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Abstract: There is no unique way to encode a quantum algorithm into a quantum circuit. With limited qubit counts,
connectivities, and coherence times, circuit optimization is essential to make the best use of near-term quantum de-
vices. We introduce two separate ideas for circuit optimization and combine them in a multi-tiered quantum circuit
optimization protocol called AQCEL. The first ingredient is a technique to recognize repeated patterns of quantum
gates, opening up the possibility of future hardware co-optimization. The second ingredient is an approach to reduce
circuit complexity by identifying zero- or low-amplitude computational basis states and redundant gates. As a demon-
stration, AQCEL is deployed on an iterative and efficient quantum algorithm designed to model final state radiation
in high energy physics. For this algorithm, our optimization scheme brings a significant reduction in the gate count
without losing any accuracy compared to the original circuit. Additionally, we have investigated whether this can be
demonstrated on a quantum computer using polynomial resources. Our technique is generic and can be useful for a
wide variety of quantum algorithms.
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1. Introduction
Recent technology advances have resulted in a variety of uni-

versal quantum computers that are being used to implement quan-
tum algorithms. However, these noisy-intermediate-scale quan-
tum (NISQ) devices [1] may not have sufficient qubit counts or
qubit connectivity and may not have the capability to stay co-
herent for entirety of the operations in a particular algorithm im-
plementation. Despite these challenges, a variety of applications
have emerged across science and industry. For example, there
are many promising studies in experimental and theoretical high
energy physics (HEP) for exploiting quantum computers. These
studies include event classification, e.g., [2], [3], [4], reconstruc-
tions of charged particle trajectories, e.g., [5], [6] and physics
objects [7], [8], unfolding measured distributions [9] as well as
simulation of multi-particle emission processes [10], [11]. A
common feature of all of these algorithms is that only simplified
versions can be run on existing hardware due to the limitations
mentioned above.

One of the general strategies for improving the performance
of NISQ computers is circuit optimization, also known as circuit
compilation. In particular, there is no unique way to encode a
quantum algorithm into a set of gates, and certain realizations
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of an algorithm may be better suited for a given quantum de-
vice. One widely used tool is t|ket〉 [12], which contains a va-
riety of architecture-agnostic and architecture-specific routines.
There are also a variety of other toolkits for circuit optimization,
including hardware-specific packages for quantum circuits (see
e.g., [13], [14], [15], [16]). Since t|ket〉 is a generic framework
which contains many algorithms that have already been bench-
marked against other procedures, it will serve as our baseline.

We introduce two techniques that can be used to optimize cir-
cuits and that are complementary to existing methods. The first
focuses on the identification of recurring sets of quantum gates
in a circuit. Identifying such recurring sets of gates (RSG) can
be very important, since any optimization of these RSGs has an
enhanced effect on the overall circuit. Furthermore, identifying
recurring gate sets can be useful for future hardware optimiza-
tions where the fidelity of certain common operations can be en-
hanced at the expense of other, less frequent operations. The sec-
ond technique optimizes a generic circuit by eliminating unnec-
essary gates or unused qubits such that the circuit depth becomes
as short as possible. One example where such an optimization
can lead to simplifications is a case where a quantum circuit has
been designed with complete generality in mind. In this case, for
a certain initial state the circuit only reaches a select set of inter-
mediate states such that some operations become trivial and can
be eliminated. The elimination of unnecessary gate operations in-
troduced here focuses on controlled operations such as a Toffoli
or a CNOT gate. The heart of the elimination technique resides in
the identification of zero- or low-amplitude computational basis
states, that allows us to determine whether the entire gate or (part
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of) qubit controls can be removed. Both of these techniques are
combined in an optimization protocol called Aqcel*1.

To demonstrate the effectiveness of these techniques, we will
use a quantum algorithm from HEP to perform a calculation in
quantum field theory. The particular algorithm that we study
models a parton shower, which is the collinear final state radia-
tion from energetic charged (under any force) particles [11]. This
algorithm is a useful benchmark because it provides an exponen-
tial speedup over the most efficient known classical algorithm and
the circuit depth can be tuned for precision. While we show re-
sults for this specific circuit, the proposed protocol has a wide
range of applicability for quantum computing applications across
science and industry.

2. Aqcel optimization protocol
As already mentioned, the Aqcel protocol comprises two com-

ponents: identifying recurring quantum gates (Sec. 2.1) and elim-
inating unnecessary gates and unused qubits (Sec. 2.2). This ap-
proach focuses on circuit optimization at the algorithmic level,
instead of at the level of a specific implementation using the na-
tive gates for a particular quantum device. The individual opti-
mization steps are described below.

2.1 Gate set pattern recognition
First, the Aqcel attempts to identify gate set patterns in an ar-

bitrary quantum circuit and extract RSGs from the circuit.
2.1.1 Representation in directed acyclic graph

In a quantum circuit, individual qubits are manipulated by gate
operations one by one, meaning that the quantum state repre-
sented at a certain point of the circuit should not be affected by
gate operations applied afterward. Such a structure can be de-
scribed by using a directed acyclic graph (DAG). The DAG allows
us to easily check dependencies between qubits and to extract a
subset of the circuit that functions for certain tasks.

First, we convert a quantum circuit to the form of DAG using
the DAGCircuit class in Qiskit Terra API, where a node repre-
sents an operation by a quantum gate and an edge that connects
the nodes represents a qubit. The gate set pattern recognition can
be then performed by identifying two parts of quantum circuit
functioning in an identical manner using DAG as a graph iso-
morphism problem. The algorithm of gate set pattern recognition
consists of two steps: (1) finding RSG candidates with DAG rep-
resentation using depth-first search with heuristic pruning, and
(2) checking the DAG isomorphism by graph hashing with Weis-
feiler Lehman graph hash [17], as implemented in the NetworkX
library [18]. The details of the gate set pattern recognition includ-
ing computational complexity are given in Appendix A.1, with
the pseudocode of the algorithm.
2.1.2 Tiered extraction of recurring gate sets

The appearance pattern of RSGs in a circuit may depend on
specific encoding of the quantum algorithm. To account for dif-
ferent patterns, we consider three different levels of matching cri-
teria to define the gate recurrence:
Level 1 : Only matching in gate types,

*1 Aqcel (pronounced “excel”) stands for Advancing Quantum Circuit by
icEpp and Lbnl.

level 1 level 2 level 3

Target RSG

=

Fig. 1 Possible RSG patterns for a given target RSG corresponding to the
three levels of matching criteria.

Level 2 : Matching in gate types and the roles of qubits that the
gates act on,

Level 3 : Matching in gate types and both roles and indices of
qubits that the gates act on.

The matching criterion in Level 1 is the least stringent: it just
identifies the same sets of quantum gates appearing in the circuit,
irrespective of which qubits they act on. The Level 2 is more
strict and ensures that the qubits the RSGs act on have the same
roles. In other words, the qubit connections between the gates
inside a single RSG are maintained but the qubit indices might
vary between the RSGs. The Level 3 applies the most stringent
condition, where the qubits that the RSGs act on must have the
same roles and qubit indices, that is, the RSGs must appear on an
identical set of qubits in the circuit. The appearance patterns of
the RSGs are illustrated in Fig. 1 for the three matching criteria.

The identified RSGs are ranked in terms of the product of the
number of gates constituting the set and the number of occurrence
of the set in the circuit. A fixed number of top-ranked RSGs are
extracted from the circuit in this step.

2.2 Heuristic circuit optimization
After attempting to identify RSGs in the circuit, a heuristic op-

timization procedure takes place to make the circuit depth as short
as possible by eliminating redundant gates or unused qubits. In
this step, we consider two levels of optimization:
Level 1 : Optimize the entire circuit including RSGs,
Level 2 : Optimize the entire circuit, but for the RSGs only ad-

jacent gate pairs are removed (see Sec. 2.2.4).
The Level 1 would provide a shorter, more efficient circuit.

Compared to Level 1, the Level 2 likely results in a deeper circuit
for most cases, while it provides more room for improvement in
later compilation stages if the RSGs have specialized low-level
implementations.
2.2.1 Basic idea of redundant controlled operations removal

A controlled operation such as a CNOT or a Toffoli gate per-
forms different operations depending on the quantum state of the
system at the point where the gate is applied. Let m be the num-
ber of control qubits of this operation. Consider expanding the
state of the full system |ψ〉 into a superposition of computational
basis states as

|ψ〉 =
∑

j,k

c j,k | j〉ctl ⊗ |k〉 , (1)

where |·〉ctl denotes the state of the control qubits, while the un-
subscripted ket corresponds to the rest of the system. We write
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the states as integers wtih 0 ≤ j ≤ 2m − 1 and 0 ≤ k ≤ 2n−m − 1.
We assume that the controlled operation for the gate is applied
when all control qubits are in the |1〉 state, corresponding to
| j〉ctl = |11 . . . 1〉 = |2m − 1〉ctl. This allows to classify the state
of the system into three general classes with the amplitudes c j,k:
Triggering : c j,k , 0 iff j = 2m − 1. The controlled operation of

the gate in question is applied for all computational bases in
the superposition.

Non-triggering : c2m−1,k = 0 for all k. The controlled operation
is never applied.

Undetermined : The state is neither triggering nor non-
triggering.

A circuit containing triggering or non-triggering controlled
gates can be simplified by removing all controls (triggering case)
or by eliminating the gates entirely (non-triggering case). While
an undetermined single-qubit controlled gate cannot be simplified
under the current scheme, an undetermined multi-qubit controlled
gate can be by removing the controls on some of the qubits, if
the state of the system satisfies the condition described in Ap-
pendix A.2.

As an example of this concept, consider the following simple
circuit:

|0〉 H •

|0〉 • X • •

|0〉

If the second qubit is in the initial state |0〉, the first CNOT gate
has no effect and can be removed from the circuit as the |0〉 is the
non-triggering state of CNOT. The second qubit before the second
CNOT gate is in the state |1〉, which is the triggering state. There-
fore, the qubit control can be removed from the second CNOT
gate. The first two qubits before the Toffoli gate are in the super-
position of |01〉 and |11〉, which is an undetermined state for the
Toffoli gate. Since the Toffoli gate has a triggering bitstring {11},
and the second qubit is always in the |1〉 state, this second qubit
control can be removed from the Toffoli gate, replacing it with a
CNOT gate controlled only on the first qubit.

The heuristic circuit optimization therefore requires, for each
controlled gate, the identification of possible states the control
qubits can take, and the removal of unnecessary parts of the con-
trolled operations. These two steps are discussed in detail below.

It is well known that an arbitrary multi-qubit controlled-U gate
with m control qubits can be decomposed into O(m) Toffoli and
controlled-U gates [19]. Therefore, in the remainder of this pa-
per, we assume that all controlled gates are reduced to Toffoli
gates denoted as C2[X], and singly-controlled unitary operation
denoted as C[U]. This implies that the only triggering bitstrings
we need to consider are either {1} or {11}. For a n-qubit cir-
cuit composed of N multi-qubit controlled-U gates, each having
at most n control qubits, this decomposition results in at most
Ñ = nN controlled gates.
2.2.2 Identification of computational basis states

In general, a circuit consisting of n qubits creates a quantum
state described by a superposition of all of the 2n computational
basis states. However, it is rather common that a specific circuit

produces a quantum state where only a subset of the computa-
tional basis states has nonzero amplitudes. Moreover, the number
of finite-amplitude basis states depends on the initial state. This
is why the three classes of the states of the system arise.

The state classification at each controlled gate can be deter-
mined either through a classical simulation or by measuring the
control qubits repeatedly. In the case of a classical simulation,
one can either perform the full calculation of the amplitudes, or
simply track all the computational basis states whose amplitudes
may be nonzero at each point of the circuit without the calculation
of the amplitudes. Aqcel adopts the latter method for the lower
computational resource. When instead the quantum measure-
ments are used, the circuit is truncated right before the controlled
gate in question, and the control qubits are measured repeatedly
at the truncation point. Finiteness of the relevant amplitudes can
be inferred from the distribution of the obtained bitstrings, albeit
within the statistical uncertainty of the measurements.

A few notes should be taken on the computational costs of the
two methods. Consider an n-qubit circuit with N controlled gates.
As discussed before, reducing this to either C2[X] or C[U] re-
sults in O(Ñ) single or double controlled gates. A classical sim-
ulation of the state vector before a given controlled gate has an
exponential scaling in the number of qubits and requires O(2n)
computations. On the other hand, measuring the m = 1 or 2 con-
trol qubits M times, which results in M bitstrings of length m,
only requires O(M) operations. Repeating this for all Ñ gates
requires O(Ñ2n) for the classical simulation and O(Ñ2M) when
using quantum measurements.

More details on the estimates of the computational resource
necessary for the identification of computational basis states, as
well as other optimization steps, are described in Appendix A.3.
2.2.3 Elimination of redundant controlled operations

Once the nonzero-amplitude computational basis states are
identified at each controlled gate, we remove the gate or its con-
trols if possible. When using classical simulation, the entire cir-
cuit is analyzed first before the control elimination step. When
quantum measurments are instead used, circuit execution, mea-
surements and circuit optimization are performed at each con-
trolled gate separately.

The control elimination step for each controlled gate proceeds
as follows. For a C[U] gate, compute the probability of observing
|1〉 of the control qubit. If that probability is 1, eliminate the con-
trol and only keep the single unitary gate U. If the probability is
0, remove the controlled gate from the circuit. In all other cases,
keep the controlled gate. For a C2[X] (Toffoli) gate, compute the
probabilities of the four possible states |00〉, |01〉, |10〉, and |11〉.
If the probability of |11〉 is 1, remove the two controls and only
keep the X gate. If the probability of |11〉 is 0, remove the entire
Toffoli gate. If neither of those two conditions are true (the un-
determined class), it is still possible to eliminate one of the two
controls. This is true if the probability of the state |01〉 (|10〉) is
zero, in which case one can eliminate the first (second) control.

Note that for noisy quantum circuits the measurements of the
states will not be exact, and one expects contribution from errors
in the probabilities of observing certain bitstrings. This means
that one has to impose thresholds when deciding whether we call
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the state triggering, non-triggering or undetermined. Once such
a threshold has been decided, the number of measurements re-
quired has to be large enough for the statistical uncertainty to be
smaller than this threshold. This will be discussed in more detail
in Sec. 3 when we give explicit examples.

The computational cost of determining whether to eliminate
controls or the entire controlled operation can easily be deter-
mined. Given the measured bitstrings, which can be determined
with O(Ñ2M) operations, one can compute the probabilities for
each possible bitstring, and therefore decide whether to simplify
a controlled operation using O(Ñ) operations.

Note that superfluous controlled operations can also be found
and eliminated using the so-called ZX calculus [20], [21]. In
fact, the ZX calculus is complete in the formal logic sense of the
word, such that one can always prove that an unnecessary gate
can be removed using the ZX calculus. However, in general this
requires exponential resources, and therefore has no scaling ad-
vantage with respect to simply computing the state vectors. Of
course, the ZX calculus is still incredibly powerful and underlies
many of the optimization techniques of quantum transpilers, such
as the t|ket〉 compiler we compare to later.
2.2.4 Elimination of adjacent gate pairs

Note that if a unitary operator A and its Hermitian conjugate
A† act on the same set of qubits adjacently, resulting in an iden-
tity operation, the gates implementing these operators can be re-
moved from the circuit. While this is an obvious simplification,
the removal of gates through the optimization steps described
above can result in a circuit with such cancelling gate pairs. For
this reason, this step of gate reduction is applied before and after
eliminating redundant controlled operations.
2.2.5 Elimination of unused qubits

After taking the above steps, the circuit is examined for the
presence of qubits where no gate is applied, which can then be
removed from the circuit. Such a situation occurs e.g., when a
quantum circuit designed to work universally with different ini-
tial states is executed with a specific initial state. An example of
such a circuit is the sequential algorithm we consider below.

3. Application to quantum algorithm
The circuit optimization protocol described in Sec. 2 has been

deployed to a quantum algorithm designed for HEP [11]. The
heuristic optimization (Sec. 2.2) is performed at Level 1 for the
optimization on existing quantum hardware.

3.1 Quantum parton shower algorithm
Simulating quantum field theories is a flagship scientific appli-

cation of quantum computing. It has been shown that a generic
scattering process can be efficiently simulated on a quantum com-
puter with polynomial resources [22]. However, such circuits re-
quire prohibitive resources in the context of near-term devices.

A complementary approach is to simulate one component of
the scattering process. In particular, Ref. [11] proposed an algo-
rithm to simulate the collinear radiation from particles that carry
a nonzero fundamental charge. Such radiation approximately fac-
torizes from the rest of the scattering amplitude and can therefore
be treated independently. This factorization is the basis for par-

|p〉 / R(m) p p U(m)
p R(m)†

|h〉 / Uh h

|e〉 U(m)
e e

|nφ〉 /

Ucount

nφ

Uh|na〉 / na

|nb〉 / nb

Fig. 2 The mth step of the quantum circuit for the algorithm proposed in
Ref. [11]. There are three physical registers: |p〉 containing the set of
particles at this step; |h〉 for the branching history; and |e〉 which is a
binary variable representing the presence or absence of an emission
at this step. The three lower registers count the number of particles
of type φ, a, and b and are uncomputed before the end of the cir-
cuit. The exact form of the rotation matrices R(m) and the unitary
operations Ucount, U(m)

e , Uh, and U(m)
p can be found in Ref. [11].

ton shower Monte Carlo generators in HEP. The quantum parton
shower (QPS) algorithm provides an exponential speedup over
known algorithms when the charge is not the same for all parti-
cles that can radiate.

The particular example demonstrated in Ref. [11] starts with
n fermions that can be either type f1 or f2. These fermions can
radiate a scalar particle φ, which itself can split into fermion-anti-
fermion pairs (of the same or different type). The relevant param-
eters are the three couplings g1, g2, and g12 between f1 and φ, f2
and φ, and f1 f̄2 ( f̄1 f2) and φ, respectively. The shower evolution
is discretized into Nevol steps and at each step, one of the particles
could radiate / split or nothing happens. This produces a precise
result when Nevol is large. Figure 2 shows the quantum circuit
block for the mth step of the quantum circuit. First, the fermions
are rotated into a new basis fa and fb where the effective mixing
gab between fa f̄b ( f̄a fb) and φ is zero. Then, the number of parti-
cles of each type are counted and stored in registers na, nb, and nφ.
Next, a Sudakov factor is calculated to determine if an emission
happens or not. This operation depends only on the total number
of particles of each type. After the emission step, the particle and
history registers are modified accordingly. Lastly, the fermions
are rotated back into the f1 and f2 basis. Some of the steps in this
algorithm are universal (independent of m) and some dependent
on m due to the running of coupling constants with energy scale.

3.2 Experimental setup
The QPS simulation is implemented into a quantum circuit us-

ing IBM Qiskit version 0.22.0 [23] with Terra 0.15.2, Aer 0.6.1
and Ignis 0.4.0 APIs in Python 3.8 [24]. First, we attempt to op-
timize the circuits running on a classical computer with a single
2.4 GHz Intel core i5 processor.

In order to evaluate the Aqcel performance, the same QPS cir-
cuit optimized using t|ket〉 [12] in pytket 0.6.1 before transpilation
is used as a reference. The optimization using t|ket〉 is done as fol-
lows. We consider the list of ten pre-defined passes*2. The passes

*2 The following 10 pre-defined passes are considered for the t|ket〉 op-
timization: EulerAngleReduction(OpType.Rz,OpType.Rx), RemoveRe-
dundancies, GuidedPauliSimp, SquashHQS, FlattenRegisters, Opti-
misePhaseGadgets, KAKDecomposition, USquashIBM, CliffordSimp,
FullPeepholeOptimise. Two more passes, RebaseIBM, Com-
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are tried one by one on the QPS circuit, and the one that reduces
the number of gates the most is applied to the circuit. The same
set of passes are tried again on the resulting circuit to identify and
apply the pass that most effectively reduces the gate count. This
iterative process is repeated until the gate count is no longer re-
duced by any of the passes. The selected sequence of passes are
used for evaluating the t|ket〉 performance in the remainder of the
studies.

The QPS algorithm is executed on the 27-qubit
“ibmq sydney” [25], one of the IBM Quantum Falcon Pro-
cessors, and the state-vector simulator in Qiskit Aer with and
without optimizing the circuit. For the results obtained solely
from the state-vector simulator, all the qubits are assumed to be
connected to each other (referred to as the ideal topology). When
executing the algorithm on the sydney, the gates in the circuit are
transformed into machine-native single- and two-qubit gates, and
the qubits are mapped to the hardware accounting for the actual
qubit connectivity. For all the circuits tested with the sydney
below, the noise-adaptive mapping is performed by taking into
account the read-out and CNOT gate errors from the calibration
data as well as the qubit connection constraints*3. Gate can-
cellations also take place at this stage using the commutativity
of native gates and unitary synthesis, as documented in Qiskit
Terra API. This qubit mapping and gate cancellation process are
repeated eleven times, and the circuit obtained with the smallest
number of gates is finally tested with the sydney.

3.3 Results
3.3.1 Circuit optimization for Nevol = 2 branching steps us-

ing classical simulation
Circuit optimization performance of Aqcel is evaluated for the

QPS simulation circuit with Nevol = 2 branching steps assuming
an ideal topology. The simulation does not consider any effects
from hardware noise. The initial state is chosen to be | f1〉, and
the coupling constants are set to g1 = 2 and g2 = g12 = 1. Both
f → f ′φ and φ→ f f̄ processes are considered*4.

First, the RSG pattern recognition is performed against the
circuit. When the Level 2 RSG pattern recognition is applied,
two RSGs are identified with the requirements on the number
of nodes in each RSG being between 5 and 7 and the number
of repetitions being 4 or more. Next, the heuristic optimization
(Sec. 2.2) is performed over the entire circuit at Level 1. This
step consists of identifying nonzero-amplitude computational ba-
sis states, removing redundant controlled operations, removing
adjacent cancelling gate pairs (performed twice), and removing
unused qubits. Nonzero-amplitude computational basis states are
identified through classical calculation.

After the algorithmic-level circuit optimization, the quantum
gates in the circuit are decomposed into single-qubit gates (U1,
U2, U3) and CNOT gates. Figure 3 shows the numbers of the
single-qubit and CNOT gates, the sum of the two, and the depth

muteThroughMultis, are also used once before selecting the pass from
the list.

*3 This corresponds to the transpilation of level 3 pass manager, as imple-
mented in Qiskit Terra.

*4 Ref. [11] noted that when these are unphysically removed, the circuit can
be simulated efficiently classically (see also Ref. [10]).
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Fig. 3 Numbers of single-qubit (U1,2,3) gates, CNOT gates and the sum of
the two as well as the depth of the two-branching step QPS circuit de-
composed into native gates before and after optimization. The com-
putational basis states with nonzero amplitudes at controlled gates
are identified using classical calculation in the heuristic optimization
step of Aqcel.

of the circuit before and after the optimization. The circuit depth
is defined as the length of the longest path from the input to the
measurement gates, with each gate counted as a unit. The figure
compares the values from the original circuit and the circuits op-
timized with t|ket〉 only, Aqcel only and the combination of the
two. The Aqcel optimizer reduces the total number of gates by
54%, resulting in a 51% reduction of the circuit depth. In particu-
lar, the reduction of the number of CNOT gates is 47%. This com-
pares to t|ket〉, which reduces the total number of gates by 26%,
CNOT by 1%, and the circuit depth by 10%. This means that,
for the QPS algorithm, Aqcel is 38% more efficient than t|ket〉 in
reducing the gate counts, and 46% more specifically for CNOT,
and makes the circuit 45% shorter. Combining the two optimiz-
ers, the gate count is reduced by 63% (50% for CNOT only) and
the depth by 55% with respect to the original circuit. The com-
bined optimizer is 51% more efficient than the t|ket〉 alone for
gate reduction (49% for CNOT only), producing a 50% shorter
circuit.

For the Aqcel optimizer, the gate reduction occurs mostly at
the stage where the redundant qubit controls are removed. Start-
ing with 1279 gates (excluding barrier and measurement gates),
the first adjacent gate-pair elimination, the redundant qubit con-
trol reduction, and the second gate-pair elimination steps remove
170, 510 (40% of the 1279 gates), and 6 gates, respectively. In
terms of the computational cost, the wall time is by far domi-
nated by the two adjacent gate-pair elimination steps combined,
accounting for 91% of the total time, with a sub-dominant contri-
bution of 7% from the redundant qubit control reduction.

Finally, the number of qubits is reduced from 24 to 21 with the
Aqcel optimizer, while it is unchanged by t|ket〉. One qubit is
removed from each of the three registers na, nb, and nφ because
those qubits are used only for Nevol ≥ 3 branching steps.
3.3.2 Circuit optimization for Nevol = 1 branching step us-

ing classical simulation and quantum measurements
The quantum circuit for the two-branching step QPS simula-

tion is still too deep to produce useful results on a real existing
quantum computer, even after optimizing the circuit. Therefore,
we consider the circuit with only one branching step using the
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Fig. 4 Numbers of single-qubit (U1,2,3) gates, CNOT gates and the sum of
the two as well as the depth of the one-branching step QPS circuit
transpiled considering the ibmq sydney topology before and after the
optimizations. The computational basis states with nonzero ampli-
tudes at controlled gates are identified using classical calculation in
the heuristic optimization step of Aqcel.

sydney and the state-vector simulator. The initial state, coupling
constants, and considered processes are the same as those used
for the Nevol = 2 branching step simulation.

First, we examine the gate and qubit counts for the one-
branching step QPS simulation assuming an ideal topology. Start-
ing with 486 gates, the Aqcel optimizer removes 24, 260 (53% of
486 gates), and 2 gates in the three steps of the heuristic optimiza-
tion, in the order given above. The adjacent gate-pair elimination
step still dominates the wall time (96%). However, the redundant
qubit control reduction now takes about 9 times less time than that
for the two-branching step simulation, consistent with the expo-
nential behavior of the computing cost of the step. The number of
qubits is reduced from 15 to 13 with Aqcel. One of four ancilla
qubits is removed because three ancillas are sufficient for decom-
posing all the multi-controlled gates in the Nevol = 1 step. The
register nφ, composed of only one qubit, is also removed because
it is used only for the case where the initial state is |φ〉.

Next, the optimized circuits are transpiled considering the
qubit connectivity of the ibmq sydney. Figure 4 shows the same
set of distributions as in Fig. 3, but for the one-branching step
QPS simulation with the sydney-specific transpilation. The Aq-
cel optimizer reduces the number of native gates significantly in
this case, too. The relative reduction is more drastic for the one
branching step than the two branching steps, mainly because the
former (shallow) circuit has relatively more zero-amplitude com-
putational basis states than the latter (deep) circuit.

We then evaluate the performance of the optimizers using the
sydney. A particular challenge when employing Aqcelwith a real
quantum computer is in the determination of the bitstring proba-
bilities of the control qubits at each controlled gate using quan-
tum measurements. Due to hardware noise, the list of observed
bitstrings would contain contributions from errors on the preced-
ing gates and the measurement itself. To mitigate the measure-
ment errors, we obtain the correction by measuring the calibration
matrix for the control qubits (with 8192 shots per measurement)
using Qiskit Ignis API. The correction is then applied to the ob-
served distribution with a least-squares fitting approach. The gate
errors accumulate throughout the circuit execution and are diffi-
cult to correct. Instead, in Aqcel, we opt to ignore the observed

bitstrings with occurrence below certain “cutoff” thresholds, un-
der the assumption that the gate errors act as a perturbation that
inserts spurious computational basis states with small amplitudes
into the system. This can be improved in future with additional
computational complexity by using gate error mitigation such as
the zero noise extrapolation mentioned in Sec. 1.

The cutoff thresholds are defined as follows. We consider the
errors in the U1,2,3 and CNOT gates separately for all the hardware
qubits. The reported error rates at the time of the experiment,
measured during the preceding calibration run of the hardware,
are used for the calculations. Let the U1,2,3 and CNOT error rates
be ε(i)

U and ε(i, j)
CX , respectively, with i and j indicating qubits that the

gates act on. We can approximately calculate the probability pε
of measuring the states with at least one gate error occurring any-
where in the circuit by performing qubit-wise (index-dependent)
multiplications of the error rates:

pε = 1 −

∏
i

(
1 − ε(i)

U

)n(i)
U
∏
i, j

(
1 − ε(i, j)

CX

)n(i, j)
CX

 ∼ NCXεCX , (2)

where n(i)
U and n(i, j)

CX are the number of U1,2,3 and CNOT gates act-
ing on the corresponding qubits, respectively. In the last approx-
imation, we have assumed that all CNOT errors are equal, much
larger than single gate errors but still much smaller than one:
ε(i)

U � ε
(i, j)
CX = εCX � 1. The first cutoff threshold is shigh

ε := pε ,
corresponding to making an extreme assumption that any occur-
rence of a gate error during circuit execution results in a specific
bitstring being observed at the measurement, and attempting to
discard that bitstring. The second threshold, slow

ε := pε/2m, where
m is the number of the measured control qubits, is related to an-
other extreme assumption that the gate errors result in a uniform
distribution of all possible bitstrings. The third and final threshold
is the average of the above two, smed

ε := (slow
ε + shigh

ε )/2.
It should be noted that pε increases as the circuit execution

proceeds, as it is obtained by multiplying the error rates of all
the preceding gates in the circuit. As an alternative strategy, we
also examine static thresholds s f

ε that are kept constant through-
out the circuit, with values between 5% and 40%. We also con-
sider capping the dynamic thresholds slow

ε , smed
ε , and shigh

ε at 25%
(the reason behind the 25% will be given later).

Discarding all bitstrings with occurrence under certain thresh-
olds obviously introduces errors of its own. For example, we
observe that discarding bitstrings using unbounded shigh

ε as the
threshold for the one-branching step QPS simulation results in
an elimination of most of the controlled gates in the later part of
the circuit, rendering the circuit practically meaningless. There-
fore, the actual threshold to be used with Aqcel should be chosen
considering the tradeoff between the efficiency of the circuit op-
timization and the accuracy of the optimized circuit*5.

Detailed outcomes of the gate counts (and fidelity measure-
ments introduced below) with the dynamic and static thresholds
are described in Appendix A.4. The summary of the measure-
ments is described below, with the results from other optimization

*5 In the actual implementation, the threshold corresponding to 5% of the
number of shots is applied to all the three cases to suppress contributions
from imperfect measurement error mitigation.
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Fig. 5 Fidelity Fmeas versus the number of native gates for the one-
branching step QPS circuit transpiled considering the ibmq sydney
topology before and after optimization under different schemes.
These transpiled circuits are executed on the sydney to obtain the
Fmeas.
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Fig. 6 Numbers of single-qubit (U1,2,3) gates, CNOT gates and the sum of
the two as well as the depth of the one-branching step QPS circuit
transpiled considering the ibmq sydney topology before and after
optimization under different schemes.

schemes.
To evaluate the accuracy of the optimized circuit, we consider

a classical fidelity of the final state of the circuit, which is defined
in terms of the probability distribution of the computational basis
states observed in the measurement at the end of the circuit. This
quantity, denoted as F and referred to as just “fidelity” hereafter,
is given by

F =
∑

k

√
porig

k popt
k , (3)

where the index k runs over the computational basis states. The
quantities porig

k and popt
k are the probabilities of observing k in the

original and optimized circuits, respectively.
In fact, we compute two fidelity values for each optimization

method. The first, denoted Fsim, aims to quantify the amount of
modifications to the original circuit affected by the optimization
at the algorithmic level. To calculate Fsim, both porig and popt are
computed using the state-vector simulation. The unity of Fsim in-
dicates that the optimized circuit is identical to the original circuit
(up to a possible phase difference on each of the qubits), while a
value different from unity gives a measure of how much the opti-
mization has modified the circuit.

The second fidelity value, Fmeas, is computed using measure-
ments with actual quantum computer. The popt is estimated from
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Fig. 7 Fidelities Fmeas versus Fsim for the one-branching step QPS circuit
transpiled considering the ibmq sydney topology before and after
optimization under different schemes. These transpiled circuits are
executed on the sydney to obtain the Fmeas and a state-vector simula-
tor to obtain the Fsim. The vertical bars represent the total number of
gates in the circuits (gauged by the right-hand vertical axis).

the rate of a bitstring occurring in a large number of repeated
measurements. The porig is computed using simulation as for
the Fsim. Even if the optimized circuit is identical to the origi-
nal circuit, the presence of noise will make Fmeas < 1, with the
discrepancy getting larger when more gates (in particular CNOT
gates) are present in the circuit. Removing CNOT gates to obtain
the optimized circuit will lower the overall effect of noise, rais-
ing the value of Fmeas. However, in some cases the CNOT gate
removal also affects low-amplitude computational basis states,
meaning the optimized circuit can differ from the original circuit,
that might suppress the Fmeas value. Thus, Fmeas is a measure that
takes into account the tradeoff of making the circuit shorter and
changing the circuit through optimization.

In Fig. 5, the fidelity Fmeas versus the number of native gates
(U1,2,3, CNOT) before and after optimization is shown, where the
Aqcel optimization is performed using the classical simulation,
labelled as “(CC)” in the figure. One can see that shortening the
circuit does increase the Fmeas from the original circuit, as ex-
pected. The measurements are performed 81920 times for each
circuit to obtain the Fmeas values, and measurement error mitiga-
tion is not used in these or following Fmeas measurements.

The results obtained from different approaches for finding
nonzero-amplitude basis states and different choices of cutoff

thresholds are summarized in Figs. 5 and 6. It is worth not-
ing that most of the Aqcel-based optimization improve the Fmeas

value over the t|ket〉-only optimization. Another interesting find-
ing is that the determination of bitstring probabilities with quan-
tum measurements brings a better performance than the identi-
fication of nonzero amplitudes with classical calculation, if the
cutoff threshold is set properly (25% for this case). A qualita-
tive explanation for this would be that the quantum measurements
and the cutoff serve to remove qubit controls over low-amplitude
basis states, where such states contribute little to the final result
but the existence of the controlled gates produces those spurious
states under the effect of hardware noise. An exact identifica-
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tion of computational basis states with nonzero amplitudes using
classical simulation does not allow removing such qubit controls,
effectively degrading the Fmeas.

Figure 7 shows the fidelities Fsim versus Fmeas before and af-
ter optimization under different schemes. The figure shows that
the Fsim is identical to unity for all circuits optimized using the
classical simulation, validating that the optimization has not af-
fected the computational accuracy with respect to the original
circuit. Although it also shows that the Fsim is slightly lowered
from unity for all circuits optimized using actual measurements
on the ibmq sydney, the Fmeas improves from the original circuit
because gate reductions suppress the effect of hardware noise.

4. Conclusion
We have proposed a new protocol, called Aqcel, for analyzing

quantum circuits to identify recurring sets of gates and remove
redundant controlled operations. The heart of the redundant con-
trolled operations removal resides in the identification of zero- or
low-amplitude computational basis states. In particular, this pro-
cedure can be performed through measurements using a quantum
computer in polynomial time, instead of classical calculation that
scales exponentially with the number of qubits. Although remov-
ing qubit controls triggered in low-amplitude states will produce
a circuit that is functionally distinct from the original, it is ob-
served that this may be a desirable feature in some cases under
the existence of hardware noise. If a quantum circuit contains re-
curring sets of quantum gates, those gates will be considered as
candidates for further optimization in terms of both gate synthesis
and hardware implementation. In the proposed protocol, the un-
derlying technique to identify recurring gate sets is demonstrated,
leading to the possibility of hardware-aware optimization of such
gates including microwave pulse controls.

We have explored the Aqcel optimization scheme using the
quantum parton shower simulation, a prototypical quantum algo-
rithm for high-energy physics. For this algorithm, the proposed
scheme shows a significant reduction in gate counts with respect
to t|ket〉, which is one of the industry-standard optimization tools,
while retaining the accuracy of the probability distributions of the
final state.
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2x−2∑
l=0

∑
k

c̃2m−x−1,l,k |2m−x − 1〉 |l〉U |k〉 =

2x−2∑
l=0

∑
k

c2m−2x+l,k |2m − 2x + l〉 |k〉 . (A.6)

Denoting
U |k〉 =

∑
k′

ukk′ |k′〉 (A.7)

and recalling Eqs. (A.2), Eq. (A.6) implies (replacing k′ ↔ k on
the left hand sides)

2x−2∑
l=0

∑
k,k′

c̃2m−x−1,l,k′uk′k |2m−x − 1〉 |l〉 |k〉 =

2x−2∑
l=0

∑
k

c2m−2x+l,k |2m−x − 1〉 |l〉 |k〉 . (A.8)

Then, with Eq. (A.3), we have∑
k′

c̃2m−x−1,l,k′uk′k = c̃2m−x−1,l,k ∀l, k. (A.9)

Equation (A.9) holds if the row vector {c̃2m−x−1,l,k}k is an eigenvec-
tor of the matrix u with eigenvalue 1 under right multiplication
for all l, or if c̃2m−x−1,l,k = 0 for all l and k.

Since the cost of exactly computing the complex amplitudes of
the quantum state is high, in Aqcel we only consider this second
condition of c̃2m−x−1,l,k = 0. When using quantum measurements
to estimate the bitstring probabilities at the control qubits, this re-
quirement translates to observing no bitstring with 1 in the qubits
that are considered for control removal.

A.3 Computational resources for the proposed
optimization scheme

The computational cost needed to perform the proposed opti-
mization scheme is evaluated here. We consider a quantum circuit
that contains n qubits and N multi-qubit controlled gates, each
acting on m control qubits and one target qubit.

The elimination of adjacent gate pairs proceeds, for each gate,
by checking a pair-wise matching to the next gate until the end of
the gate sequence. Since the gate could contain at most n qubits,
the computational cost would be O(nN).

The next step in the optimization scheme is the identification
of computational basis states. If we use the classical calcula-
tion for simply tracking all the computational basis states whose
amplitudes may be nonzero at each point of the circuit without
the calculation of the amplitudes, it requires the computation of
O(N2n) states, so grows exponentially with n. This method al-
lows the lower computational resource than a state-vector simu-
lation though it neglects rare eliminations of redundant controlled
operations. If we measure the control qubits at each controlled
gate M times using a quantum computer, the total number of gate
operations and measurements is given by M{m + (1 + m) + (2 +

m) + · · · + (N − 1 + m)} = 1
2 MN(N − 1) + mMN. Therefore, the

computational cost grows polynomially in O(MN2 + mMN).
We next consider removing redundant qubit controls from a

controlled gate with m control qubits. Using a quantum com-
puter that measures the m control qubits M times, the measured

number of computational basis states is M if M < 2m, otherwise
2m. For the classical calculation, the number of basis states is 2m.
Imagine that we choose an arbitrary combination among 2m pos-
sible combinations of new qubit controls on the same controlled
gate. If we want to know whether the chosen combination can
act as the correct qubit control, we would need to check, for a
given measurement done previously with quantum computer, if
all the possible “unmeasured” computational basis states satisfy
the chosen one or not. This requires O(m2m). Since this has to be
checked for all the measurements, the cost would be O(Mm2m) if
M < 2m, otherwise O(m4m). Therefore, the overall computation
for the determination of redundant qubit controls would become
O(Mm4mN) or O(m8mN) for N multi-qubit controlled gates, each
having 2m computational basis states. The classical calculation
would require O(m8mN) as well.

It is known than an arbitrary multi-qubit controlled-U gate with
m control qubits can be decomposed into O(m) Toffoli and two-
qubit controlled-U gates [19]. Therefore, if a controlled gate
in the circuit is decomposed in this way, then above computa-
tional cost for the redundant qubit controls would becomeO(mN).
With this decomposition, the total number of gate operations and
measurement increases due to O(m) times more controlled gates.
However, the computational cost for the identification of com-
putational basis states becomes only 1

2 mMN(mN − 1) + 2mMN,
so still behaves polynomially in O(m2MN2) in case the quantum
computer is used. For the classical calculation, the cost becomes
O(mN2n).

The final step of the optimization scheme is the elimination of
unused qubits. This is just performed by checking qubits that all
the gates in the circuit act on, therefore the computational cost is
O(nN).

Given that a controlled gate has at most n − 1 control qubits,
the total computational cost for the entire optimization steps is
O(n2MN2) and O(nN2n) if the computational basis state mea-
surement is performed using a quantum computer and classical
calculation, respectively.

A.4 Detailed results of gate counts and classi-
cal fidelity measurements

Here, the results of the optimizations based on the dynamic and
static thresholds for the quantum measurements are described.

Figure A·2 shows the gate counts obtained from Aqcel opti-
mizations using the measurements on the sydney with the dy-
namic cutoff thresholds. The gate counts decrease as the thresh-
old is raised from slow

ε to shigh
ε , as expected. The same distri-

butions obtained with the static thresholds (Fig. A·3) show that
almost no gate survives under the threshold of 40%, likely imply-
ing a significant loss of accuracy of the computation result. The
number of qubits is reduced from 15 to 13 with the threshold of
slow
ε or smed

ε , and to 11 with shigh
ε . Under the static thresholds, the

number of qubits is reduced from 15 to 13 for 5% ≤ s f
ε ≤ 25%,

but a significant reduction to 8 is seen for s f
ε ≥ 35%.

The Fmeas versus gate counts is shown in Fig. A·4 for the dy-
namic thresholds of shigh

ε , smed
ε and slow

ε , as well as the capped
variants where the threshold is capped at 25%. The Fmeas gen-
erally improves with higher thresholds, but is worse with shigh

ε
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Fig. A·2 Numbers of single-qubit (U1,2,3) gates, CNOT gates and the sum of
the two as well as the depth of the one-branching step QPS circuit
transpiled considering the ibmq sydney topology before and after
optimization. The probabilities of observing various bitstrings in
the control qubits are measured using the sydney in the heuristic
optimization step, and the three dynamic cutoff thresholds of slow

ε ,
smed
ε and shigh

ε are applied, as well as their capped variants.

CNOT U1,U2,U3 All Gates Depth
0

200

400

600

800

1000

Co
un

ts

IBM Q Sydney Machine Topology
Original circuit
AQCEL (QC, 5%)
AQCEL (QC, 7.5%)
AQCEL (QC, 10%)
AQCEL (QC, 12.5%)
AQCEL (QC, 15%)
AQCEL (QC, 17.5%)
AQCEL (QC, 20%)
AQCEL (QC, 25%)

Fig. A·3 Numbers of single-qubit (U1,2,3) gates, CNOT gates and the sum of
the two as well as the depth of the one-branching step QPS circuit
transpiled considering the ibmq sydney topology before and after
optimization. The probabilities of observing various bitstrings in
the control qubits are measured using the sydney in the heuristic
optimization step, and the static cutoff thresholds of s f

ε are applied.
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Fig. A·4 Fidelity Fmeas versus the number of native gates for the
one-branching step QPS circuit transpiled considering the
ibmq sydney topology before and after optimization. The prob-
abilities of observing various bitstrings in the control qubits are
measured using the sydney in the heuristic optimization step, and
the three dynamic thresholds of slow

ε , smed
ε and shigh

ε are applied,
as well as their capped variants. These transpiled circuits are exe-
cuted on the sydney to obtain the Fmeas.
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Fig. A·5 Fidelity Fmeas versus the number of native gates for the
one-branching step QPS circuit transpiled considering the
ibmq sydney topology before and after optimization. The prob-
abilities of observing various bitstrings in the control qubits are
measured using the sydney in the heuristic optimization step, and
the static thresholds of s f

ε are applied. These transpiled circuits are
executed on the sydney to obtain the Fmeas.

than with smed
ε because the accuracy is significantly degraded due

to too aggressive threshold in the former case. The capped vari-
ants leave more gates in the circuit and have lower Fmeas than the
unbounded cases, except for when using shigh

ε , where capping of
the threshold seems to mitigate the loss of accuracy from overly
aggressive optimization.

Figure. A·5 shows the Fmeas versus gate counts for the s f
ε

thresholds. We observe that with increasing s f
ε value the Fmeas

first increases, which indicates more aggressive optimization, but
that at some point the Fmeas starts to worsen, signaling that the
optimized circuit becomes too far from the original circuit. For
the circuit considered here, the performance of the optimization
seems best for s f

ε ∼ 25%.
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