
Quantum Speedup of Monte Carlo Integration with respect to the Number of Dimensions and its
Application to Finance

Kazuya Kaneko,1 Koichi Miyamoto,2, 1, ∗ Naoyuki Takeda,1 and Kazuyoshi Yoshino1

1Mizuho-DL Financial Technology Co., Ltd.
2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan

2Center for Quantum Information and Quantum Biology,
Institute for Open and Transdisciplinary Research Initiatives, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
(Dated: February 22, 2021)

Monte Carlo integration (MC) using quantum computers has been widely investigated, including applications
to concrete problems. It is known that quantum algorithms based on quantum amplitude estimation (QAE) can
compute an integral with a smaller number of iterative calls of the quantum circuit which calculates the inte-
grand, than classical methods call the integrand subroutine. However, the issues about the iterative operations
in the integrand circuit have not been discussed so much. That is, in the high-dimensional integration, many
random numbers are used for calculation of the integrand and in some cases similar calculations are repeated
to obtain one sample value of the integrand. In this paper, we point out that we can reduce the number of such
repeated operations by a combination of the nested QAE and the use of pseudorandom numbers (PRNs), if the
integrand has the separable form with respect to contributions from distinct random numbers. The use of PRNs,
which the authors originally proposed in the context of the quantum algorithm for MC, is the key factor also in
this paper, since it enables parallel computation of the separable terms in the integrand. Furthermore, we pick
up one use case of this method in finance, the credit portfolio risk measurement, and estimate to what extent the
complexity is reduced.

I. INTRODUCTION

Monte Carlo integration (MC) is one of the important ex-
amples of computational tasks which quantum computers can
speed up[2, 3]. One of the reasons for its importance is
the fact that it is widely used in industries, especially fi-
nance. Financial firms are performing enormous MC calcula-
tions for various purposes, so quantum speedup of such tasks
may provide large impacts for them1. Some papers have al-
ready investigated how to apply the quantum algorithm for
MC to concrete problems in finance: for example, portfolio
risk measurement[6–8] and pricing of financial derivatives[9–
14]2.

The quantum algorithm for MC is based on quantum ampli-
tude estimation (QAE), which was originally investigated in
[18] and also studied in the recent papers[3, 19–22]. It is of-
ten said that the quantum methods provide quadratic speedup
compared with the classical method. The meaning is as fol-
lows. Both the quantum and classical MC methods call the
oracle, that is, the quantum circuit and the subroutine respec-
tively, for calculation of the integrand. In the former and the
latter, the estimation error of the integral behaves as O(N−1)
and O(N−1/2), respectively, where N is the oracle call num-
ber. Equivalently, for the given tolerance δ, the quantum and
classical methods require the O(δ−1) and O(δ−2) oracle call,
respectively. Therefore, the quantum method can save the
number of repeated oracle call tremendously.

∗ koichi.miyamoto@qiqb.otri.osaka-u.ac.jp
1 See [4] as a textbook of financial engineering and see [5] as a reference

which focuses on MC used in finance
2 See [15–17] as reviews for application of quantum computing to finance,

including MC and other aspects.

On the other hand, in MC, we often perform another type
of repeated calculations, which has not been paid close at-
tention to so far. Specifically, when the dimension D of the
integration is very high, similar calculations can be repeated
so many times in a call of the oracle, that is, in the flow for
calculation of one sample value of the integrand. Let us see
a concrete example of this: credit portfolio risk measurement.
A credit portfolio is a collection of loans that a bank holds.
Each bank is monitoring some metrics which represent risks
originating from defaults of obligors. Major metrics include
value at risk (VaR), the percentile point of the loss caused by
defaults, and conditional VaR (CVaR), the expectation value
of the loss under the condition that it is larger than VaR. In cal-
culating them using MC, the values of the loss are randomly
generated many times. The flow of calculating a sample value
of the loss is roughly as follows: (i) generate a random num-
ber (RN) x for an obligor, (ii) determine whether he defaults
or not according to x, (iii) if he defaults, add the exposure on
him3 to the loss, then (iv) repeat steps (i)-(iii) for all obligors.
As this example shows, in the high-dimensional MC where
many RNs are necessary, we sometimes run many iterations
of similar calculations, each of which uses a different RN.

In this paper, we propose a method based on QAE which
speeds up such a type of repeated calculation. In this new
method, there are two key points to make QAE applicable.
First, it is necessary that the integrand is separable. Although
we will strictly state the meaning in Section III, the separa-
ble form roughly means that the contributions from different
RNs to the integrand are separated into different terms. This

3 This means the loss which arises if he defaults. In general, it is estimated
by the product of the loan amount and the loss given default, the ratio of
the amount which the bank fails to recover.

1ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



is necessary for computing the integrand separately for each
dimension. Second, this method uses pseudorandom num-
bers (PRNs). PRN sequences are seemingly random but de-
terministic sequences generated by some recursion formulas.
In many cases, we can also use simple formulas to jump to
the arbitrary position in the PRN sequence, that is, we can
get the value of the i-th element not by repeatedly using its
recursion formula i times. The authors originally proposed
to use PRNs in the quantum algorithm of MC[8, 14]. In the
case of the separable integrand, the use of a PRN sequence
is crucial to achieve quantum parallel computation of sepa-
rated terms. Note that, when we use elements in a PRN se-
quence for a separable integrand, each element is used as a
sample value of one of its arguments and thus determines a
value of one of separated terms.This implies that, we can con-
struct a quantum circuit which receives an index specifying a
term in the integrand as its input and gives a sample value of
the term corresponding to the index. Inputting a superposi-
tion of all indexes to this circuit, we can compute the terms
in quantum parallelism. Therefore, we can replace the naive
iterative calculation with the QAE-based calculation, that is,
a combination of quantum parallel computation of separated
terms and summing them up by QAE. The number of calling
the circuit to a separated term changes from O(D) to O(δ−1),
which means that we can accomplish the reduction by a factor
O(δ−1/D).

However, we can not immediately conclude that the new
method necessarily reduces computational time. That is, time
for calculating one term in the new method can be larger than
that in the previous method. This is because the new method
replaces the recursive formula in the previous method with
the jump formula and the latter is typically costly than the
former. If we write the times for calculating a term in the
new and previous methods as Tone,new and Tone,prev respec-
tively, computational time reduction by the new method is
Tone,newδ

−1/Tone,prevD.

Despite this point, we can find a concrete example where
the new method actually reduces the total computational
time. We will take credit portfolio risk measurement as a
concrete problem and the permutated congruential generator
(PCG)[23], which we originally proposed to use in the quan-
tum algorithm for MC in [8], as a concrete PRN generator. We
will see that, in a typical setting, we can reduce the T-count,
a popular metric of computational time cost defined later, by
several tens of percent.

The rest of this paper is organized as follows. In Section II,
we briefly review the quantum algorithm for MC and use of
PRN in it. In Section III, we present the outline of the new
method we propose. In Section IV, we consider application
of the new method to credit portfolio risk measurement with
PCG and estimate the expected speedup. Section V summa-
rizes this paper.

This paper is the short version of the full paper[1]. For the
full detail, see [1].

II. THE REVIEW OF THE QUANTUM ALGORITHM FOR
MC

A. The quantum algorithm for MC

Let us start with reviewing the quantum algorithm for
MC[2]. We here present the flow of calculating the expec-
tation value E[F(x⃗)] of the function F depending on x⃗ =
(x1, ..., xN), the vector of the N stochastic variables. It can
be divided into the following four steps. First, we create a
superposition of possible values of x⃗ on a quantum register
RRN based on its probability distribution. That is, we cre-
ate

∑
i
√

pi |x⃗i〉, where x⃗i = (x(i)
1 , ..., x

(i)
N ), i = 1, 2, ... is the i-

th possible value of x⃗, pi is the probability that x⃗ = x⃗i and
|x⃗i〉 = |x(i)

1 〉 ... |x
(i)
N 〉 is the tensor product of states representing

the values of the elements of x⃗i. Note that x j must be approx-
imated in some discretized way if it is continuous. Second,
we calculate the integrand into another register Rint using RRN.
Note that the results for many patterns of x⃗ are simultaneously
calculated in quantum parallelism. Third, by controlled rota-
tion, the integrand value is encoded into the amplitude of the
ancilla qubit Rph. Finally, using QAE [3, 18–22], we estimate
the probability that Rph takes |1〉, which is equal to the expec-
tation value we want.

From the first to the third steps, the quantum state is trans-
formed as follows:

|0〉 |0〉 |0〉

→
∑

i

√
pi |x⃗i〉

 |0〉 |0〉
→

∑
i

√
pi |x⃗i〉 |F(x⃗i)〉

 |0〉
→

∑
i

√
pi |x⃗i〉 |F(x⃗i)〉

( √
1 − F(x⃗i) |0〉 +

√
F(x⃗i) |1〉

)
=: |Ψ〉 .

(1)

Here, the first, second and third kets correspond to RRN,Rint
and Rph, respectively.

We then explain the final step, QAE, based on [18]. At first,
we define some symbols. We define θ as

|Ψ〉 = cos(θπ) |Ψ0〉 + sin(θπ) |Ψ1〉 , 0 < θ <
1
2
, (2)

where |Ψ0〉 and |Ψ1〉 are the states where Rph is |0〉 and |1〉
respectively. Note that

sin2(θπ) = EF :=
∑

i

piF(x⃗i) (3)

is the expectation value we want. Besides, we write the op-
eration corresponding to the whole of (1) as A and define the
operation Q on the system consisting of RRN,Rint and Rph as

Q := −AS 0A−1S 1, (4)

where S 0 multiply the state by −1 if all qubits are |0〉 or do
nothing otherwise and S 1 multiply the state by −1 if Rph is

2ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



|1〉 or do nothing otherwise. Then, preparing another register
Rθ with m qubits and using an algorithm containing M − 1
iterations of calling Q, where M = 2m and each Q is controlled
by Rθ, we can create the state

|ΦM(θ)〉 :=
1
√

2

(
eiθπ |Ψ+〉 |ϕM(θ)〉 − e−iθπ |Ψ−〉 |ϕM(1 − θ)〉

)
.

(5)
Here, the second kets |ϕM(θ)〉 and |ϕM(1 − θ)〉 correspond to
Rθ and |Ψ±〉 := 1√

2
(|Ψ1〉 ± i |Ψ0〉). Besides, |ϕM(θ)〉 is defined

as

|ϕM(θ)〉 := U−1
M |S M(θ)〉 , (6)

where |S M(y)〉 is the state defined for the real number y ∈ (0, 1)
as

|S M(y)〉 :=
1
√

M

M−1∑
x=0

e2πixy |x〉 , (7)

and U−1
M is the inverse of quantum Fourier transformation UM

on Rθ, that is,

UM : |x〉 7→ 1
√

M

M−1∑
y=0

e2πixy/M |y〉 , x = 0, 1, ...,M − 1. (8)

We then measure Rθ in |ΦM(θ)〉 and interpret the measurement
outcome θ̃ as a number in [0, 1) with m fractional bits. If θ̃ >
1/2, we replace θ̃ with 1 − θ̃. Then, this θ̃ is close to θ with
high probability:

Pr
(
θ̃ = θ̃′

)
=

1
2

[∣∣∣〈θ̃′|ϕM(θ)〉
∣∣∣2 + ∣∣∣〈1 − θ̃′|ϕM(1 − θ)〉

∣∣∣2]
=

sin2(M(θ̃′ − θ)π)
M2 sin2((θ̃′ − θ)π)

=: G(θ̃′; θ,M), (9)

and this leads to

Pr
(
|θ̃ − θ| < 1

M

)
=

sin2(Mδπ)
M2 sin2(δπ)

+
sin2

(
M

(
1
M − δ

)
π
)

M2 sin2
((

1
M − δ

)
π
) ≥ 8
π2 ,

(10)
where δ = |θ−bMθc/M|. Inequality (10) means that we can es-
timate θ, or equivalently, EF with the worst-case error propor-
tional to M−1 by O(M) calls of the integrand circuit A. This is
called the “quadratic speedup” compared with classical MC,
where the error is proportional to the inverse square root of
the number of calls to the integrand subroutine.

We here make some comments. Firstly, it is sufficient to
make only S 0 and S 1 controlled among the operations in Q
in order to make Q controlled. Two A’s do not have to be
controlled. We can easily see this as Q becomes the identical
transformation I except an overall constant factor if S 0 and S 1
are replaced with I’s. Therefore, if the integrand calculation
included in A makes the dominant contribution to complexity,
making Q be controlled increases complexity only slightly.
Secondly, in the QAE, the total number of integrand calcula-
tion and its inverse is nearly equal to 2M, since the dominant
contribution to the number comes from the about M opera-
tions of controlled Q, and each of them contains one integrand
calculation and one inverse.

B. Use of pseudorandom number in the quantum algorithm
for MC

We here briefly review the quantum method for MC us-
ing PRNs4, which is originally proposed in [8]. When we
apply the quantum algorithm for MC to an extremely high-
dimensional integration, it is necessary to generate as many
RNs as the number of dimensions, in order to compute the in-
tegrand. If we naively assign a register to each RN and create
a superposition of possible values, the required qubit numbers
increases in proportion to the number of dimensions. In order
to avoid this, we can adopt the following way. First, as prepa-
ration, we choose a PRN sequence and set two registers, Rsamp
and RPRN. Then, we create a superposition of integers, which
specify the start points of the PRN sequence, on Rsamp. For ex-
ample, if we need NRN RNs to compute the integrand, we can
set the start points to the 1st, (NRN+1)-th, (2NRN+1)-th, ... ele-
ments in the sequence5. With each start point, we sequentially
generate PRNs on RPRN. This is possible because a PRN se-
quence is a deterministic sequence whose recursion equation
is explicitly given, and in [8] we gave the implementation of
one specific PRN generator, PCG, on quantum circuits. Us-
ing the PRNs, we compute the integrand step by step. Finally,
the expectation value of the integrand is calculated by QAE.
In this way, since we need only Rsamp and RPRN to generate
PRNs, the required qubit number is now independent of the
number of dimensions and much smaller than the naive way.
The drawback is the increase of the circuit depth.

In this paper, we propose another way for MC using PRNs,
where we generate them not sequentially but in a quantum
superposition, as explained in section III.

III. THE NEW METHOD FOR MC WITH SPEEDUP WITH
RESPECT TO THE NUMBER OF DIMENSION

A. The outline

1. The problem

In this section, we present a method to speed up the iter-
ative calculation in computing the integrand in the quantum
algorithm for MC, which we call the new method. First of
all, let us clearly state the problem to which the new method

4 Of course, regardless of whether it is done in a classical or quantum way,
MC based on PRNs can induce additional errors, since PRNs are not truly
random but deterministic. Every PRN generator does not have perfect sta-
tistical properties, for example, numbers in a PRN sequence inevitably have
correlations to some extent. As far as the authors know, for PRN sequences
which are widely used today, no established way to estimate errors in MC
due to statistical poorness is known. In many practical cases, we check ran-
domness of a given PRN sequence through some statistical tests and use it
neglecting errors if it passes the tests. The inventor of PCG claims that it
passes TestU01[24], a widely-used test suite for PRN.

5 Note that NRN should be sufficiently smaller than the period of the PRN
sequence. Conversely, we should choose a PRN sequence whose period is
long enough.

3ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



TABLE I: The quantum registers used in the new method we propose.

Symbol Usage
Rsamp The register where we create the superposition of the indexes j which specify one sample set of the stochastic variables (ϵPR

com, j, ϵ
PR
1, j , ..., ϵ

PR
D, j).

Rdim The register where we create the superposition of the indexes i which specify one individual stochastic variable ϵPR
i, j .

Rcom The register where we output ϵPR
com, j.

Rind The register where we output ϵPR
i, j .

Rc⃗ The register where we load c⃗i.
R f The register where we output f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i).

Rph, f The single-qubit register where we encode f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i) as the amplitude of |1〉.

Rctr1 The register which works as control bits in the inner QAE. After the inner QAE, the sum of f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)’s over i is encoded here.

Rg The register where we output g
(∑D

i=1 f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)

)
.

Rph,g The single-qubit register where we encode g
(∑D

i=1 f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)

)
as the amplitude of |1〉.

Rctr2 The register which works as control bits in the outer QAE. After the outer QAE, Esamp is encoded here.

can be applied. Here and hereafter, we consider the MC to
calculate the expectation value E [F] of the function F, which
depends on some stochastic variables and takes the separable
form given by

F(ϵcom, {ϵi}i=1,...,D; {⃗ci}i=1,...,D) = g

 D∑
i=1

f (ϵcom, ϵi; c⃗i)

 . (11)

That is, we can calculate F by summing up the values of one
common function f with different inputs and operating the
overall function g to the sum. Here, the meanings of the sym-
bols are as follows. D is a natural number which satisfies
D � 1. ϵcom and ϵ1, ..., ϵD are mutually independent stochas-
tic variables. The former is the common stochastic variable,
which is used in all elements in the sum. The latter are individ-
ual stochastic variables. They are independent and identically
distributed and each of them is used in only one term in the
sum. Although we hereafter consider ϵcom as a single stochas-
tic variable for simplicity, it is straightforward to generalize
the discussion to the case where ϵcom is a vector of multiple
stochastic variables. Totally, the number of the stochastic vari-
ables is D+ 1 and so is the dimension of the MC. c⃗1, ..., c⃗D are
sets of constant parameters.

2. The new method

Then, let us consider how to calculate the expectation value
E[F] for the function F in the form of (11).

The new method which we propose here is based on the
PRN-approach of MC on quantum computers, which we have
explained in Section II B. In this approach, we sample many
sets of the values of the stochastic variables using a PRN gen-
erator. That is, in the current problem, we obtain the values of
ϵcom and ϵ1, ..., ϵD in the j-th sample set by sequentially apply-
ing the elements in a given PRN sequence {xi}i=1,2,...:

ϵPR
com, j := fϵcom (x( j−1)(D+1)+1), ϵPR

i, j := fϵ(x( j−1)(D+1)+i+1). (12)

Here, fϵcom and fϵ are the functions to transform the PRNs,
which obey the uniform distribution in many cases, so that

their distributions match that of ϵcom and ϵ1, ..., ϵD, respec-
tively. We will consider how to perform such transformations
in section III B. Then, E[F] is estimated as

Esamp :=
1

Nsamp

Nsamp∑
j=1

g

 D∑
i=1

f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)

 , (13)

where Nsamp is the number of the samples. The statisti-
cal error of Esamp, that is, the confidence interval scales as
O(1/

√
Nsamp).

The important point is that we can see f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i) as a

function of i and j. That is, if we can implement the following
circuits

• U f
This calculates f (ϵcom, ϵi; c⃗i) for the given ϵcom, ϵi and c⃗i.

• Uϵcom

This calculates fϵcom (x) for the given x.

• Uϵ
This calculates fϵ(x) for the given x.

• UJ
This makes the PRN sequence {xi}i=1,2,... jump to the
given position. Here, we define making {xi}i=1,2,... jump
as the following operation: for a given integer j ≥ 1,
calculating x j.

• Uc⃗
This loads c⃗i into a register for the given i.

we can implement the circuit to calculate ϵPR
com, j, ϵ

PR
i, j in (12)

and then f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i) for the given i and j. Especially,

availability of a formula for jump to a specified position is
a beneficial feature of some kinds of PRNs, including PCG
considered later, and it enables us to implement UJ easily. In-
cluding this point, we will explain how to implement these
circuits in section III B.

If we can calculate the above function on a quantum com-
puter, we can take the following way to calculate Esamp in
(13). We call this a nested QAE, since it performs the sum-
mation over the sample index j by QAE, which we call the

4ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



outer QAE, and in each iteration in the outer QAE, another
QAE, which we call the inner QAE, runs for the summation
over i, the index of the terms. The outline is as follows. First,
we make the superposition of states which correspond to the
various sets of (i, j). Second, we calculate f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i) for

the various pairs of (i, j) in quantum parallelism. We then use
the inner QAE: we sum up these values of f over i for the
each value of j without sequential calculation and addition of
f . After operating g on the sum, we use the outer QAE to get
the sum over j, that is, Esamp, avoiding sequential calculation
again.

Note that the key factor is the map (i, j) 7→ f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i).

Thanks to it, we can compute f for various inputs in quantum
parallelism and create the superposition of states correspond-
ing to the various values of f , then finally apply the inner QAE
to the superposition to estimate the sum of f ’s with smaller
complexity than sequential computation. We again emphasize
that using PRN enables us to implement this map.

The detailed steps of the new method are as follows.
Preparing the registers shown in Table I, each of which is ini-
tialized to |0〉, we perform the followings:

1. Create 1√
Nsamp

∑Nsamp

j=1 | j〉 on Rsamp.

2. With the input j on Rsamp, calculate ϵPR
com, j in (12) on

Rcom using UJ and Uϵcom .

3. Create 1√
D

∑D
i=1 |i〉 on Rdim.

4. With the inputs i on Rdim and j on Rsamp, calculate ϵPR
i, j

in (12) on Rind using UJ and Uϵ .

5. With the input i on Rdim, load c⃗i on Rc⃗ using Uc⃗.

6. With the inputs on Rcom,Rϵ and Rc⃗, calculate
f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i) on R f .

7. Using the rotation controlled by R f , transform Rph, f to√
1 − f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i) |0〉+

√
f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i) |1〉. Then,

the probability that Rph, f is 1 under the condition that
Rsamp is j is

S j :=
1
D

D∑
i=1

f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i). (14)

8. Using the inner QAE, output S j on Rctr1. Strictly speak-
ing, this step creates the state where the distribution of
the value on Rctr1 is sharply peaked around θ j, which is
defined through sin2(θ jπ) := S j (see (15) for the detail).

9. With the input θ̃ on Rctr1, calculate
g̃(θ̃) := g(D sin2(θ̃π)), which is close to
g
(∑D

i=1 f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)

)
for θ̃ ≈ θ j, on Rg.

10. Using the rotation controlled by Rg, transform Rph,g to√
1 − g̃(θ̃) |0〉 +

√
g̃(θ̃) |1〉.

11. Using the outer QAE, estimate the probability of ob-
serving 1 on Rph,g, which is nearly equal to Esamp (see
(17)).

The state is transformed through the above steps of 1-
10 as follows. Here, the first to tenth kets correspond to
Rsamp,Rcom,Rdim,Rind,Rc⃗,R f ,Rph, f ,Rctr1,Rg and Rph,g, respec-
tively.

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉
1−→ 1√

Nsamp

Nsamp∑
j=1

| j〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

2−→ 1√
Nsamp

Nsamp∑
j=1

| j〉 |ϵPR
com, j〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

3−→ 1√
NsampD

Nsamp∑
j=1

D∑
i=1

| j〉 |ϵPR
com, j〉 |i〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

4,5−−→ 1√
NsampD

Nsamp∑
j=1

D∑
i=1

| j〉 |ϵPR
com, j〉 |i〉 |ϵPR

i, j 〉 |⃗ci〉 |0〉 |0〉 |0〉 |0〉 |0〉

6−→ 1√
NsampD

Nsamp∑
j=1

D∑
i=1

| j〉 |ϵPR
com, j〉 |i〉 |ϵPR

i, j 〉 |⃗ci〉 | f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)〉 |0〉 |0〉 |0〉 |0〉

7−→ 1√
NsampD

Nsamp∑
j=1

D∑
i=1

| j〉 |ϵPR
com, j〉 |i〉 |ϵPR

i, j 〉 |⃗ci〉 | f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)〉

(√
1 − f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i) |0〉 +

√
f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i) |1〉

)
|0〉 |0〉 |0〉

5ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



=:
1√

Nsamp

Nsamp∑
j=1

| j〉 |ϵPR
com, j〉

(√
1 − S j |Ψ( j)

0 〉 +
√

S j |Ψ( j)
1 〉

)
|0〉 |0〉 |0〉

8−→ 1√
2Nsamp

Nsamp∑
j=1

| j〉 |ϵPR
com, j〉

(
|Ψ( j)
+ 〉 |ϕM(θ j)〉 + |Ψ( j)

− 〉 |ϕM(1 − θ j)〉
)
|0〉 |0〉

=
1√

2Nsamp

Nsamp∑
j=1

∑
θ̃∈IM

| j〉 |ϵPR
com, j〉

(
〈θ̃|ϕM(θ j)〉 |Ψ( j)

+ 〉 |θ̃〉 + 〈1 − θ̃|ϕM(1 − θ j)〉 |Ψ( j)
− 〉 |1 − θ̃〉

)
|0〉 |0〉

9−→ 1√
2Nsamp

Nsamp∑
j=1

∑
θ̃∈IM

| j〉 |ϵPR
com, j〉

(
〈θ̃|ϕM(θ j)〉 |Ψ( j)

+ 〉 |θ̃〉 + 〈1 − θ̃|ϕM(1 − θ j)〉 |Ψ( j)
− 〉 |1 − θ̃〉

)
|g(D sin2(θ̃π))〉 |0〉

10−−→ 1√
2Nsamp

Nsamp∑
j=1

∑
θ̃∈IM

| j〉 |ϵPR
com, j〉

(
〈θ̃|ϕM(θ j)〉 |Ψ( j)

+ 〉 |θ̃〉 + 〈1 − θ̃|ϕM(1 − θ j)〉 |Ψ( j)
− 〉 |1 − θ̃〉

)
|g(D sin2(θ̃π))〉

(√
1 − g̃(θ̃) |0〉 +

√
g̃(θ̃) |1〉

)
,

(15)

where IM := {0/M, 1/M, ..., (M − 1)/M}, M = 2nM , nM is the qubit number of Rctr1 and

|Ψ( j)
0 〉 :=

1
√

D
√

1 − S j

D∑
i=1

√
1 − f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i) |i〉 |ϵPR

i, j 〉 |⃗ci〉 | f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)〉 |0〉 ,

|Ψ( j)
1 〉 :=

1
√

D
√

S j

D∑
i=1

√
f (ϵPR

com, j, ϵ
PR
i, j ; c⃗i) |i〉 |ϵPR

i, j 〉 |⃗ci〉 | f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i)〉 |1〉 ,

|Ψ( j)
± 〉 :=

1
√

2

(
|Ψ( j)

1 〉 ± i |Ψ( j)
0 〉

)
, (16)

are the states in the tensor product space of Rdim,Rind,Rc⃗,R f
and Rph, f . In (15), we omit Rctr2 since it is used only in the
step 11. In the final state in (15), the probability of observing
1 on Rph,g is

p1 =
1

Nsamp

Nsamp∑
j=1

∑
θ̃∈IM

G(θ̃; θ j,M)g̃(θ̃), (17)

where G is defined as (9). Since G(θ̃; θ j,M) has a sharp peak
around θ̃ = θ j, p1 is nearly equal to Esamp. We will discuss the
error in section III C.

3. Comparison with the previous method

For completeness, in [1], we outline the calculation proce-
dure in the previous method, in which we use not the inner
QAE but the simple iteration for the repeated calculation in
the integrand, although we omit it in this version. For the de-
tail, see [1].

B. The parts of the circuit

We here consider how to implement the component circuits
listed in section III A.

• U f

This depends on the problems, so we here simply as-
sume that it is implementable. In section IV, we con-
sider its implementation for a concrete problem, that is,
credit portfolio risk measurement.

• Uϵcom ,Uϵ

We here assume that PRNs obey the uniform distribu-
tion in [0, 1], as usual. There are various ways to trans-
form a uniform random number x to a random number
y which obeys the desired distribution. One is the in-
verse sampling method. That is, we can transform x as
y = Φ−1(x), where Φ−1 is the inverse of the cumulative
distribution function (CDF) for the desired distribution.
In [14], the quantum circuit to calculateΦ−1

SN, the inverse
CDF for the standard normal distribution, is presented.
It is based on the piecewise polynomial approximation
of Φ−1

SN presented in [25]. We expect that the inverse
CDFs for other distributions are also implemented in
the similar way.

• UP,UJ

Every PRN sequence has an explicit recursion formula.
Besides, for many widely-used PRN sequences, the
simple formula to make the sequence jump to the de-
sired position is explicitly given. We can construct

6ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



quantum circuits corresponding these formulae. Espe-
cially, in Section IV, we will discuss how to construct,
taking a concrete PRN generator, PCG, as an example.

• Uc⃗

If we can use a quantum random access memory
(qRAM)[26], we can implement Uc⃗ trivially. Here,
a qRAM is a quantum realization of associative data
structure. It refers to an index i on a register and creates
the state |di〉which corresponds to the data di associated
with i on another register. That is, it performs the fol-
lowing operation: |i〉 |0〉 7→ |i〉 |di〉. Hereafter, we simply
assume its availability.

C. Error and complexity

Sometimes, it is roughly said that in the QAE-based MC
method the number of repeated calculations of the integrand
sufficient for the tolerance error δ is ∼ δ−1. On the basis of
such a rough estimation, let us clarify the situation where the
new method we propose is more advantageous than previous
one.

In the current problem, calculation of f (ϵPR
com, j, ϵ

PR
i, j ; c⃗i) is the

most frequent procedure, so we focus on the number N f of this
calculation and its relation to the error. Here and hereafter, the
word calculation of f means the repeated block in calculation
of the sum of f ’s and therefore includes some operations in
addition to calculating f itself. More specifically, in the new
method, calculation of f corresponds to Q in the inner QAE,
or, in other words, the steps 3 to 7 in the calculation flow pre-
sented in Section III A 2. On the other hand, in the previous
method, calculation of f consists of (i) a progress of PRN, (ii)
a conversion of RN from uniform to standard normal (iii) a
calculation of f , (iv) an addition of f and (v) uncomputation
of (ii) and (iii).

In the previous method, because we calculate the sum of f ’s
in (13) by sequential calculations and additions of f and use
QAE only for the sum over the sample index j, it is necessary
to take

N f ,prev ∼ Dδ−1 (18)

for the tolerance error δ. Here, the subscript ‘prev’ means
that the expression is for the previous method. Note that the
sequential evaluation of the sum of f ’s causes no error. On the
other hand, in the new method where the nested QAE is used,
requiring that the error is at most δ in each QAE leads to

N f ,new ∼ δ−2, (19)

where the subscript ’new’ means that the expression is for the
new method. Therefore, comparing N f ,prev and N f ,new, we see
that the new method reduces N f if the inverse of the tolerance
is smaller than the dimension of the integration, that is,

δ−1 ≲ D. (20)

The above estimation is illustrative but not strict since the
result of the inner QAE is output as the superposition of the

states, which correspond to the values distributing around the
true value of the sum of f ’s. Let us evaluate the error by con-
sidering this distribution. Here, we assume that g is smooth,
since in practical uses of MC the integrand is at least piece-
wise smooth and a finite number of points where g is non-
smooth do not affect the integral in most cases. Considering
the fact that G(θ̃; θ j,M) has a sharp peak around θ j, we ap-
proximate g̃(θ̃) = g(D sin2(θ̃π)) as the first degree Taylor ex-
pansion around θ̃ = θ j:

g̃(θ̃) ' g(DS j) + Dg′(DS j)(sin2(θ̃π) − S j), (21)

where we used sin2(θ jπ) = S j. Using this and∑
θ̃∈IM

G(θ̃; θ j,M) = 1, p1 becomes

p1 '
1

Nsamp

Nsamp∑
j=1

g(DS j)
(
1 + ∆(D, S j,M)

)
, (22)

where the error term ∆(D, S j,M) is defined as

∆(D, S j,M) :=
Dg′(DS j)
g(DS j)

∑
θ̃∈IM

G(θ̃; θ j,M)
(
sin2(θ̃π) − sin2(θ jπ)

)
.

(23)
As shown in the appendix of [1],

|∆(D, S j,M)| <
DS j|g′(DS j)|

g(DS j)
1/M
S j
+ O

(
1

M2

)
. (24)

(24) reasonably means the following. In the usual situa-
tion where DS j|g′(DS j)|/g(DS j) ∼ 1, which means that the
change of the argument of g by O(1) factor leads to the change
of g by O(1) factor, the deviation of p1 from Esamp due to the
inner QAE is negligible if 1/M is small compared with S j.
1/M � S j can be rephrased that Rctr,1, the output register
for the inner QAE, has the large number of qubits enough to
precisely estimate θ j, or equivalently, S j. In summary, it is
required that

M > (lδrel)−1, (25)

where l is the typical scale of S j, and δrel is the tolerance
relative error on g(DS j), and so the number N f ,QAE1 of cal-
culations of f in the inner QAE, which is related to M as
N f ,QAE1 ' M, is at least (lδrel)−1. Therefore, if

(lδrel)−1 < D, (26)

the new method reduces the number of calculations of f by a
factor

(lδrel)−1

D
. (27)

We here make an important comment. Although the new
method can reduce the number of calculations of f , the to-
tal calculation time might not necessarily decrease. This is
because the steps in calculating f are different between the
previous and new methods. In the sequential calculation of f
in the previous method, we progress the PRN sequence step

7ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



by step. On the other hand, in the new method, we make the
PRN sequence jump to the specified position to get a RN in-
put to f . Usually, the jump takes a much larger computational
cost than the progress. If we write the times for one calcu-
lation of f in the previous and new methods as Tone,prev and
Tone,new respectively, the ratio of the total computational time
in the new method to that in the previous method is

Tone,new

Tone,prev

(lδrel)−1

D
. (28)

In section IV, taking a concrete problem, credit portfolio
risk measurement, and a concrete PRN generator, PCG, we
will discuss the above point more rigorously and estimate the
extent of computational time reduction by the new method.

IV. EXAMPLE: CREDIT PORTFOLIO RISK
MEASUREMENT WITH PCG

In this section, we consider credit portfolio risk measure-
ment as an example problem where the new method can be
applied, taking PCG[23] as a concrete PRN generator. First,
we briefly explain the outlines of credit portfolio risk mea-
surement and PCG, and then estimate the extent of complexity
reduction.

A. Credit portfolio risk measurement

One of the representative problems to which MC is often
applied in finance is credit portfolio risk measurement. Each
bank has a credit portfolio, that is, a collection of many loans
or debts, which is exposed to risks of defaults of obligors.
Banks evaluate such credit risks by some risk measures, which
correspond to some kinds of estimation of the loss by de-
faults. The major ones are the value-at-risk (VaR), the per-
centile point (say, 99%) of loss distribution, and the condi-
tional VaR (CVaR), the expectation value of loss under the
condition that it exceeds the VaR. Such quantities are usu-
ally calculated by some mathematical model, for example the
Merton model[27], in combination with MC. The calculation
in the Merton model with MC on a quantum computer has al-
ready been considered in [7, 8]. For the details of the model
and its implementation to a quantum computer, we here only
refer to these papers. The point we should note here is that
this problem is actually in the scope of this paper. That is,
the integrand can be written as g(L), where L is the random
loss and the function g is set according to the type of the risk
measure. L is calculated as

L =
Nobl∑
i=1

f (ϵcom, ϵi; Ei, αi, zi)

f (ϵcom, ϵi; Ei, αi, zi) = EiΘ(Zi, zi)

Zi = αiϵcom +

√
1 − α2

i ϵi. (29)

Here, the meanings of the symbols are as follows. Θ(x, y) is
the indicator function, which takes 1 if x < y or 0 otherwise.

Nobl is the number of the obligors. Ei is the exposure of the i
th obligor. Note that it must be normalized so that Ei ≤ 1. For
example, we may divide exposures by the largest one. αi, zi
are the model parameters for the i th obligor; see [8] for the
detail. In addition to a common RN ϵcom, we generate one
RN ϵi for the i-th obligor to determine whether he defaults or
not, which means the total number of RNs required to get one
sample value of the loss is Nobl + 1. For VaR, g is taken as

g(L) = Θ(Lα, L), (30)

that is, we can search (e.g. binary search) Lα satisfying
E[g(L)] = α, which means Lα is the (1 − α)-percentile point
of the loss. For CVaR, we take

g(L) = CLΘ(Lα, L), (31)

where the VaR Lα is predetermined and C is a normalization
factor to make g ≤ 1. As a whole, we can see that the inte-
grand form matches (11).

B. PCG

Reference [8] picked up PCG[23] as a PRN generator
which can be implemented in a quantum circuit. PCG is the
combination of linear congruential generator (LCG) and per-
mutation of bit string. The n-th element of a PCG sequence
xn is recursively defined as follows:x̃i+1 = (ax̃i + c) mod m

xi = f perm(x̃i),
(32)

where x̃i is the background LCG sequence, a, c,m, x̃0 are inte-
ger parameters satisfying a > 0, c ≥ 0,m > 0, 0 ≤ x̃0 < m and
f perm is permutation of a bit string, for which [23] presented
some patterns. Note that we can make LCG, and therefore
PCG too, jump to the specified position by the following for-
mula

x̃i =

(
ai x̃0 +

c(ai − 1)
a − 1

)
mod m. (33)

For the further details of PCG, consult [23].
Thanks to the above jump formula, we can implement the

jump operator UJ for PCG. In fact, we have already presented
the circuit UJ for such a jump in [8], along with UP for the
recursion formula (32)6.

C. Reduction of complexity

As discussed in section III C, the new method reduces the
number of calculations of f if (26) is satisfied. However, the

6 Note that, in [8], UP and UJ are represented by different symbols, PPRN
and JPRN, respectively.

8ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



total complexity might not necessarily decrease, since the new
method replaces the progress of the PRN sequence in the pre-
vious method with the jump, a more costly operation.

Considering this, let us estimate the extent of computational
time reduction by the new method in credit portfolio risk mea-
surement with PCG. At first, we estimate complexity of one
calculation of f , which is repeated most, in the two methods.
We here take T-count as a measure of computational time cost.
T-count is the number of T-gates used in a given quantum cir-
cuit. Since the T-gate is expected to be most time-consuming
in the Clifford+T gate set[28], a widely-considered universal
gate set, T-count is a widely-used metric of computational
time cost. Besides, we make the following assumptions on
numbers of digits for various numbers:

• We use the nPRN-bit PCG, and therefore so is the back-
ground LCG. We use only top ndig digits for calculation,
since lower bits have poorer statistical properties[23].

• For numerical numbers, we use ndig-bit fixed-point
numbers.

Then, we can estimate as follows.

(1) the previous method
Among operations constituting calculation of f in the pre-

vious method, it is sufficient to consider the following ones,
which are more costly than others:

• a progress of PCG

As shown in (32), this consists of a modular multipli-
cation, a modular addition and a permutation. As dis-
cussed in [14], the dominant contribution to complexity
comes from a modular multiplication. If we perform
this in the self-updating way in order to avoid adding
qubits at every multiplication, we have to combine two
non-self-updating modular multiplications into self-
updating one. As a result, the T-count is 140n2

PRN as
estimated in [14]7.

• a RN conversion and uncomputation

As mentioned above, we use the inverse sampling
method combined with the piecewise polynomial ap-
proximation of Φ−1

SN[25]. According to the estima-
tion in [14], one conversion costs T-count of 105n2

dig +

28ndignICDF and the total T-count is the double of it.
Here, nICDF is the number of the intervals in the piece-
wise approximation.

Calculation of f makes only subdominant contributions to
complexity, since it contains non-modular additions and mul-
tiplications, which is less costly than modular ones. Similarly,
increment of Rcount and adding f are also subdominant. Be-
sides, we assume that cost of loading/unloading c⃗i is subdom-
inant. Actually, a qRAM is designed so that only O(n) quan-
tum logic gates are activated while a record is loaded from

7 In this paper, we take only the leading term for T-count, as in [14]

a qRAM storing 2n records[26]. In the current case, loading
parameters for an obligor requires activation of O(nobl) gates.

In total, T-count for a calculation of f is

Tone,prev ' 140n2
PRN + 210n2

dig + 56ndignICDF. (34)

(2) the new method
In this case, calculation of f is equivalent to Q in the inner

QAE. Among the operations in it, the dominant contributors
to complexity are the following:

• two jumps of PCG

Here, “two” is because Q contains A and its inverse.
As shown in (33), a jump contains a modular expo-
nentiation and this makes the dominant contribution
to complexity. A modular exponentiation can be con-
structed as 2nexp modular multiplications, where nexp is
the number of digit of the exponent[33]. From (12), we
see that the exponent is now ( j − 1)(Nobl + 1) + i + 1,
since the dimension D is now Nobl. Here, 0 ≤ i ≤
Nobl, 0 ≤ j ≤ Nsamp. Therefore, the exponent can
be expressed by nsamp + nobl bits, where for simplic-
ity we assume that Nsamp and Nobl are now powers of
two: Nsamp = 2nsamp ,Nobl = 2nobl . As a result, T-count
for a jump is that for a modular multiplication times
2(nsamp+nobl), that is, 140(nsamp+nobl)n2

PRN. Two jumps
cost doubly.

• two conversions of RN from uniform to standard nor-
mal

Same as in the previous method.

Other operations are subdominant for complexity:

• Controlled S 0

This is equivalent to a multiply-controlled Toffoli gate.
It has T-count linear with respect to the number of the
control qubits[29, 30].

• Controlled S 1

This is equivalent to just a controlled Z gate.

• f and loading/unloading c⃗i

Same as in the previous method.

• controlled rotation

This has T-count linear with respect to the logarithm of
the required accuracy[7, 31, 32].

In total, T-count for a calculation of f is

Tone,new ' 280(nsamp+nobl)n2
PRN+210n2

dig+56ndignICDF. (35)

Then, let us take a typical setting in practical use and com-
pare (34) and (35) in the setting. As typical values, we here
set ndig = 16, nPRN = 64 [23], nICDF = 109 [25] and nsamp =

9ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29



nobl = 20, which correspond to Nsamp = Nobl = 220 ≈ 106. For
these values, (34) and (35) become

Tone,prev ' 7.2 × 105,Tone,new ' 4.6 × 107, (36)

respectively, and the ratio is

Tone,new

Tone,prev
= 64. (37)

Finally, we can compare the total T-counts in the whole pro-
cesses of the previous and new methods. Combining (28) and
(37), we obtain the ratio of the total T-counts as

64
(lδrel)−1

D
. (38)

This means that, if (lδrel)−1/D, the reduction ratio of the num-
ber of queries to calculations of f by the new method is
smaller than 1/64, it is more beneficial than the previous one.
Then, let us consider a typical setting in credit portfolio risk
measurement. We assume that l = 10−2, which roughly cor-
responds to the situation where the total loss is 1% of the to-
tal exposure, and δrel = 10−2. Besides, we are now taking
D = Nobl = 220. These lead to the query number reduction ra-
tio (lδrel)−1/D ' 10−2, and finally the total T-count reduction
ratio is about 0.64. That is, we can reduce the total computa-
tional time by several tens of percent.

V. SUMMARY

In this paper, we present a version of the quantum method
for MC using PRNs. The use of PRNs was originally pro-

posed in [8] for the sake of reduction of qubits in extremely
high-dimensional integrations such as credit portfolio risk
measurement. As an extension of this, the method proposed
in this paper can reduce more complexity. That is, in the
case where the integrand has the separable form like (11),
the method can reduce the number of repeated calculations
over the separated terms compared with the previous method.
The key point is that if we use PRN, we can calculate f , a
component of the integrand, as a function of the indices i and
j, which specify the RN and the sample respectively. This
makes it possible to compute f ’s in quantum parallelism, not
sequentially as in the previous method. Combined with QAE,
this leads to the reduction of the number of calculations of
f , if the dimension (or equivalently the number of RNs) and
the tolerance are large enough. We should note that the new
method can increase the time for one calculation of f since
it replaces the progress of the PRN sequence with the jump,
which is more costly. Therefore, the new method might not
reduce the total computational time even if the query com-
plexity decreases. Nonetheless, taking T-count as a metric of
computational time cost, we saw that the new method actually
reduces the total T-count in a typical case of credit portfolio
risk measurement with PCG, as shown in Sec. IV

In the original proposal [8], sequential computability of
PRNs was the key feature to avoid generation of RNs on dif-
ferent registers and reduce qubits. In this paper, another fea-
ture of PRN has been focused. That is, since it is a determin-
istic sequence whose element can be calculated as a function
of the index, we can compute PRNs in quantum parallelism
and create a superposition of them. In future works, we will
explore the possibility to utilize such a feature in other ways
and make quantum algorithm for MC more efficient.

[1] K. Kaneko et al., arXiv:2011.02165
[2] A. Montanaro, Proc. Roy. Soc. Ser. A, 471, 2181 (2015)
[3] Y. Suzuki et. al., Quantum Information Processing, 19, 75

(2020)
[4] J. C. Hull, “Options, Futures, and Other Derivatives”, Prentice

Hall (2012)
[5] P. Glasserman, “Monte Carlo Methods in Financial Engineer-

ing”, Springer (2003)
[6] S. Woerner and D. J. Egger, npj Quantum Information, 5(1):1–8

(2019)
[7] D. J. Egger et al., arXiv:1907.03044
[8] K. Miyamoto and K. Shiohara, Phys. Rev. A 102, 022424

(2020)
[9] P. Rebentrost et al., Phys. Rev. A, 98(2), 022321 (2018)

[10] N. Stamatopoulos et al., Quantum 4, 291 (2020)
[11] A. Martin et al., arXiv:1904.05803
[12] S. Ramos-Calderer et al., arXiv:1912.01618
[13] A. C. Vazquez and S. Woerner, arXiv:2005.07711
[14] K. Kaneko et al. arXiv:2007.01467
[15] R. Orus et al., Reviews in Physics 4, 100028 (2019)
[16] D. J. Egger et al., IEEE Transactions on Quantum Engineering,

1, 3101724 (2020)
[17] A. Bouland et al., arXiv:2011.06492

[18] G. Brassard et. al., Contemporary Mathematics, 305, 53 (2002)
[19] S. Aaronson and P. Rall, Symposium on Simplicity in Algo-

rithms, 24–32, SIAM (2020)
[20] D. Grinko et al., arXiv:1912.05559
[21] K. Nakaji, arXiv:2003.02417
[22] T. Tanaka, et al., arXiv:2006.16223
[23] M. E. O’Neill, Harvey Mudd College Computer Sci-

ence Department Tachnical Report (2014); http://www.pcg-
random.org/

[24] P. L’Ecuyer and R. Simard, ACM Transactions on Mathemath-
ical Software 33, 4, 22 (2007)

[25] W. Hörmann and J. Leydold, ACM Transactions on Modeling
and Computer Simulation 13(4):347, (2003)

[26] V. Giovannetti et al., Phys. Rev. A78, 052310 (2008)
[27] R. C. Merton, J. Finance, 29, 449 (1974)
[28] X. Zhou et al., Phys. Rev. A62, 052316 (2000)
[29] P. Selinger, Phys. Rev. A 87, 042302 (2013)
[30] D. Maslov, Phys. Rev. A 93, 022311 (2016)
[31] M. Amy, D. Maslov, and M. Mosca, IEEE Trans. CAD 33(10),

1476 (2014)
[32] V. Kliuchnikov et al., IEEE Transactions on Computers, 65, 1,

161 (2016)
[33] V. Vedral et al., Phys. Rev. A 54, 147 (1996)

10ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.15

2021/3/29


