
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Developing Value Networks for Game 2048
with Reinforcement Learning

KiminoriMatsuzaki1,a)

Received: July 12, 2020, Accepted: January 12, 2021

Abstract: The game 2048 is a stochastic single-player game and several computer players have been developed in
not only research work but also student projects. Among them, the most successful approach is based on N-tuple
networks trained by reinforcement learning methods. Though there have been several works on computer players with
deep neural networks, their performance were not as good in most cases. In our previous work, we designed policy
networks and applied supervised learning, which resulted in an average score of 215,802. In this study, we tackle the
problem with value networks and reinforcement learning methods, since value networks are important to combine with
game-tree search methods. We investigate the training methods in several aspects, including batches of training, use of
symmetry, network structures, and use of game-specific tricks. We then conduct a training for 240 hours with the best
configuration. With the best value network obtained, we achieved an average score of 228,100 with the greedy (1-ply
search) play, and furthermore an average score of 406,927 by combining it with the 3-ply expectimax search.

Keywords: game 2048, neural network, reinforcement learning, stochastic game, single-player game

1. Introduction

Deep neural networks (DNNs) now play an important role
in the development of computer game players. Several master-
level computer players have been developed with DNNs trained
by reinforcement learning methods for several games: not
only two-player perfect-information games like Go (AlphaGo
Zero [23]), Chess (Giraffe [13] and DeepChess [5]) and Shogi
(AlphaZero [22]) but also other type of games such as Poker
(Poker-CNN [29] and DeepStack [19]), Atari games [18], and
Mahjong (Suphx [14]).

The target of this study is the game “2048” [4], a stochastic
single-player game. 2048 is a slide-and-merge game and its “easy
to learn but hard to master” characteristics have attracted quite a
few people. According to its author, during the first three weeks
after its release, people spent a total time of over 3,000 years play-
ing the game.

Several computer players have been developed for 2048.
Among them, the most successful approach is to design N-tuple
networks (NTNs) as evaluation functions and apply reinforce-
ment learning methods. This approach was first introduced to
2048 by Szubert and Jaśkowski [24]. The state-of-the-art player
developed by Jaśkowski [10] combined several techniques to im-
prove NTN-based players, and achieved an average score of
609,104 within a time limit of 1 second per move. DNN-based
computer players, however, have not achieved a big success yet.

There are two approaches to design deep neural networks for
computer players: policy networks and value networks. A policy

1 School of Information, Kochi University of Technology, Kami, Kochi
782–8502, Japan

a) matsuzaki.kiminori@kochi-tech.ac.jp

network takes a game position and returns probabilities of possi-
ble moves. A value network takes a game position (and a move)
and return the evaluation value. A dual-head network used in
AlphaGo Zero [23] is a network that shares some layers of a pol-
icy network and a value network. Though we can develop com-
puter players with either network, a value network is more useful
when we want to combine it with game-tree search techniques.

Most of the existing DNN-based players for 2048 have been
developed taking the value-network approach. We should, how-
ever, say that the performance of these players with value net-
works (especially trained with reinforcement learning) was not
good. As far as the author knows, the first study in this direction
was by Guei et al. [8]: they developed convolutional neural net-
works (CNNs) and trained them with Q-learning and TD-learning
methods, but the average score achieved was just 11,400 even in
the best case. The most successful value network for 2048 was
by tjwei [25]: the value network included two convolution layers
with 1 × 2 filters, and the average score was 85,351 with a super-
vised learning method and about 33,000 with the reinforcement
learning method. There are other implementations of computer
players with value networks [1], [7], [11], [20], [21], [26], [27] or
dual-head networks [2] but the scores of these players were not as
good or were not reported.

Not many studies took the policy-network approach [6], [12],
[16]. The author focused on policy networks trained with su-
pervised learning in the previous studies. We [12] first designed
CNNs with 2 × 2 filters by changing the numbers of convolution
layers and applied supervised learning using play logs of existing
NTN-based players [15]. The best network with five convolution
layers achieved an average score of 93,830. The author [16] then
developed a policy network with 1 × 2 convolution filters and

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

extended it so that it also took the states after the moves as the in-
put. The best computer player with this extended policy network
achieved an average score of 215,802. In fact, we also tried to
apply these ideas to value networks and dual-head networks, but
they performed as poorly as random players.

In this study, we focus on reinforcement learning for value
networks for 2048. Starting with the TD-learning that worked
well for NTNs [24], we investigate several options of the train-
ing details. We also perform a longer training up to 240 hours
with the best configuration, and evaluate the developed players
in combination with expectimax tree search [3]. Programs and
trained parameters are available at http://ipl.info.kochi-tech.ac.jp/
matsuzaki-lab/repos/JIP2020Supplements/index.html.

Here are the experiments and results in this paper.
• We first change the batches of training (Section 3.1). Due to

the randomness in 2048, the training works well with a batch
large enough (N = 1,024), and shuffling of training data is
not necessary.

• Symmetry often plays an important role in game playing and
training. We adopt the board symmetry in game-plays and
in data augmentation (Section 3.2). The experiment results
suggest that the advantage of utilizing symmetry does not
outweigh the disadvantage.

• We test three more network architectures developed in the
previous study [16] (Section 3.3). Though 2048 has a very
small board, we confirm that CNNs performs better than
MLP and a CNN with 2× 2 filters seems to be a good choice
in terms of the computational cost and the performance. We
also test CNNs with different size (Section 3.4).

• We apply two game-specific tricks in the generation of train-
ing data (Section 3.5). The restart strategy [15] works well
for DNNs too and it improves the players’ performance
when combined with expectimax search.

• We perform the training for 240 hours using the best con-
figuration (Section 4). The best computer player obtained
in this study performs much better than any other existing
DNN-based player.

– With the greedy (1-ply search) play, the average score is
228,100, 2,048 achievement ratio 98.1%, 4,096 achieve-
ment ratio 94.1%, and 8,192 achievement ratio 82.9%.

– With the expectimax 2-ply search, the average score
is 367,024, 2,048 achievement ratio 99.8%, and 4,096
achievement ratio 99.3%, and 8,192 achievement ratio
97.2%.

– With the expectimax 3-ply search, the average score is
406,927, 4,096 achievement ratio 99.6%, 8,192 achieve-
ment ratio 98,8%, and 32,768 achievement ratio 26.0%.

The rest of the paper is organized as follows. Section 2 briefly
introduces the rules of 2048 (most of this section comes from our
previous paper [12]). Section 3 designs the experiments that eval-
uate several training options and reports the results. Section 4
reports the final experiments for the best training configuration
with longer training time. We review existing DNN-based play-
ers for 2048 in Section 5. We summarize the findings in this paper
and show future directions in Section 6.

Fig. 1 Process of game 2048 [12].

Table 1 Score and number of moves when a tile is first created

tile score moves
1,024 9,000 480
2,048 20,000 950
4,096 44,000 1,900
8,192 97,000 3,800

16,384 210,000 7,500
32,768 450,000 15,000

2. Game 2048

2048 is played on a 4 × 4 grid. The objective of the original
2048 game is to reach a 2,048-tile by moving and merging the
tiles on the board according to the rules below. In an initial state
(Fig. 1), two tiles are placed randomly with numbers 2 (p2 = 0.9)
or 4 (p4 = 0.1). The player selects a direction (either up, right,
down, or left), and then all the tiles will move in the selected di-
rection. When two tiles of the same number collide, they create a
tile with the sum value and the player gets the sum as the score.
Here, the merges occur from the far side and newly created tiles
do not merge again on the same move: move to the right from
222�, �422 and 2222 results in ��24, ��44, and ��44, respec-
tively. Note that the player cannot select a direction in which no
tiles move nor merge. After each move, a new tile appears ran-
domly at an empty cell with number 2 (p2 = 0.9) or 4 (p4 = 0.1).
If the player cannot move the tiles in any direction, the game ends.

In this study, we evaluate the computer players in terms of their
average score as well as the achievement ratio of 2,048-, 4,096-,
8,192-, 16,384- and 32,768-tiles (the ratio of games in which such
a tile is successfully created). Table 1 shows the required score
and the number of moves when such a tile is first created. For
example, a player should perform about 950 moves and obtain a
score of about 20,000 or larger before creating the first 2,048-tile.

3. Investigating Training Options

Szubert and Jaśkowski [24] examined three reinforcement
learning methods for 2048 using N-tuple networks (NTNs). They
reported that TD learning applied to afterstate (Fig. 2; the state
after the tiles slide&merge and before a new tile appears), called
TD-afterstate, outperformed the other two methods introduced in
the paper (called Q-learning and TD-state). Guei et al. [8] evalu-
ated common Q-learning method and TD-afterstate for deep neu-
ral networks (DNNs), and again TD-afterstate achieved the better
performance. Following these results, we design our reinforce-
ment learning methods based on the TD-afterstate method.

First we review the idea of TD-afterstate for 2048 using Fig. 2.
Given a game position st at time t, let the player select a move

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 3 Structures of (a) CNN22, (b) CNN12, and (c) MLP. The arrows with / / denote reshaping of ten-
sors. Each block in the first three layers in CNN12 is either “conv (1×2) 256” or “conv (2×1) 256”
where labels x and x′ (x = a, b, . . . , g) show that these filters share their weights (transposed).

Fig. 2 Definition of afterstate

Table 2 Neural networks used in the paper.

Network description number of weights
CNN22 2 × conv (2 × 2) / ReLU [256, 512],

2 × FC / ReLU [1024, 256], FC [1]
2,902,273

CNN12 3 × conv (dual 1 × 2) / ReLU [256,
256×2, 256×4], FC / ReLU [256],
FC [1]

3,680,513

CNN22ACG 2 × conv (2 × 2) / ReLU [160, 320],
2 × FC / ReLU [2048, 256], FC [1]

3,363,809

MLP 4 × FC / ReLU [512, 1024, 2048, 512],
FC [1]

3,280,897

CNN22S 2 × conv (2 × 2) / ReLU [192, 384],
2 × FC / ReLU [768, 192], FC [1]

1,636,033

CNN22SS 2 × conv (2 × 2) / ReLU [128, 256],
2 × FC / ReLU [512, 128], FC [1]

730,241

CNN22SSS 2 × conv (2 × 2) / ReLU [64, 128],
2 × FC / ReLU [256, 64], FC [1]

184,897

Abbreviations: conv = convolution layer(s), FC = full-connect layer(s)
The numbers in square brackets show the number of filters in each layer.

at (either up, right, down, or left). Then, all the tiles slide
(and merge) resulting afterstate s′t with score R(st, at). The next
position st+1 is given by adding a random tile to the afterstate s′t .
In the TD-afterstate method, we apply a TD learning algorithm
to the consecutive afterstates using R(st, at) as the reward. With
the basic TD(0) algorithm, we update the evaluation value of an
afterstate to approach V(s′t ):

V ′(s′t ) = R(st+1, at+1) + V(s′t+1). (1)

Note that we cannot define the afterstate s′e of the end game se,
but let the reward and the evaluation value be R(se, ·) = 0 and
V(s′e) = 0 in that case. After the training steps, the evaluation
value V(s) will approach the expected score obtained from the
hypothetical afterstate s to the end of the game.

Table 2 summarizes the neural networks used in this study and
Fig. 3 illustrates the network structures of CNN22, CNN12, and

MLP. Following our previous work [12], [16], we used the same
input encoding method as Guei et al. [8]. As shown in Fig. 4, the
input is a 4 × 4 × 16 binary array: the first 4 × 4 shows the places
of the empty cells, the second does those of 2-tiles, and so on, up
to 32,768-tiles. Except for Sections 3.3 and 3.4, we use CNN22

for our experiments. It consists of five layers (first two layers
are convolution layers with 2 × 2 filters and the last three layers
are full-connect layers) and the first four layers are followed by
ReLU activation function. The numbers of filters are 256, 512,
1,024, 256, and 1, in order. The initial values of the weights are
given randomly from the normal distribution (mean μ = 0, vari-
ance σ2 = (0.1)2) truncated between ±2σ. The loss function we
used was mean squared error between the evaluation values V(s′t )
and the desired value V ′(s′t ) in Eq. (1). We used those values di-
rectly without any scaling. We use the optimization algorithm
Adam with the default hyper parameters in TensorFlow (learning
rate α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−7) *1.

The computers we used equipped an Intel Core i7-9800X
CPU (3.8 GHz, 8 cores/16 threads), 128 GB Memory, and two
NVIDIA GeForce RTX 2080Ti GPUs (11 GB GPU Memory).
The OS and software were Ubuntu 18.04.3 LTS, Python 3.7.3,
and TensorFlow 1.13.1. Though the computers were equipped
two GPUs, all the programs in this study used a single GPU. We
executed two training programs on a computer in such a way that
each program used a different GPU, except for the last training
phase in Section 4. Since there was only one instance of the
weights of a network, the batches were carried out one by one
on a GPU. We used a GPU to speed up the computation (much
faster than using a CPU) but still the dominant part in the com-
putation was for computing evaluation values and updating the
weights.

For statistical stability, we executed each training and evalu-
ation for five times and we show their mean in the graphs and
tables unless otherwise stated.

*1 We also tested the stochastic gradient descent (SGD) algorithm but it
was too sensitive to the learning rate and the results were worse than
those with Adam).

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 4 Input encoding.

3.1 Batch of Training
TD learning is often implemented in an online manner, i.e., we

perform a training process concurrently with game-plays. For ex-
ample, in the implementation by Szubert and Jaśkowski [24], the
training function was called every time a new move was made *2.
Such a straightforward implementation, however, is not good in
the case of DNNs. The first reason is that calling the training
function on a GPU has a certain overhead. The second reason
is that the correlation between consecutive positions would have
bad effects.

In our implementation, we developed two functions, genera-

tor and trainer, each executed on different threads that shared the
weights of the DNN on a single GPU. A generator performed
game-plays and put the positions s′t and the target evaluation val-
ues V ′(s′t ) to the queue. At each step, a generator ran a batch
of feed-forward computation to obtain the evaluation values of
four possible afterstates and selected a move corresponding to the
maximum value. trainer took positions from the queue and called
the training function. As mentioned earlier, all the programs used
a single GPU that executed batches one by one. Therefore, these
generator and trainer threads ran asynchronously on a CPU (for
preparing batches), but they were blocked at the call of a batch on
a GPU.

We conducted an experiment with different implementations of
the generator and trainer functions (Experiment 1).
game The generator put a list of positions after each game. The

trainer took a list of positions from the queue and called the
training function once for the whole positions. (variable-size
batch training)

batch1K, batch64 The generator put a position after each
move. The trainer took N = 1,024 or 64 positions from
the queue and called the training function. (fixed-size batch
training)

shuffle1K, shuffle64 The generator put a position after each
move. The trainer took 5N = 5,120 or 320 positions from
the queue, shuffled them, and called the training function
five times with batch size N = 1,024 or 64. (training with
replay buffer)

position The generator put a position after each move. The
trainer called the training function for each position in a
queue. (online TD learning)

In each implementation except for position, we used five genera-
tor threads and one trainer thread. In the implementation of posi-

*2 The program by tjwei [25] also called the training function for each new
move. It was not described how Guei et al. [8] performed the training of
TD learning.

Fig. 5 Experiment 1. Average scores.

Table 3 Results of Experiment 1. The column of the average score shows
the mean (before ±) and the standard deviation (after ±) of average
scores for five runs.

average achievement ratio speed
score 2,048 4,096 8,192 (pos./h)

game 61,941 ± 3,128 96.8% 79.2% 3.4% 2.94×106

batch1K 80,851 ± 2,023 92.6% 77.4% 32.4% 2.78×106

batch64 56,486 ± 5,534 90.4% 66.8% 4.4% 2.72×106

shuffle1K 58,536 ± 3,149 94.6% 73.6% 1.4% 2.72×106

shuffle64 54,120 ± 1,585 93.4% 64.2% 1.0% 2.68×106

position 11,373 ± 7,310 20.8% 0.0% 0.0% 0.77×106

tion, the generator and trainer functions were called alternately.
For each setting, we executed the training program for

24 hours. To monitor the progress of the training, we took a snap-
shot after each increment of 106 positions, and calculated the av-
erage score of the latest 100 games that the generators played *3.
Figure 5 shows the progress of the training. Table 3 summa-
rizes the best results from the last five snapshots for each setting,
in terms of mean and standard deviation of the average scores,
the achievement ratios of 2,048-, 4,096-, and 8,192-tiles, and the
training speed.
Results and Discussion

The best average score was achieved by batch1K under the
same training time.

Small batch sizes are not good. In the extreme cases, position

started with an average score of around 20,000 but decreased it
down to 11,000. With batch64 the training was fast in a very
early stage (before 6 hours), but the improvement slowed down.
The result of the game was better than batch64 but worse than
batch1K. Note that the batch size changed over the training with
game, and they were about 2,800 in average.

Additional experiment was performed to investigate the effects
of batch size N for N = 32 to 4,096. Table 4 shows the average
score and achievement ratios after 24-hour training. The results
suggest that too small or too large batch size is not good. The
author considers the reason of poor performance for the latter is
that large batches make the training slow.

The results of shuffle1K and shuffle64 were poorer than those
of batch1K and batch64. With shuffling, we have the advantage
of less correlation among the training data but also a disadvan-
tage with delays of updating networks. This advantage seems to
be small for 2048. I consider the reason is that we already have
wide variety of positions without shuffling since new tiles appear

*3 The average score was of greedy (1-ply search) play.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Table 4 Additional experiment by changing the batch size. The column
of the average score shows the mean (before ±) and the standard
deviation (after ±) of average scores for five runs.

batch average achievement ratio
size score 2,048 4,096 8,192

32 44,993 ± 3,163 86.2 51.8 0.6
64 56,486 ± 5,534 90.4 66.8 4.4

128 73,577 ± 6,678 93.4 74.0 24.0
256 83,884 ± 3,592 92.8 79.0 35.6
512 85,943 ± 5,194 92.4 77.4 39.0

1,024 80,851 ± 2,023 92.6 77.4 32.4
2,048 75,319 ± 4,306 92.8 74.2 28.0
4,096 63,442 ± 4,886 91.8 69.4 12.2

in a random place.
For the rest of this study, we use batch1K.

3.2 Exploiting Symmetry of Boards
Symmetry often plays an important role in game playing and

in machine learning. In the game 2048, we have eight symmetric
boards for each position by rotation and/or reflection.

In this study, we considered utilizing the symmetry of boards in
two ways. First, we utilized symmetry in the selection of moves
in generators. In addition to simple, which directly selected a
hand without looking at symmetric boards, we implemented the
following three methods of selecting moves.
• ave calculated all the evaluation values of the symmetric

boards and selected a move with the maximum average

value.
• max calculated all the evaluation values of the symmetric

boards and selected a move with the maximum maximum

value. (an optimistic move selection)
• min calculated all the evaluation values of the symmetric

boards and selected a move with the maximum minimum

value. (a pessimistic move selection)
Secondly, we utilized symmetry in the training by data augmen-
tation. By data augmentation, we fed all the symmetric boards to
the training function, and therefore the number of training data
increased by a factor of eight. We conducted an experiment to
evaluate how symmetry helped the training for all the combina-
tion of move-selection algorithms and with/without data augmen-
tation (Experiment 2).

For each setting, we executed the training program for 24
hours. We took a snapshot after each increment of 106 positions,
and monitored the progress of training with the latest 100 games.
Figure 6 shows the progress of training without data augmenta-
tion, and Fig. 7 with data augmentation. Table 5 summarizes the
best results from the last five snapshots for each setting, in terms
of mean and standard deviation of the average score, the achieve-
ment ratios of 2,048-, 4,096-, and 8,192-tiles, and the training
speed.
Results and Discussion

First, it is worth noting that the number of trained positions
almost halved with the generator’s algorithms with symmetric
boards. Even though we called the DNN evaluation function once
per batch of 8 symmetric boards, the overhead of generating and
evaluating eight symmetric boards was not negligible. Compared
with this, the data augmentation with symmetric boards did not
have overhead (in fact, the training with data augmentation was

Fig. 6 Experiment 2. Average scores without data augmentation.

Fig. 7 Experiment 2. Average scores with data augmentation.

Table 5 Results of Experiment 2. The column of the average score shows
the mean (before ±) and the standard deviation (after ±) of average
scores for five runs.

average achievement ratio speed
score 2,048 4,096 8,192 (pos./h)

Without data augmentation
simple 80,851 ± 2,023 92.6% 77.4% 32.4% 2.78×106

ave 40,460 ± 601 87.8% 29.0% 0.6% 1.47×106

max 2,356 ± 152 0.0% 0.0% 0.0% 1.55×106

min 24,785 ± 2,631 58.2% 3.8% 0.0% 1.56×106

With data augmentation
simple 33,928 ± 1,276 80.5% 18.0% 0.0% 3.11×106

ave 45,523 ± 2,715 91.3% 42.8% 0.8% 1.55×106

max 2,305 ± 65 0.0% 0.0% 0.0% 1.64×106

min 22,400 ± 5,574 47.8% 0.8% 0.0% 1.63×106

faster for some undetermined reason).
Secondly, the optimistic algorithm max definitely failed the

training. It quickly dropped down to a level similar to
random-players. The results of the pessimistic algorithm min

were also poor, and the average score gradually decreased with
data augmentation.

As the author expected, the algorithm ave worked better than
simple with data augmentation. However, without data augmen-
tation, the algorithm simple significantly outperformed ave. I
suggest the following reason. With the algorithm ave, the se-
lected move should have large evaluation values for many (or
all) symmetric boards. This means that the training of the net-
work proceeded in a symmetric way in some sense even with-
out data augmentation. The network trained with ave captured
symmetric features and thus it captured less essential features.
The network trained with simple captured more features but the

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 8 Experiment 3. Average scores for different networks.

Table 6 Result of Experiment 3. The column of the average score shows
the mean (before ±) and the standard deviation (after ±) of average
scores for five runs.

average achievement ratio speed
score 2,048 4,096 8,192 (pos./h)

CNN22 80,851 ± 2,023 92.6% 77.4% 32.4% 2.78×106

CNN12 59,083 ± 3,998 93.4% 69.4% 3.4% 1.51×106

CNN22ACG 76,466 ± 5,375 93.2% 75.0% 28.6% 2.67×106

MLP 59,349 ± 3,388 90.6% 68.2% 10.2% 2.80×106

trained network became asymmetric. In fact, the author con-
firmed the network trained by simple returned completely dif-
ferent values for symmetric boards. This fact explains ineffective
data augmentation for simple: the data augmentation fed sym-
metric inputs to the training, which resulted in spoiling simple’s
advantage of asymmetry.

From here on out in this study, we use simple for the generator
and do not use data augmentation by symmetric boards.

3.3 Comparison with Other Networks
In previous work [16], the author designed three policy net-

works and applied supervised learning. We conducted an experi-
ment to compare those three networks in the setting of value net-
works trained by reinforcement learning (Experiment 3). These
networks used were the same as those in our previous work, ex-
cept for the last layer outputting only one value (Table 2).
CNN12 This network consisted of three convolution layers with

1 × 2 filters and two full-connect layers. For each input of
convolution layers, those filters were applied in the horizon-
tal or vertical directions, yielding two outputs. Note that the
weights in the filters were shared according to the symmetry
to halve the number of parameters.

CNN22ACG This network consisted of two convolution layers
with 2 × 2 filters and three full-connect layers. Note that the
number of filters were different from CNN22.

MLP (multi-layer perceptrons) This network consisted of five
full-connect layers.

For each network, we executed the training program for
24 hours. We took a snapshot after each increment of 106 po-
sitions, and monitored the progress of training with the latest 100
games. Figure 8 shows the progress of training. Table 6 summa-
rizes the best results from the last five snapshots for each setting,
in terms of mean and standard deviation of the average score,
the achievement ratios of 2,048-, 4,096-, and 8,192-tiles, and the

Table 7 Result of Experiment 4. The column of the average score shows
the mean (before ±) and the standard deviation (after ±) of average
scores for five runs.

average achievement ratio speed
score 2,048 4,096 8,192 (pos./h)

CNN22 80,851 ± 2,023 92.6% 77.4% 32.4% 2.78×106

CNN22S 78,252 ± 3,227 94.0% 77.2% 29.8% 2.82×106

CNN22SS 59,412 ± 3,167 92.4% 67.0% 7.4% 2.71×106

CNN22SSS 43,263 ± 1,626 84.8% 43.0% 0.4% 2.79×106

training speed.
Results and Discussion

Under the same training time, the CNNs with 2 × 2 filters
outperformed the CNN12 and MLP networks. It is worth noting
that the computation of the CNN12 network was more expensive
than the others and under the same number of trained positions
the results of CNN22 and CNN12 were almost the same.

The result of CNN22 was a bit better than CNN22ACG. The
difference between them was the number of filters in layers.
CNN22 had more filters in the first and the second convolution
layers (but less in the third full-connect layer). We will discuss
the relationship between the number of filters and the average
score after the next experiment.

It is worth noting that CNNs worked better than MLP even
though the board size is quite small. The author considers that this
is because CNNs can capture local features well and it matches
with the game 2048 for the merges of adjacent tiles. The CNN22

network worked better than CNN12 (or comparable under the
same number of trained positions), which was different from our
previous study with policy networks trained by supervised learn-
ing [16]. A further investigation will be needed to clarify the rea-
son of this, but a possible reason is that we applied a set of filters
both horizontally and vertically in CNN12 (see (b) in Fig. 3) and
it reduced the advantage of asymmetry.

3.4 Changing Network Size
The training of the CNN22 network required 8,445 MB of GPU

memory, and therefore it would be almost the largest network ex-
ecutable on commodity GPUs. We conducted an experiment to
evaluate the relation between the number of parameters and the
players’ performance (Experiment 4). Based on the CNN22 net-
work, we designed three smaller networks, CNN22S, CNN22SS

and CNN22SSS, by reducing the number of filters in each layer
by a factor of 0.75, 0.5, and 0.25, respectively. The number of
parameters decreased by the factor squared as shown in Table 2.

For each network, we executed the training program for
24 hours. We took a snapshot after each increment of 106 po-
sitions, and monitored the progress of training with the latest 100
games. Figure 9 shows the progress of training. Table 7 sum-
marizes the best results in the last five snapshots for each setting,
in terms of mean and standard deviation of the average score,
the achievement ratios of 2,048-, 4,096-, and 8,192-tiles, and the
training speed.
Results and Discussion

From the results, we can roughly see that if we double the
number of filters in each layer, the average score increases by
a factor of

√
2. This means that if we increase the number of pa-

rameters by a factor of a, the average score increases by a factor

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 9 Experiment 4. Average scores for networks of different sizes.

of 4√a.

3.5 Game-specific Tricks in Training Data Generation
In the experiments so far, we did not utilize game-specific fea-

tures in the training, except for the idea of the TD-afterstate algo-
rithm. Now we introduce some game-specific tricks in training-
data generation to enhance the performance of the trained net-
works.

In this study, we took the following two characteristics of the
game into account.
• When we play a game longer, the game generally becomes

harder. Very large tiles like 8,192 or 16,384 become obsta-
cles when we deal with the smaller tiles.

• In particular, the game is very hard just before achieving a
very large tile, because we need to have a sequence of large
tiles on the board (e.g., before achieving a 16,384-tile, we
should have 8,192-, 4,096-, 2,048-, 1,024-, . . . tiles on the
board).

The author proposed the restart strategy [15] to adapt to the
first characteristic. With this idea we restart a game-play from the
middle of the play record: more precisely, let a game-play start at
turn sk and end at turn ek, then the next play starts at the middle
sk+1 = (sk + ek)/2 (If the play is too short, (ek − sk) ≤ 10, we
start the next play from an initial state). With this restart strategy,
networks can learn more from the later stages of the game.

For the second characteristic, we propose the jump-start strat-

egy. Instead of starting from an initial state, we started a game-
play from a state that already included large tile(s). Since we
executed five generator threads in our training, we allocated a
different starting point for each generator thread as follows. In
the following definition, an initial tile is either 2-tile p2 = 0.9 or
4-tile p4 = 0.1.
L-jump (1) two initial tiles, (2) a 4,096-tile and an initial tile,

(3) a 8,192-tile and an initial tile, (4) a 8,192-tile and a 4,096-
tile, (5) a 16,394-tile and an initial tile *4.

S-jump (1) two initial tiles, (2) a 2,048-tile and an initial tile,
(3) a 4,096-tile and an initial tile, (4) a 4,096-tile and a 2,048-
tile, (5) a 8,192-tile and an initial tile.

nojump All the threads started with two initial tiles.
Note that this idea of the jump-start strategy was similar to Wu

*4 These positions are unreachable in a real play since a new tile appears
after each move.

Fig. 10 Experiment 5. Average scores of greedy (1-ply search) play.

Fig. 11 Experiment 5. Average scores of expectimax (2-ply search) play.

Table 8 Result of Experiment 5 for greedy (1-ply search) play. The column
of the average score shows the mean (before ±) and the standard
deviation (after ±) of average scores for five runs.

average achievement ratio
score 2,048 4,096 8,192 16,384

With Restarting
L-jump 95,216 ± 10,845 90.0% 75.3% 41.4% 5.8%
S-jump 96,595 ± 12,188 91.6% 78.3% 43.1% 5.1%
nojump 101,782 ± 7,811 94.1% 78.7% 46.3% 4.8%

Without Restarting
L-jump 91,149 ± 14,921 93.0% 76.2% 40.7% 1.6%
S-jump 99,835 ± 8,281 95.2% 82.6% 50.1% 0.5%
nojump 85,344 ± 8,003 95.4% 81.3% 35.6% 0.0%

et al.’s multi-staged training [28] and Jaśkowski’s carousel shap-
ing [10]. These techniques stored specific positions (when we
achieved a large tile or simply after specific number of turns) and
started a game-play from one of those positions. In our jump-start
strategy, we simply started with positions with large tile(s) and do
not need to collect those positions.

We conducted an experiment for each combination of
with/without the restart strategy and the jump-start strategies (Ex-
periment 5). We took a snapshot for each after 106 positions. In
this experiment, we evaluate the snapshot with the greedy (1-ply
search) and the expectimax (2-ply search) plays. The numbers
of test games were 300 for the greedy play and 100 for the ex-
pectimax 2-ply play. Figures 10 and 11 show the average scores
of greedy play and expectimax 2-ply play, respectively. Tables 8
and 9 summarize the best results from the last five snapshots for
the greedy play and the expectimax 2-ply play, respectively, in
terms of mean and standard deviation of the average score, the
achievement ratios of 2,048-, 4,096-, 8,192-, and 16,384-tiles.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Table 9 Result of Experiment 5 for expectimax (2-ply search) play. The
column of the average score shows the mean (before ±) and the
standard deviation (after ±) of average scores for five runs.

average achievement ratio
score 2,048 4,096 8,192 16,384

With Restarting
L-jump 204,584 ± 11,109 99.0% 96.6% 82.6% 40.8%
S-jump 210,642 ± 25,023 100.0% 97.2% 87.0% 43.2%
nojump 206,645 ± 8,864 99.2% 96.2% 85.6% 39.8%

Without Restarting
L-jump 185,436 ± 6,991 99.4% 96.2% 85.6% 27.8%
S-jump 167,544 ± 5,311 99.2% 98.0% 88.0% 17.2%
nojump 149,193 ± 9,118 100.0% 98.6% 86.0% 3.6%

Since the training speed was almost the same, we omit it from
the table.
Results and Discussion

For both the greedy and the expectimax 2-ply plays, the game-
specific training methods worked well. In particular, we found
bigger improvements with the expectimax 2-ply play. It is worth
noting that the average scores were increasing even at 24 hours
for all the training methods.

We found an important difference between the restart and
the jump-start strategies on the achievement ratio of a 16,384-
tile. For the greedy play, the restart strategy increased the ratio
from 0.0% to 4.8% while the jump-start strategy from 0.0% to
1.6%. For the expectimax play, the player with the restart strat-
egy achieved a 16,384-tile for 39.8%, which was significantly
more often than the player with the jump-start strategy. Note that
the improvements by combining these two strategies was rather
small, and furthermore the average score was lower than that of
player with the restart strategy only in some cases. This suggests
that the advantages by the jump-start strategy were almost cov-
ered by the restart strategy.

We will utilize the restart strategy and the jump-start strategy
S-jump, which achieved a 16,384-tile the most often.

4. Longer Training with Best Configuration

4.1 Training up to 240 Hours
With the experiments in Section 3, we selected the following

options for the training of DNNs:
• fixed-size batch training batch1K,
• asymmetric generator algorithm simple without data aug-

mentation,
• network structure CNN22, and
• with the restart strategy and the jump-start strategy S-jump.

Under this configuration, we executed the training program for
240 hours (Experiment 6). In this experiment, we executed one

program on a computer. Though the program used only one GPU,
the single execution was a bit faster and did training of 700× 106

positions in total.
We took a snapshot after each increment of 5 × 106 positions,

and monitored the progress of training with test plays with the
greedy (1-ply search) and the expectimax (2-ply and 3-ply search)
plays: we played 300 games with the greedy play for each snap-
shot; 100 games with the expectimax 2-ply play for each snap-
shot; and 20 games with the expectimax 3-ply play for every
other snapshot (for every 10×106 positions). Figures 12, 14, and
16 show the average scores over the training for the greedy, the

Fig. 12 Experiment 6. Average scores of greedy (1-ply search) play. The
dark area shows the size of standard deviation among five runs.

Fig. 13 Experiment 6. Achievement ratios of greedy (1-ply search) play.

Fig. 14 Experiment 6. Average scores of expectimax (2-ply search) play.
The dark area shows the size of standard deviation among five runs.

expectimax 2-ply, and the expectimax 3-ply plays, respectively.
Figures 13, 15, and 17 show the achievement ratios of 2,048-,
4,096-, 8,192-, 16,384-, and 32,768-tiles for the greedy, the ex-
pectimax 2-ply, and the expectimax 3-ply plays, respectively.
Results and Discussion

By increasing the training time from 24 hours to 240 hours,
we obtained significant improvement for both the average score
and the achievement ratios. The average score increased from
114,108 to 196,660 with the greedy play, from 231,325 to
340,514 with the expectimax 2-ply play, and from 252,070 to
381,880 with the expectimax 3-ply play. The achievement ra-
tios of a 16,384-tile increased from 10.3% to 40.1% with the
greedy play, from 49.4% to 77.4% with the expectimax 2-ply
play, and from 59.0% to 85.0% with the expectimax 3-ply play.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 15 Experiment 6. Achievement ratios of expectimax (2-ply search)
play.

Fig. 16 Experiment 6. Average scores of expectimax (3-ply search) play.
The dark area shows the size of standard deviation among five runs.

Fig. 17 Experiment 6. Achievement ratios of expectimax (3-ply search)
play.

The average score and the achievement ratios of the greedy play
and expectimax 2-ply search were still increasing even after the
240-hour training. Those of the expectimax 3-ply search, how-
ever, seems to reach the convergence.

4.2 Detailed Evaluation with Best-trained Networks
After Experiment 6, we selected the best network in terms of

the average score of the expectimax 2-ply play, for up to each in-
crement of 24 hours up to 240 hours. We executed 500 games of
the greedy play, 200 games of the expectimax 2-ply play, and 50
games of the expectimax 3-ply play for ten different random seeds
(Experiment 7). Table 10 summarizes the mean and standard de-
viation of the average score, the achievement ratios of 2,048-,

Table 10 Results of Experiment 7. The column of the average score shows
the mean (before ±) and the standard deviation (after ±) of aver-
age scores for ten runs.

average achievement ratio
score 2,048 4,096 8,192 16,384 32,768

Greedy play
24 h 123,160 ± 2,180 95.9% 86.8% 57.1% 10.8% 0.0%
48 h 130,239 ± 4,175 95.6% 85.0% 61.8% 15.9% 0.0%
72 h 165,093 ± 3,785 96.3% 90.3% 71.4% 28.2% 0.2%
96 h 202,146 ± 5,605 97.2% 91.2% 77.1% 42.7% 1.5%

120 h 176,654 ± 3,621 96.1% 89.0% 70.8% 33.3% 1.2%
144 h 210,145 ± 3,095 96.7% 91.8% 78.6% 44.0% 2.8%
168 h 186,425 ± 5,830 95.4% 90.4% 73.7% 38.2% 0.9%
192 h 197,110 ± 6,295 95.6% 89.2% 74.9% 39.5% 2.9%
216 h 228,100 ± 6,511 98.1% 94.1% 82.9% 49.9% 3.3%
240 h 206,802 ± 5,479 96.9% 91.9% 77.9% 43.8% 3.2%
Expectimax 2-ply play
24 h 239,866 ± 6,414 99.7% 98.5% 91.3% 54.2% 0.1%
48 h 263,276 ± 5,300 99.8% 98.7% 93.7% 62.5% 0.9%
72 h 287,763 ± 8,140 99.4% 98.5% 93.2% 68.3% 4.9%
96 h 335,398 ± 10,653 99.8% 99.2% 96.0% 77.7% 12.8%

120 h 323,766 ± 13,322 99.5% 98.5% 94.3% 73.0% 13.1%
144 h 347,705 ± 10,194 99.8% 99.3% 96.3% 78.7% 15.8%
168 h 347,561 ± 8,626 99.5% 99.0% 96.3% 80.4% 15.1%
192 h 356,190 ± 15,850 99.5% 98.5% 96.2% 78.8% 19.2%
216 h 367,024 ± 11,165 99.8% 99.3% 97.2% 82.8% 18.9%
240 h 355,285 ± 8,636 99.2% 98.7% 95.5% 81.3% 17.7%
Expectimax 3-ply play
24 h 268,758 ± 11,888 100.0% 99.6% 96.6% 66.6% 0.2%
48 h 305,141 ± 8,454 99.8% 99.4% 97.6% 77.0% 2.2%
72 h 313,906 ± 18,324 99.8% 99.2% 97.6% 79.6% 4.2%
96 h 366,132 ± 23,132 99.8% 99.8% 97.6% 87.6% 14.4%

120 h 353,911 ± 18,916 100.0% 99.0% 97.6% 83.0% 14.6%
144 h 377,691 ± 17,622 100.0% 99.2% 97.8% 87.4% 18.2%
168 h 387,064 ± 17,625 100.0% 99.6% 98.8% 89.0% 20.4%
192 h 406,927 ± 27,410 100.0% 99.6% 98.8% 90.2% 26.0%
216 h 404,717 ± 13,802 100.0% 100.0% 99.4% 93.2% 23.8%
240 h 394,632 ± 18,777 100.0% 100.0% 99.0% 87.6% 24.2%

4,096-, 8,192-, 16,384-, and 32,768-tiles.
Results and Discussion

As we can see in Table 10, the best network (after training
of 700 × 106 positions) combined with the expectimax search
achieved the average score 406,927, achievement ratio 99.6% for
a 4,096-tile, 98.8% for an 8,192-tile, 90.2% for a 16,384-tile, and
26.0% for a 32,768-tile. With the combination of value networks
and the expectimax search, we obtained significantly better re-
sults compared with the state-of-the-art DNN-based player [16].
It is worth noting that the best network after reinforcement learn-
ing achieved an average score of 228,100 without tree search,
which is comparable to an average score of 215,802 of the policy
network after supervised learning [16].

4.3 Comparison with State-of-the-art Player
The state-of-the-art player of the game 2048 was based on N-

tuple networks (NTNs) trained by a reinforcement learning tech-
nique [10]. This study tried to develop a very strong player with
the combination of DNNs and reinforcement learning, but the re-
sults were inferior to those: an average score of 324,710 with the
greedy play and 511,759 with the expectimax 3-ply play. The big
gap was in the achievement ratio of a 32,768-tile: DNN 3.3% vs
NTN 19% with the greedy play and DNN 26.0% vs NTN 50%
with the expectimax 3-ply search.

There was also a big gap in the computational cost. In this
study, we ran the training for 240 hours with 7 × 108 posi-
tions. Existing studies on NTNs did the training for 131 hours

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Table 11 Summary of existing DNN-based players for 2048.

authors Network Training number of weights(a) ave. score

Policy Dedieu and Amar [6] MLP (3 FC) reinforcement learning 0.07×106 —
Kondo and Matsuzaki [12] CNN (5 conv (2 × 2) + 1 FC) supervised learning 0.81×106 93,830
Matsuzaki [16] CNN (3 conv (dual 1 × 2) + 2 FC), policyAS supervised learning 3.69×106 215,802

Dual-head Allik et al. [2] ResNet (1 conv (3 × 3), 20 res, 2 FC) supervised learning 2.72×106 ≈31,000
Guei et al. [8] CNN (2 conv (2 × 2) + 2 FC) TD learning — ≈11,400
tjwei [25] CNN (2 conv (dual 1 × 2) + 1 FC) supervised learning 16.94×106 85,351
tjwei [25] CNN (2 conv (dual 1 × 2) + 1 FC) TD learning 16.94×106 ≈33,000
Virdee [26] CNN (2 conv (dual 1 × 2) + 2 FC) reinforcement learning 1.97×106 ≈16,000

Value Adamkiewicz [1] — Q-learning — < 10,000
Qiu et al. [20] CNN (2 conv (dual 1 × 2 + 2 × 2) + 1 FC) TD learning 25.40×106 ≈39,000(b)

Ji et al. [11] CNN (2 conv (dual 1 × 2) + 1 FC) Q-learning 4.49×106 < 20,000
Wiese [27] MLP (3 FC) Q-learning 0.07×106 —
Samir [21] LSTM (1 conv + LSTM + 2 FC) Q-learning 0.69×106 —
Goga [7] MLP (6 FC) Dueling and double DQN 0.30×106 ≈ 12000(b)

this work CNN (2 conv (2 × 2) + 3 FC) TD learning 2.90×106 228,100(c)

this work CNN (2 conv (2 × 2) + 3 FC) TD learning 2.90×106 406,717(d)

Abbreviations: conv = convolution layer(s), FC = full-connect layer(s), policyAS = policy with afterstates
(a) Number of weights are calculated by the author (b) Calculated from the achievement ratios
(c) With the greedy (1-ply search) play (d) With the expectimax (3-ply search) play

with 400 × 108 positions [10] or for 32 hours with 400 × 108

positions [16]. Therefore, the training of DNNs was 2–8 times
as slow as that of NTNs (if we compare the number of positions,
the factor became 100–400). The computational cost of DNNs
was also large in playing. For a move in the greedy play, DNNs
took 1.5 ms while NTNs took 3.9–9.5 μs (a factor of 160–380).
For a move in the expectimax 3-ply search, DNNs took 85 ms
while NTNs took 0.7–4.4 ms (a factor of 19–130). *5

5. DNN-based Players for Game 2048

Since 2048 is a simple and interesting game, it is often used
in teaching programming and machine-learning technologies [9].
We can find several programs and reports online, some of which
were developed in course projects [1], [2], [11], [20]. In this sec-
tion, we review existing DNN-based players for 2048.

Many DNN-based players were developed in the value-
network approach [1], [7], [8], [11], [20], [21], [25], [26], [27].
The work most related to this study was by Guei et al. [8]. They
designed CNNs with 2×2 and 3×3 filters and applied Q-learning
and TD learning on the afterstates (states after slide&merge).
Though we cannot find the details of training methods in the pa-
per, the result was not so good and the average score was about
11,400 in the best case. The idea of input encoding in this paper
has been widely used in many other implementations.

The best score achieved with value networks were by
tjwei [25]. The network is a CNN with 1× 2 filters applied in two
ways (we extended the idea in the design of CNN12 network).
The average score was 85,351 with a supervised learning method
while it was about 33,000 with a reinforcement learning method.
The idea of this CNN structure was used in several other imple-
mentations [11], [16], [20], [26]. The player developed by Qiu et
al. [20] achieved a 4,096-tile for 34% of games, which was the
best result of the DNN-based players trained by a reinforcement
learning method.

*5 The factor was larger in the case of the greedy play due to the slow
processing in Python code. The 3-ply expectimax search player with
DNNs generated all the possible states (< 65,536) and evaluated them in
a batch.

In addition to CNNs and MLPs [7], [27], some other enhanced
networks were tested: for example long short-term memory
(LSTM) networks [21] and residual networks (ResNet) [2]. These
enhanced networks did not perform well in particular with rein-
forcement learning methods.

A few implementations have been reported for the policy net-
works [6], [12], [16]. The author took the approach of policy
network trained by a supervised learning method in the previ-
ous work and achieved state-of-the-art results for DNN-based
players for 2048. We first examined CNNs with 2–9 convolu-
tion layers [12] and obtained an average score of 93,830 with
five convolution layers. We analyzed the inner-workings of these
CNNs and found an interesting difference between 2-layer and
3-layer networks [17]. We then examined two more network
designs (CNN12 and MLP for policy networks) as well as in-
creasing the number of weights [16]. We found CNN12 worked
well in the supervised learning setting, and achieved an average
score of 215,802 with the input extended with afterstates (called
policyAS).

6. Conclusion

In this study, we investigate the reinforcement learning meth-
ods for DNN-based value networks for the game 2048. We de-
signed several options based on the TD-afterstate algorithm [24]
and selected the following ones after experiments: (1) fixed-size
batch (N = 1,024), (2) no use of symmetry in generator’s plays
nor in data augmentation, (3) a CNN with 2×2 filters, and (4) with
the restart strategy and the jump-start strategy. Under this config-
uration, we executed the training program for 120 hours. With the
best value network after the 120-hour training, we achieved an
average score of 184,546 with the greedy (1-ply search) play and
386,973 with the expectimax (3-ply search) play. We achieved
much better results than the state-of-the-art DNN-based play-
ers [16], [20], [25] with combination of DNN-based evaluation
functions and a game-tree search method.

Since we have succeeded in developing a DNN-based player
comparable to NTN-based ones, it would be an interesting future
work to compare DNNs and NTNs in details. In particular, by us-

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

ing the analysis methods [17] of the inner-workings of DNNs, we
would like to evaluate the generalization ability of DNNs. An-
other future direction is to extend our DNN-based players in sev-
eral aspects: for example with dual-head networks and Monte-
Carlo tree search techniques in AlphaZero [22].

Acknowledgments Part of this work was supported by JSPS
KAKENHI Grant Number JP20K12124. The experiments in this
paper were conducted with the support of the IACP cluster in
Kochi University of Technology.

References

[1] Adamkiewicz, M.: Q-learning for 2048: Exploring combina-
tions of reinforcement learning and game tree search (2018),
available from 〈http://web.stanford.edu/class/archive/cs/cs221/
cs221.1192/2018/restricted/posters/mikadam/poster.pdf〉.

[2] Allik, K., Rebane, R.-M., Sepp, R. and Valgma, L.: 2048
Report, available from 〈https://neuro.cs.ut.ee/wp-content/
uploads/2018/02/alphago.pdf〉 (2018).

[3] Ballard, B.W.: The *-minimax search procedure for trees contain-
ing chance nodes, Artificial Intelligence, Vol.21, No.3, pp.327–350
(1983).

[4] Cirulli, G.: 2048, available from 〈http://gabrielecirulli.github.io/
2048/〉 (2014).

[5] David, O.E., Netanyahu, N.S. and Wolf, L.: DeepChess: End-to-
End Deep Neural Network for Automatic Learning in Chess, Interna-
tional Conference on Artificial Neural Networks and Machine Learn-
ing (ICANN 2016), pp.88–96 (2016).

[6] Dedieu, A. and Amar, J.: Deep Reinforcement Learning for 2048
(2017), available from 〈http://www.mit.edu/˜amarj/files/2048.pdf〉.

[7] Goga, A.: Reinforcement learning in 2048 game, Bachelor thesis of
Faculty of Mathematics, Physics and Informatics, Comenius Univer-
sity in Bratislava (2018).

[8] Guei, H., Wei, T., Huang, J.-B. and Wu, I.-C.: An Early Attempt at
Applying Deep Reinforcement Learning to the Game 2048, Workshop
on Neural Networks in Games (2016).

[9] Guei, H., Wei, T.-H. and Wu, I.-C.: 2048-like games for teaching re-
inforcement learning, ICGA Journal, Vol.42, No.1, pp.14–37 (2020).

[10] Jaśkowski, W.: Mastering 2048 with Delayed Temporal Coherence
Learning, Multi-Stage Weight Promotion, Redundant Encoding and
Carousel Shaping, IEEE Trans. Computational Intelligence and AI in
Games, Vol.10, No.1, pp.3–14 (2018).

[11] Ji, Y., Wang, C. and Zhang, S.: Designing an AI Agent
for Game 2048 (2018), available from 〈http://web.stanford.edu/
class/archive/cs/cs221/cs221.1192/2018/restricted/posters/cwang17/
poster.pdf〉.

[12] Kondo, N. and Matsuzaki, K.: Playing Game 2048 with Deep Convo-
lutional Neural Networks Trained by Supervised Learning, Journal of
Information Processing, Vol.27, pp.340–347 (2019).

[13] Lai, M.: Giraffe: Using Deep Reinforcement Learning to Play Chess,
Master’s thesis, Imperial College London, arXiv, Vol.1509.01549v1
[cs.AI] (2015).

[14] Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R., Zhao, L.,
Qin, T., Liu, T.-Y. and Hon, H.-W.: Suphx: Mastering Mahjong with
Deep Reinforcement Learning, arXiv, Vol.2003.13590 [cs.AI] (2020).

[15] Matsuzaki, K.: Developing 2048 Player with Backward Temporal Co-
herence Learning and Restart, Proc. 15th International Conference on
Advances in Computer Games (ACG2017), pp.176–187 (2017).

[16] Matsuzaki, K.: A Further Investigation of Neural Network Players
for Game 2048, Proc. 16th International Conference on Advances in
Computer Games (ACG2019) (2019). Submitted for final publication.

[17] Matsuzaki, K. and Teramura, M.: Interpreting Neural-Network Play-
ers for Game 2048, Proc. 2018 Conference on Technologies and Ap-
plications of Artificial Intelligence (TAAI 2018), pp.136–141 (2018).

[18] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D. and Riedmiller, M.: Playing Atari With Deep Reinforce-
ment Learning, NIPS Deep Learning Workshop (2013).

[19] Moravcı́k, M., Schmid, M., Burch, N., Lisý, V., Morrill, D., Bard, N.,
Davis, T., Waugh, K., Johanson, M. and Bowling, M.H.: DeepStack:
Expert-level artificial intelligence in heads-up no-limit poker, Science,
Vol.356, No.6337, pp.508–513 (2017).

[20] Qiu, R., Tian, Y. and Zhou, Y.: The 2048 Challenge (2019),
available from 〈https://stanford-cs221.github.io/autumn2019-extra/
posters/4.pdf〉.

[21] Samir, M.: 2048 Deep Recurrent Reinforcement Learning, available
from 〈https://github.com/Mostafa-Samir/2048-RL-DRQN〉.

[22] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M.,

Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap,
T., Simonyan, K. and Hassabis, D.: Mastering Chess and Shogi by
Self-Play with a General Reinforcement Learning Algorithm, arXiv,
Vol.1712.01815 [cs.AI] (2017).

[23] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y.,
Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T. and
Hassabis, D.: Mastering the game of Go without human knowledge,
Nature, Vol.550, pp.354–359 (2017).

[24] Szubert, M. and Jaśkowski, W.: Temporal Difference Learning of N-
Tuple Networks for the Game 2048, 2014 IEEE Conference on Com-
putational Intelligence and Games, pp.1–8 (2014).

[25] tjwei: A Deep Learning AI for 2048, available from
〈https://github.com/tjwei/2048-NN〉.

[26] Virdee, N.: Trained A Convolutional Neural Network To Play
2048 using Deep-Reinforcement Learning (2018), available from
〈https://github.com/navjindervirdee/2048-deep-reinforcement-learning〉.

[27] Wiese, G.: 2048 Reinforcement Learning, available from
〈https://github.com/georgwiese/2048-rl〉.

[28] Wu, I.-C., Yeh, K.-H., Liang, C.-C., Chang, C.-C. and Chiang, H.:
Multi-Stage Temporal Difference Learning for 2048, Technologies
and Applications of Artificial Intelligence, Lecture Notes in Computer
Science, Vol.8916, pp.366–378 (2014).

[29] Yakovenko, N., Cao, L., Raffel, C. and Fan, J.: Poker-CNN: A Pattern
Learning Strategy for Making Draws and Bets in Poker Games, arXiv,
Vol.1509.06731 [cs.AI] (2015).

Kiminori Matsuzaki is a Professor of
Kochi University of Technology. He re-
ceived his B.E., M.S. and Ph.D. from The
University of Tokyo in 2001, 2003 and
2007, respectively. He was an Assistant
Professor (2005–2009) in The University
of Tokyo, before joining Kochi University
of Technology as an Associate Professor

in 2009. His research interest is in parallel programming, algo-
rithm derivation, and game programming. He is also a member
of ACM, JSSST, and IEEE.

c© 2021 Information Processing Society of Japan


