each

list is initialized based on the relationship between the orig-

inal data segments for the corresponding motifs in the first

tinit minutes of sensor data. Given a temporal structure

model T , T (mi,mj) outputs a single value calculated as

the average value for the list of temporal distances between

the pair of motifs mi and mj , which is used in the tracking

procedure.

3.4 Tracking Period Motifs

We track period motifs using particle filters, with a sep-

arate particle filter prepared for each motif. Note that of

these particle filters, the one with the highest score is here-

inafter referred to as the base particle filter, with the period

motif tracked by this particle filter referred to as the base

period motif. Because the base particle filter’s results are

more reliable than those from the other lower-scoring parti-

cle filters, its results can be used to correct the results for

those other particle filters.

Particle filtering consists of three procedures: sampling,

weighting, and resampling. During the sampling procedure,

we generate new particles that represent predicted locations

for the occurrence of a period motif in the (i + 1)-th period

based on its estimated occurrence in the i-th period. In the
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weighting procedure, we calculate a score for each of those

new particles based on the motif’s similarity time series and

the results from the motif’s particle filter. In the resam-

pling procedure, we probabilistically discard particles with

low scores. We explain these procedures in detail below.

3.4.1 Initialization

When tracking a period motif, we start by creating a tree

structure, which we will refer to as a history tree, that is

used to track all the particles generated for that motif. We

generate the first particle for that motif at the location of

its first occurrence in the sensor data and place that particle

in the tree as the tree’s root node.

3.4.2 Sampling

We randomly sample subsequent occurrences for each par-

ticle based on S and the standard lead times from the work

model M. Assuming that t(pi, n) is the timestamp for a

particle pi generated during the n-th iteration of sampling,

then the timestamp for some new particle pj from among

the m particles generated from pi during the n+ 1-th itera-

tion of sampling is determined by adding a ∆t, where ∆t is

the estimated interval between pi and pj that is randomly

sampled from a distribution G generated from S and stan-

dard lead times. G is a discrete distribution that describes

possible locations of the n + 1-th occurrence of the motif,

which makes the possible occurrence of the motif only occurs

at the location of peaks and therefore formulated as follows.

G = Disc(peak(S(t(pi,n)+df ·M.min lead time,tf ))),

where tf is a time when S first exceeds thpm after t(pi, n)+

df · M.min lead time plus a margin, df is a hyperparam-

eter that defines the possible minimum lead time (0 <

df < 1), S(t(pi,n)+df ·M.min lead time,tf ) is a segment be-

tween t(pi, n) + df · M.min lead time and tf within S,

and Disc(peaks) calculates a discrete distribution where the

probability of sampling at a peak is proportional to the value

at that peak and the probabilities at time slices other than

the peaks are zero.

Note that, when an outlier segment occurs after t(pi, n)

and a sub-segment within the outlier segment exhibits a

high similarity value with the motif of interest, the value

of tf may be erroneously set as a time before the next oc-

currence of the motif. To help cope with this, the particle

filters conditionally apply a correction to tf based on the re-

sults for tf from the other particle filters. Briefly speaking,

when tf − t(pi, n) (i.e., temporal distance between tf and

the timestamp of pi) for some particle filter is much smaller

than tf − t(pi, n) for other particle filters, we increase tf
for this particle filter based on tf − t(pi, n) from the base

particle filter.

Each of the m particles generated from pi are then our

estimates for the possible n+ 1-th occurrences of the motif,

with each new particle pj being stored as a child node of pi

in the history tree.

3.4.3 Weighting

After having sampled new particles based on the discrete

distribution, we then calculate a score for each new particle

pj using a combination of the following scores: (1) Similar-

ity score: A sensor data segment corresponding to pj should

be similar to the segment corresponding to the first occur-

rence of the motif. Therefore, we simply use the similarity

value as a score. (2) Consistency score: We calculate this

score by referring to the base particle filter and the temporal

structure model T . Because the temporal relationship be-

tween the occurrences of period motifs should be consistent

throughout work periods, we calculate this score using the

differences between T and the temporal distance of target

period motifs in other work periods.

3.4.4 Resampling

Here we employ roulette wheel selection to probabilisti-

cally resample the generated particles. In roulette wheel

selection, each particle is randomly selected with a prob-

ability proportional to the score assigned to that particle

during the weighting phase. This method enables us to se-

lect the high-scoring particles with higher probability and

discard the remaining particles. The discarded particles are

removed from the history tree. The posterior estimate of the

occurrence time for the motif of interest o(pf.motif, n + 1)

is the weighted average of the resampled particles, with their

scores used as the weights.

3.5 Tracking Operation Start Times

Now, we have the following information: (1) The particle

filters for period motifs output timestamps for the occur-

rences of the peiod motifs. (2) We have timestamps for trend

changes C that are output by HDP-HMM. (3) We have in-

formation about the standard duration for each operation

which is described in the work model M.

We use this information as input to a particle filter that

produces our estimates for the most likely start times for all

operations in a work period. We start by initializing this

particle filter by generating initial particles as candidates

for the start time of the work period (i.e., the start time of

the first operation). We then track each of these particles

to identify the start times of the following operations in the

work period by iterating through the particle filter’s three

phases of sampling, weighting, and resampling.

3.5.1 Initialization

As shown in Figure 1, the start time of the first work pe-

riod exists somewhere before the first occurrence of the first

motif (m11). Therefore, we can generate initial particles at

each timestamp from C that fall between the starting time

of the sensor data and the first occurrence of the first motif,

which become our candidates for the start time of the first

operation in the first work period. We track the estimated

operation start times using a tree structure, with a tree cre-

ated for each initial particle with that initial particle set as

the tree’s root node.

3.5.2 Sampling

For each iteration we sample new particles from each ex-

isting particle that represent estimates for the start time

for the following operation. Assuming that t(pi, n, k) is the

timestamp for an existing particle pi that represents an es-
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timate of the start time of the n-th operation in the k-th

work period, then the timestamp t(pj , n + 1, k) for a new

particle pj for the n + 1-th operation is sampled from pi as

follows:

t(pj , n + 1, k) = t(pi, n, k) + ∆t + ∆o,

where ∆t is randomly sampled based on the duration-time

distribution in the work model that corresponds to the cur-

rent node (i.e., the n-th operation’s node). ∆o represents

estimates for the duration of an outlier that possibly exists

between the n-th and n + 1-th operations and is randomly

sampled from a uniform distribution over [0, tol], where tol
is an estimate of the duration of any outlier segments exist-

ing between the occurrence of period motif m1 just before

t(pi, n, k) and the occurrence of another period motif m2

just after t(pi, n, k) + ∆t. When the temporal distance be-

tween the two occurrences, i.e., o(m2, k)−o(m1, k), is much

larger than T (m2,m1) as shown in the right part of Figure

?? (b), we can assume that there are some outlier segments

between the two occurrences. Therefore, tol is calculated as

follows.

tol =


(o(m2, k)− o(m1, k))− T (m2,m1) ((o(m2, k)−
o(m1, k))− T (m2,m1) > thol)

0 (otherwise)

Each new particle pj is then stored as a child node of pi

in the history tree for operation start times.

3.5.3 Weighting

We compute a weight for each particle generated in the

sampling phase using a combination of three scores: a trend-

based score, a period-motif score, and an action-motif score.

These scores are calculated as follows: (1) Trend-based

score: As was mentioned in the introduction section, op-

eration start times usually exist close to trend changes in

the sensor data. Therefore, this score is computed based on

the temporal distance between the timestamp of a particle

and the timestamp of the closest trend change that discov-

ered by HDP-HMM. (2) Period-motif score: The temporal

distance between the start time of the n + 1-th operation

and an adjacent period motif should be consistent through-

out work periods. Therefore, we calculate the consistency

of the temporal distances within the period of interest. (3)

Action-motif score: A similarity time series is given for each

action motif, which represents the occurrences of that action

motif. The similarity segments corresponding to a given op-

eration should be similar with each other across work pe-

riods. Therefore, we calculate the consistency of each op-

erations segments within the period of interest. To reduce

the computation costs related to the similarity calculation,

we extract a feature vector consisting of simple statistical

features such as: (i) standard deviation, (ii) variance, (iii)

kurtosis, (iv) skewness, (v) #peaks divided by the duration

of the segment, (vi) the largest peak value, (vii) average of

peak values, and (viii) relative location of the largest peak

within the segment. The result of Euclidean distance is then

used as the score.

3.5.4 Resampling

First, we probabilistically resample the particles using

roulette wheel selection with each particle resampled with

a probability proportional to its weight that was assigned

above, with any discarded particles removed from the his-

tory trees. We next need to determine which operation

to use when estimating the following operation start time,

since the value for ∆t will be set based on that operation’s

duration-time distribution in the work model. In general, we

can simply use the following operation in the work model,

unless there is a branch in the model, in which case we ran-

domly select the branch to follow. Each of the remaining

particles is then used to generate new particles during the

sampling phase of the next iteration.

Note that, as shown in Figure 1, the end time of the first

work period exists somewhere between the first occurrence

of the last motif (m31) and the second occurrence of the first

motif (m12). Therefore, we delete particles that do not fall

between the n-th occurrence of the last period motif and the

n + 1-th occurrence of the first period motif at the end of

each period.

We iterate through these processes of sampling, weight-

ing, and resampling until reaching the end of each period,

with the most likely overall sequence of start times of op-

erations finally selected based on the particle that has the

highest weight at the end of the period.

4. Evaluation

We evaluated the proposed method using 6 datasets col-

lected from different workers in real factory. Each worker

wears a Sony SmartWatch3 SWR50 on his right wrist to

record acceleration data with an approximate 60Hz sample

rate. The ground truth data was collected using video cam-

eras. The data processed offline in our laboratory after data

collection. Table 1 shows an overview of all the datasets.

The number of operation in each work period is shown in

the “# operations” row, the number of optional operations

is added in parentheses. The “ standard duration” row de-

scribes the standard duration of a period, the parentheses

shows another standard duration when optional operations

occur. The number of periods over a whole work is shown in

the “# periods” row. The “data duration” row means the

overall duration of the observed sensor data for each work.

The “outlier duration” row describes the overall duration of

outlier activities for each work.

Our method measures the starting time of each operation

in every period. The duration of an operation starts from its

own starting time and ends at the starting times of the next

operation, all outlier activities are labeled as “outlier” op-

erations. We evaluate every sensor data point by measuring

if it belongs to the operation. Therefore, we can calculate

the macro-averaged F-measure for the classification result

of every sensor data points over each dataset. We designed

6 comparing methods to evaluate the effectiveness of the

proposed method:

• Proposed: The proposed method.
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Table 1: Overview of our dataset
work A B C D E F

# operations 8 6 (1) 7 (1) 7 11 11
standard duration [s] 130 59 (87) 53 (57) 50 55 50

periods 10 9 14 13 12 11
data duration [s] 1440 614 778 632 676 674
outlier duration [s] 0 76 51 14 0 79

test and record bag and box check final check final install screws install screws

work overview circuit board circuit product and product and on circuit on circuit

information boards record results record results board board

• Only-Base: The proposed method only using a single

period motif (base period motif).

• W/o-Trend: The proposed method without the use

of the trend-based scores.

• W/o-Period: The proposed method without the use

of the period-motif scores.

• W/o-Action: The proposed method without the use

of the action-motif scores.

• Xia2019: This is the proposed method from Xia2019.

4.1 Recognition Accuracy

Figure 7 shows the classification accuracy for each

method. Overall, the Proposed method achieved the high-

est average F-measure over all six works. In addition, the

accuracies of Xia2019 in many works are lower than the Pro-

posed, especially when the work contains outliers (e.g., work

B, C, D and F). Comparing with Xia2019, this result con-

firms the robustness of the proposed method when used on

real-world factory work sensor data with outliers exist.

4.2 Effect of scores

Trend-based score: The f-measure of the Proposed

outperforms the W/o-Trend method in work D, E and F,

many of the estimated starting times of operations in the

W/o-Trend method shifted from the corresponding opera-

tions in the Proposed method. Since the ground truth start-

ing times of operations are very close to the trend changes

generated by HDP-HMM, we can use trend-based score to

reduce the appearances of shifted tracking results.

Period-motif score: Figure 8 shows an example of

W/o-Period in work F, which does not employ the period-

motif score. The accuracy of this work is poor, where the

number of outliers is large, indicating that the temporal re-

lationship between the occurrences of periods motifs and

operation start times was important. Without period mo-

tifs, the W/o-Period method can not recognize the starting

time of outlier in this example, resulting in a low recognition

accuracy in the first period. In addition, as can be seen in

the result of Only-Base method, which employs only a base

period motif, the accuracy is the lowest among all compar-

ing methods. This result means tracking multiple period

motifs is an important aspect of Proposed, as it is difficult

to recognize the fine-grained structure of the work only with

a single period motif.

Action-motif score: The action-motif score is another

important score in this study, this score plays a similar role

in sensor-based score in Xia2019 (refers to [14]), but requires

less computation costs. As can be seen in the figure 9, the

estimated sensor data segment of the same operations in

the 3-rd and 4-th periods are different. Because the work-

ing duration of operations are various in this case (e.g., the

duration of the first operation in the third period is about

two times longer than the corresponding operation in the

forth period), the period-motif score that relies on the con-

sistency distances between period motifs becomes unstable,

action motif score is able to select good tracking results with

high data similarity of same operations in different periods.

5. Conclusion

In this study, we proposed a robust unsupervised factory

activity recognition method to recognize the starting times

of operations by using multiple motifs in conjunctions with

motif temporal structures, which achieves state-of-the-art

performance even when outliers exist.
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[8] Heli Koskimäki, Ville Huikari, Pekka Siirtola, Perttu
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sensors and ultrasonic hands tracking for continuous

activity recognition in a maintenance scenario. In 10th

IEEE International Symposium on Wearable Com-

puters (ISWC 2006), pages 97–104, 2006.

[13] Thomas Stiefmeier, Daniel Roggen, and Gerhard
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