BN LS SRS 2008 —SE—162
IPSJ SIG Technical Report 2008711719

A Survey on Formal Specifications in Industry

M ORI, BFH OET
RABSHASHL
HBERY 7 b U = TR

j-xiang@ah.jp.nec.com, n-noda@cw.jp.nec.com

ARTIX., BEERCBT2ERAFERROW 20X BRAFAO BRI OV THERS, ZhbOBEAFIXE
NEZNDBBN L ICBEICHMEIC I VBEINTZ LD THEN, ZORKRHETIIZEN L OE 4 OFEFHIZILBEORRL
FHINeRmT L2 BRNL TS, HRAINEEXMAEERERE. Goh/ica—FRE, RB®ax b (br—=v7
ax b, aX M7 BADRERZE) DAL, WS OPDHMAEZ/IZLENTERZOT, TNHIZDOWVT
wET 5,

A Survey on Formal Specifications in Industry

Jianwen Xiang, Natsuko Noda
Common Platform Software Research Laboratories
NEC Cooperation
j-xiang@ah.jp.nec.com, n-noda@cw.jp.nec.com

A comparative study on several industrial applications with formal specifications is presented. These applications have been
reported independently elsewhere before, while the comparative study is to further show some common experiences and
lessons learned from these individual case studies. A number of observations are made relating to the specification
languages, code quality, and cost (e.g., training cost, cost shift, and cost effectiveness) of the industrial applications with
Jformal methods.

Xplore but with a smaller magnitude of numbers as

I INTRODUCTION shown in Figure 2.

All too often in the software industry, domain
descriptions, requirements prescriptions, and software e e
designs are written in an informal way which typically A 2505
lack of clarity, focus, and confidence. These informal y o
specifications might be incomplete, inconsistent, ya .
and/or ambiguous, and thus it can be neither /’J 1500
rigorously analyzed for properties nor used as A 100g
prototypes [1]. e w

g 5

With mathematical and logical formalizations, e dninanan il .
formal methods (FM) can be used to find defects early WP IS WP 003 1% T WA S0 R vs
in the software development life cycle. Recently, it
seems that more and more researchers have noticed Figure 1. Literatures on formal methods in ACM Digtial Library
the importance of formal methods. To illustrate this
point, we carried out a rough statistics on the %0
literatures with the keywords “formal methods” in Ao 0
ACM digital library in the most recent 20 years, and /’ AV
the result is shown in Figure 1 (note that the result is st 0
not limited to software but may also include d 10
hardware). In spite of other possible factors (such as g / W

. R o

incomplete history data), it seems that there is a big e - 5
boost in the research on formal methods from the el

[
most recent decade. Similar result also exists in IEEE L

Figure 2. Literatures on formal methods in IEEE Xplore

717

(Y]

However, the reality of industry is not such
exciting as that of academia. Formal specifications so
far still remain absent from most development
processes, although they have gained some acceptance
in areas such as safety- and security-critical systems.
Lacking of comprehensive understanding on the
experiences and lessons of formal methods is one of
the key obstacles.

The aim of this article is to investigate six
industrial applications of formal methods, and then to
present some observations relating to the specification
languages, code quality, and cost (e.g., training cost,
cost shift, and cost-effectiveness) of the formal
methods by a comparative study between these case
studies. Individual reports of these case studies have
been published elsewhere before, but a comparative
study on them is hopefully to provide more
comprehensive insights, which exactly constitutes the
main motivation of this article.

Note that all of our observations are rather
suggestive than conclusive due to the relatively small
sample space and the “incomplete” comparisons
between the samples. Our comparisons solely rely on
the source data of individual case studies varying from
their focuses and coverage, and thus most of the
comparisons are only taken between some (two or
three, but not all) of the samples which cover the
particular issue of concern.

The rest of this paper is organized as follows.
Section II gives a brief introduction of the industrial
formal applications referred in this article. Section III
presents our comparative observations in terms of the
specification languages, code quality, and cost
analysis of the formal methods. Finally, we carry out
our concluding remarks in Section IV.

II. SUMMARY OF FORMAL APPLICATIONS

A brief introduction to the case studies of formal
applications mentioned in this article is as follows.

e The Customer Information Control System
(CICS), a transition processing system
developed by IBM with Z [2] in 1990 [3, 4].

e The Central Control Function (CCF) Display
Information System (CDIS), a real-time air
traffic control information system developed
by Praxis with VDM (Vienna Development
Method) [5], FSM (Finite State Machines),

, and CCS (Calculus of
Communlcatmg Systems) in 1993 [6, 4, 7].

e The Trusted Gateway (TG) developed by
BASE (British Aerospace Systems and
Equipment Ltd.) using both formal (VDM)

'vvsLisa mathematically well defined VDM like specification
language with features for modular structuring and specifying
operations which interface through a partially shared state.

and informal (CASE technology) methods in
the middle of 1990s [8, 9, 10].

e The Ship Helicopter Operating Limits
Information System (SHOLIS) developed for
the UK Ministry of Defence (MOD) by
PMES and Praxis (subcontractor) with Z in
the late 1990s and the early 2000s [11].

o The Certification Authority (CA) for Multos
smart card scheme developed by Praxis with
Z and CSP (Communicating Sequential
Processes) [12] in the early 2000s [13].

e The VAL shuttle system for Roissy Charles
de Gaulle airport, a fully automatic driverless
shuttle servicing the various terminals of
Roissy Airport, developed by ClearSy using B
method [14]. The VAL system has been
operating since September 2006 [15, 16].

The main reason for choosing these case studies is
that they cover a wide range of application domains
(such as customer transition processing, real-time air
traffic control, trusted gateway, ship helicopter
operating, smart card certification authority, and
airport shuttle transportation) with major formal
specification languages such as VDM, Z, B, and CSP.
These applications range from the beginning of 1990s
to the most recent time (say 2006) which somehow
reflects the progress and development of formal
applications. Moreover, some of them are applied
with the same core specification languages but with
different development approaches which makes the
horizontal comparisons between these development
approaches possible. For instance, the CA and
SHOLIS are both developed with Z, the difference
between them is that the former does not apply any
proof but only rely on traditional testing techniques,
while the latter applies proof on system specification
and code. In addition, an interesting comparison
between formal and informal methods with respect to
the same target system is also disclosed by the TG
project.

III. OBSERVATIONS

A. Specification Languages

1) Formal specifications cannot stand alone

Formal specification cannot live without a precise,
informal definition of how to interpret them in the
domain considered [17, 18]. Moreover, formal
specification is never formal in the first place, and the
properties of a system must first be formulated in a
precise natural or semi-formal language such that all
parties can speak and understand. For instance, the
informal requirements descriptions are the start point
of all the case studies mentioned in Section II.

2) Formal specifications are not all purpose
Formal specification and design are effective
under some but not necessarily all circumstances [7].

Developers should restrict the formal specification to
certain types of requirements such as the “critical”
parts of the system requirements, and, for example,
exclude the user interface requirements [1]. For
instance, the user interfaces of CDIS and CA are
developed in a conventional informal way as shown in
Table 1.

3) Language Integration may be needed
It is unlikely to just use one formal specification

language to specify all possible systems and problems.

This is because each specification language has its

own built-in semantic bias, and thus it would be

impractical to put a language into a domain in which it

is not (mostly) suitable for. In practice, developers

might need to choose more than one notation and then

find a way to integrate and analyze the specifications

expressed in different notations. For instance, in the

CDIS project, VDM is used for the core specifications,
while FSM and CCS are used to specify concurrency

and LAN, respectively. And in the CA project, CSP is

used for the process design in addition to the core

specifications (architecture design and detailed design)
specified with Z (see TABLE I).

Note that recently many extensions and variants
have been developed for different specification
languages. The main intention is to extend the
respective languages and to cover a wider range of
specification paradigms. Examples of them are
VDM++ (object-orientated extension of VDM),
Object-Z (an object-oriented extension to Z) [19],
Timed-CSP (an extension of CSP which incorporates
timing information for reasoning about real-time
systems) [20], TCOZ (Timed Communicating Object
Z) [21], etc.

TABLEI SPECIFICATION LANGUAGES USED IN CDIS AND CA

Project Category Language
Core Specification | VDM
CDIS Concurrency FSM and VVSL
LAN a mix of CCS and VDM
User Interface Informal pseudocode
Core Specification | Z
Process Design CSP
CA a user interface prototype was
User Interface developed and validated with
the CA operational staff

B. Code Quality

1) FM may achieve better code in general

In this section, we analyze the code quality from
three aspects, namely the numbers of faults (errors
that the developer sees) found in the pre-delivered
code and the number of changes needed to correct
these faults, the number of failures (errors that the
user sees) found in the post-delivered code, and the
size and speed of the delivered code. We mainly use
the statistic data from CDIS [7] and TG [9] to
illustrate these issues. The reason for choosing these

two projects is that both of them consist of a part of
informal development in the projects, such that it is
possible to compare the quality between formally and
informally developed codes. The difference between
CDIS and TG is that the informal code of the former
is only developed for user interface subsystem (see
TABLE I), while the latter consists of two parallel
informal and formal development paths with respect
to the same target system.

a) Changes and faults in pre-delivered code

The faults found during unit testing of CDIS
disclose that the number of faults normalized by the
number of modules in the total formal code is less
than that in the informal code (0.46 vs. 0.70) [7]. This
could be regarded as one of the positive arguments of
formal specifications. However, an interesting thing is
that according to Figure 6 (which is borrowed from
[7]), the code changes per KLOC (thousand lines of
code) of the total formal code in each development
quarter are no less than that of the informal code. In
other words, it seems that there are more changes in
the total formal code during unit testing but with less
number of faults. Note that the spikes at or after
quarter 4 could be assumed as the onset of system
testing.

o 10
< gl
g # FSM
~ B W Informat
2 7l A VDM
o ® VDMICCS
8 s
S s
i
g L
g 2l
=g
& 1=
(&7
00

Quarter

Figure 3. Changes of CDIS reported by quarter, normalized by
size of code (source: [7])

It was said in [7] that a fault can result in more
than one change to several modules, and thus the total
code changes are generally greater than the total faults
reported. However, this does not answer the question
why there are less faults but more changes in the total
formal code. One of the possible reasons could be that
the formal code is generally more complex than the
informal code since the latter only deals with
relatively simple part, i.e., user interface. We want to
further investigate the cause of the inconsistency, but
we could not found additional data about testing and
project activity to enlighten us.

b) Failures of post-delivered code

As shown in TABLE II, the CDIS and CA code
exhibits remarkably low 0.81 (and 0.75 for the
formally developed code) and 0.04 failures per KLOC,
compared with the CMM data from [22] and informal
implementations from [23]. However, this comparison

should be viewed very cautiously, since we do not
know the details of the CMM data and the informal
implementations.

TABLE II. AVERAGE FAILURE RATES OF DELIVERED SOFTWARE

Defects
Software per
KLOC
Level 1 7.50
Level 2 6.24
CMM Data [22] | Level 3 4.73
Level 4 2.29
Level 5 1.05
Informal IBM normal development 30.0
— . IBM Cleanroom development 3.40
. 23] Siemens operating system 6-15
NAG scientific libraries 3.00
CDIS air-traffic control 08 :) (;gtal)
. 'Formal . support (fm;mal)
h CA for Multos smart card 0.04
scheme

¢) Code size and speed

TABLE III illustrates the code sizes of kernel
routine, initialization times, and processing rates of
the informal and formal implementations of TG [9]. It
indicates that the routine produced by the formal
methods is much more succinct, roughly 0.17 times of
the informal one. The processing rate for passing a
large block of messages of the formally developed
code is roughly 13.89 times faster as of the informal
one. However, the initialization time needed for the
formally developed code is 4.11 times slower as of the
informal one. No further explanations are presented in
the original literature [9, 10] with respect to this issue.
Note that the difference identified here cannot be
attributed solely to the use of formal specification,
other factors such as experience and ability of the
software engineers should also be considered. In the
software design stage, engineers with more experience
are assigned to the formal group [10].

TABLEIII. CODE SIZE AND SPEED OF TG
M Informal Formal Rate
easures Methods Methods (FT)
Size of kernel
routine 371 63 0.17
(lines)
Initialization time
" (seconds) 17 70 411
Processing rate
(chars per sec) 18 250 13.89

C. Cost Analysis
1) Training Cost
a) The training cost of FM is unclear

One of the key worries for applying formal
specifications is the training needs for general
engineers to read, write, and use formal specifications.

Unfortunately, only a few of the case studies have
somewhat explicitly mentioned about this issue.

In the TG project [9], it is reported that a basic one
week course in the use of formal specification and the
IFAD VDM-SL Toolbox is necessary, and a short one
or two day supplementary course is needed to meet
the specific needs of software designers and
implementers. However, adding training in proof
would introduce a much greater overhead.

In the CA project [13], it is simply mentioned that
the training cost is around 3% of the total effort, and
there is no further detailed information about this
issue.

In both of the above two case studies, we could
not find any data about the experience and
background of the engineers. These omitted factors
are also important when considering and evaluating
the training needs in general.

2) Cost Shift
a) Formal Specifications cause cost shift

Using of formal specification usually adds more
cost to the early stage of software development where
system requirements are being analyzed and
understood. That additional effort, however, can be
generally recovered in the later stages of development
such as detailed design, coding, and testing.

The cost distribution of the trusted gateway (TG)
project [10] confirms this conventional wisdom. In
Figure 4, the cost (time) spent for informal and formal
methods are normalized by a predetermined total time.
In the system specification and architecture design
stage, the formal method costs roughly 17% more
effort than the informal one ((0.35-0.3)/0.3), while in
the detailed design and implementation (coding and
testing) stages, the formal method saves roughly 17%
and 24% more effort, respectively.

|n Informal Method B Formal Method |

Specification
and
Architecture

Detailed Design Code and Test

Figure 4. Cost Distribution of TG

The TG project is a good example to illustrate the
difference between informal and formal methods,
because it is a comparative study on the same target
system with both informal and formal methods.
Totally speaking, the formal method saves 7% more
effort than the informal one. However, we could not
use it directly as one of the evidences of formal
methods, since there are many other unclear factors

which may affect the result, such as the engineers in
the formal one typically have more experience than
those in the informal one [10].

b) Proof causes cost shift

One of the key features of formal specifications is
that it is possible to carry out formal proof on the
specifications (probably with corresponding animation
tools in case the specifications are not executable) so
as to detect potential errors in an early time of
software development. The burden of software testing
of conventional development thus can be somewhat
relieved. In an extreme case such as the B method, test
can be somehow completely replaced by proof,
provided that each step of development from original
specification to final code has been formally proved.

To illustrate this point, a comparison on the cost
distribution between the CA (Certification Authority)
project with Z [13] and the VAL shuttle system
project with B [15] is presented in Figure 5 and Figure
6, respectively. The CA project relies on traditional
testing technique and there is no proof has been
carried out on the Z specifications. In contrast, the
VAL project follows the B method in which stepwise
proof of each specification refinement is required as
mandatory. The unit and integration test is removed
from the VAL project, and the removing is proposed
by RATP, the Parisian Subway Authority, to the
manufacturer. However, some global functional tests
have been carried out through an independent
validation team because the initial requirements
description is informal.

The development process of B software can be
divided into two phases called Abstract Model (AM)
and Concrete Model (CM). The first phase is to
formalize every functional requirement from the
informal software requirements prescriptions into the
Abstract Model containing abstract data types which
cannot be directly implemented, and the second is
then to build the Concrete Model starting from the
non-implementable parts of the Abstract Model. This
task is completely systematic and does not require any
knowledge on the informal requirements prescriptions
[15]. Finally, the last Concrete Model refinement is
automatically translated into executable code with
some commercial translators. For comparison, we
split both AM and CM into two parts, namely AM
specification (spec) and proof, and CM specification
and proof, respectively. An analog then can be made
between the AM spec and proof, CM spec, and CM
proof of VAL and the specification and design (S&D),
code, and test of CA, respectively.

As shown in Figure 5 and Figure 6, the AM spec
and proof of VAL requires roughly 120% more effort
than the S&D of CA, while the CM spec and proof of
VAL save roughly 7% and 73% more effort than the
code and test of CA, respectively. Note that the cost of
S&D, code and test of CA and the cost of AM and

CM of VAL have the surprisingly same proportion,
79%, in their respective overall development costs.

It should be noted that unlike the cost data of the
informal and formal implementations of the same TG
target system shown in Figure 4, the cost data of VAL
and CA shown in Figure 5 and Figure 6 has not been
normalized by a common total time since they are two
completely different projects.

Figure 5. Cost Distribution of CA

Figure 6. Cost Distribution of VAL

3) Cost-Effectivenss
In this section, we analyze three issues related to
the cost-effectiveness of formal methods, ie., the
efficiency for finding faults of proof vs. test, the
productivity of FM, and the overall payoff of FM.

a) The evidence for the efficiency of proof than
testing is not sufficient

Generally speaking, the cost of proof is much
higher than that of specification. This is because the
former typically requires more expert intervention and
coding skill on the specifier's side. One impression is
that commercial pressures work against application of
proof where it is not mandated, especially given the
shortage of relevant skills among systems engineers
[24].

Among the six case studies presented before, three
of them, i.e., CICS (with Z), CA (with Z and CSP),
and TG(with VDM), do no apply proof on the
specifications. In these cases, test seems to be
considered as a more cost-effective way than that of
proof.

An interesting issue is to compare the efficiencies
of fault-finding in different development stages

between applications with and without proof. Since
we could not find a comparative study on the same
one target system which is developed with and
without proof in a parallel way, we take the statistic
data from the CA [13] and SHOLIS [11] projects to
analyze it. The CA and SHOLIS are both developed
with Z, the difference is that the former does not apply
proof and the latter applies proof on the system
specification and code.

The percentage of faults found, percentage of
effort (time) spent, and the efficiency (i.e., faults
found per effort) in each development process of the
SHOLIS project is shown in Figure 7. It indicates that
the Z proof on system specifications is the most cost-
effective phase for faults finding, which represents
that each percentage of effort can find roughly 6.4
percentages of faults. Note that however, this is a kind
of “unfair” comparison since the main goals of some
processes, such as specification and detailed design &
code, are not finding faults but specifying and/or
designing the system in a formal way. Nevertheless,
the efficiency of proof (e.g., Z proof and code proof)
in this project is higher than the efficiency of test (e.g.,
unit test, integration test, and acceptance test) in
general.

0O Faults Found
Effort
Efficiency (Faults Found/Effort)

35%
30%
25%
20%
15%
10% 7
]
rl % | i 7 .
0% % Mz NZ L. 47 é é%}
s %5 c @ B a %5 s 9 5
2 N O « E § o 2 &
e T £ 2 % 8 S 3
& 5 3 g ° g <
£ D € 2
> 3 = 3
I _E [7)
O
o

Figure 7. Faults found, effort, and efficiency of SHOLIS

In contrast, since the CA project does not apply
proof, the most cost-effective phase for fault-finding
is the detailed design and code phase which represents
roughly 3.53 times of efficiency (see Figure 8).
Although we do not have the data of projects
developed with traditional informal methods in hand
for comparison, we assume that the test could be the
most cost-effective phase as for the informal methods.
If this assumption holds, then Figure 4 and 3 also

indicate the early fault-finding functionality of formal
specifications.

ID Faults Found E)Effort E3Efficiency(Faults Found/Effort) |

60%
50%
40%
30%
20%
10%

0%

Specification and Detailed Design Test
architecture and Code

Figure 8. Faults found, effort, and efficiency of CA

By comparing SHOLIS and CA, we get Figure 9,
in which we assume that the “sum” of the processes of
specification, Z proof, and high-level design of
SHOLIS “equals” to the specification and architecture
process of CA, and the sum of the processes of unit
test, integration test, code proof, system validation,
and acceptance of SHOLIS equals to the test process
of CA. One reason for making such a synthesis
comparison is that we do not have the detailed data of
CA about each small development process as SHOLIS.

|I:| SHOLIS B CA B Excess((SHOLIS-CA)/CA)

4
3
2
1
0
Specification Detailed Test Average
and Design and
architecture Code

Figure 9. Efficiency comparison between SHOLIS and CA

Figure 9 indicates that in the specification and
architecture phase, the efficiency for fault-finding of
SHOLIS is roughly 2.96 more times than that of CA.
But in the detailed design and code phase, the
efficiency of SHOLIS is then roughly 1.99 times less
than that of CA. There is no big difference in the test
phase in which only 0.02 times of increasing is
denoted by SHOLIS compared with CA. The
difference of the average efficiencies (of the three
phases) between the two projects is trivial, only
roughly 0.01 times of decreasing of SHOLIS is
represented. Note that the comparison is not based on
the absolute values of faults found and effort spent
since a part of them is not available in the original
literatures [11, 13]. The observations made here thus
are quite subjective regardless of other factors of
influences, such as they are totally two different

projects whose difficulties and efficiencies may not be
able to be compared directly.

Several other factors should be taken into account
in terms of the comparison of cost-effectiveness
between proof and testing, such as the language nature
(i.e., whether the specification language emphasizes
specification or proof), tool support for discharging
proof obligations, the complexity of system
architecture, and the limits of formality. Unfortunately,
so far there is no sufficient quantitative analysis with
respect to the above issues. Further sufficient
quantitative analysis on the comparison between proof
and test of different applications and specification
languages is desired.

b) The productivity of FM is not “clear”

It is reported that the productivities of CDIS [6]
and CA [13] are 13 and 28 LOC/Day, respectively.
Compared with the industrial standard 7 LOC/Day [4],
they represent remarkably 85% and 300%
improvements, respectively. In addition, in the CICS
project, it is also reported that the productivity of
formal methods achieves 9% improvement attributed
to less rework during development [4, 3]. However,
these data should be viewed very cautiously, since the
productivity is an issue highly related to the
experience of engineers and the complexity of the
target system. We do not find sufficient data and
analysis with respect to the above correlated factors,
and thus we cannot draw a relatively objective
conclusion.

¢) The overall payoff of FM is still unclear

As we introduced before, the defect rates of
formally developed codes are typically less than those
of informal ones, and the productivity of formal
methods also seem to be somewhat higher than the
average level of ftraditional informal methods.
However, this does not prove that the formal
developments are generally superior to the informal
ones in terms of the total cost-effectiveness. Special
care should be taken into account in terms of the
following factors:

e There are so many interwoven factors
involved in the case studies, such that it is
impossible to allocate pay off from formal
methods versus other factors, such as quality
of people or effects of other methodologies.
Even where data was collected, it was
difficult to interpret the results across the
background of the organization and the
various factors surrounding the application
[25].

e The public announcements of success seldom
have been accompanied by a complete set of
data and analysis, so independent assessment
is difficult [7]. For instance, the detailed
analysis of training needs of the formal
methods is generally missing or not

considered comprehensively in such
announcements.
e Few comprehensive studies on the

comparison of parallel formal and informal
developments with respect to the same target
systems have been carried out. A notable
exception is the BASE TG (trusted gateway)
project mentioned early in this article.
However, even in this case, the engineers in
the software design stage of the formal path
were of higher level of skills and experience
than those of the informal path, and the final
result of the difference on the overall effort
was not felt to be significant [8, 9, 10].

IV. C ONCLUDING REMARKS

In this paper, we investigated several industrial
applications with formal specifications and presented
some comparative observations relating to the
specification languages, efficiency, quality, and cost
analysis of formal and informal methods. Some of
these observations reconfirm traditional wisdoms of
formal methods, and some of them propose questions
for further discussion and investigation. To conclude
these observations, we briefly classify them as two
groups as follows.

The observations stating something that are
“confirmed”:

e Formal specifications cannot stand alone, and
they must start and work with sufficient
informal documents.

e Formal specifications could be effective under
some circumstances such as development of
safety-critical systems, but they are not
necessarily work under other circumstances
such as development of user interface.

e Language integration may be needed because
each specification language typically has its
own built-in semantic bias so as to be useful
for particular domains.

e Formal specifications can usually achieve
higher code quality due to its formal
semantics. For instance, much fewer defects
are found in formally developed code in
general and the formally developed code is
usually more succinct with higher
performance.

e Formal specifications usually cause cost shift
to the early development processes, likewise
formal proof can also save cost in later testing
compared with traditional development
methods.

The observations stating something that are
“unclear”:

o The evidence for the efficiency of formal
proof than testing is not sufficient so far.

o The productivity of formal specifications is
not clear, although there are some exciting
results have been reported in respective
formal applications. = However, many
influencing factors, such as the training cost
and background and expertise of engineers,
are generally missing in these reports.

e Related to the productivity problem, the
training cost is also unclear. Very few of the
reports of industrial applications have
explicitly mentioned about the training cost.
Even where training cost has been addressed,
important factors such as the experience and
background of engineers are generally
missing or not considered.

e Last but most important, the overall payoff of
formal methods is thus still not clear.

Note again that all of our observations should not
ever be regarded as objective and conclusive, since
the survey is carried out based on a relatively small
sample space and somewhat “incomplete” source data
with respect to each analyzing aspect of concern. To
understand the advantages and limitations of applying
formal specifications in industry in a more
comprehensive sense, we are currently carrying out a
trial of formal specifications on a small real-world
example which has been developed with some
traditional informal methods before. Some first-hand
material is expected from the trial, especially the
comparison between formal and (previous) informal
developments, and the difference between different
formal specifications with respect to the same target
system. In the meantime, another future work is to
further investigate a wider range of industrial
applications for more facts and deeper analysis based
on these facts.

V. REFERENCES

[11 G. K. Palshikar, “Applying formal specifications to real-
world software development”, IEEE Software, pp. 89-97,
Nov/Dec, 2001.

[2] J-R Abrial, “The specification language Z: Syntax and
semantics”, Tech. report, Programming Research Group,
Oxford Univ., 1980.

[3] J. Houston and S. King, “CICS project report: Experiences

and results from the use of Z”, Proc. of VDM'91 (Berlin), vol.

551, Springer Verlag, 1991, pp. 588-596.

[4] T. McGibbon, “An analysis of two formal methods: VDM
and Z”, Tech. report, Data & Analysis Center for Software,
Aug 1997.

[51 C. B. Jones, Systematic software using VDM, 2nd ed.,
Prentice Hall, 1990.

[6] A. Hall, “Using formal methods to develop an ATC
information system”, IEEE Software, pp. 66-76, Mar 1996

[7]1 S. L. Pfleeger and L. Hatton, “Investigating the influence of
formal methods”, Computing Practice, pp. 33-43, Feb 1997.

[8] J. S. Fitzgerald, T. M. Brookes, M. Green, and P. G. Larsen,
“Formal and informal specifications of a secure system
component: first results in a comparative study”, FME’94:
Industrial Benefit of Formal Methods, M. Naftalin, T. Denvir,
and M. Bertran, Eds. LNCS, vol. 873, Springer-Verlag, 1994,
pp. 35-44.

[91 P. G. Larsen, “Lessons leamed from applying formal
specification in industry”, IEEE Software Specifal Issue
about “Leassons Learned”, May 1996.

[10] T. M. Brookes, J. S. Fitzgerald, and P. G. Larsen, “Formal
and informal specifications of a secure system component:
Final results in a comparative study”, FME’96: Industrial
Benefit and Advances in Formal Methods, M-C. Gaudel and
J. Woodcock, Eds. Springer, Mar 1996, pp. 214-227.

[11] S. King, J. Hammond, R. Chapman, and A. Pryor, “Is proof
more cost-effective than testing?”, IEEE Transactions on
Software Engineering, vol. 26, no. 8, pp. 675-686, 2000.

[12] C. A. R. Hoare, Communicating sequential processes,
Prentice-Hall series in Computer Science, Prentice-Hall
International, 1985.

[13] A. Hall and R. Chapman, “Correctness by construction:
developing a commercial secure system”, IEEE Software, pp.
18-25, Jan/Feb 2002.

[14] J-R Abrial, The B book: Assigning programs to meanings,
Cambridge University Press, 1996.

[15] F. Badeau, “Using B as a high level programming language
inan industrial project: Roissy VAL”, Proc. of ZB'05, 2005.

[16] J-R Abrial, “Formal methods in industry: Achievements,
problems, future”, Proc. of ICSE’06, Shanghai, ACM, May
2006, pp. 761-767.

[17] A. van Lamsweerde, “Formal specification: a roadmap”, The
Future of Software Engineering (in conjunction with the 22nd
International Conference on Software Engineering), A.
Finkelstein, Ed. ACM Press, 2000.

[18] A. Hall, “Realising the benefits of formal methods”, Formal
Methods and Software Engineering, LNCS, vol. 3785,
Springer, 2005, pp. 1-4.

[19] G. Smith, The Object-Z Specification Language, Kluwer
Academic Publishers, 2000.

[20] S. Schneider, “An operational semantics for timed CSP”,
Information and Computation, vol. 116, pp. 193-213, 1995.

[21] S. Qin, J. S. Dong, and W-N Chin, “A semantic foundation
for TCOZ in unifying theories of programming”, Proc. of
FME'03, LNCS, vol. 2805, Springer, 2003, pp. 321-340.

[22] C. Jonmes, Software Assessments, Benchmarks, and Best
Practices, Reading, MA: Addison-Wesley, 2000

[23] L. Hatton, “Programming Languages and Safety-Related
Systems,” Proc. Safety-Critical Systems Symposium,
Springer-Verlag, New York, 1995, pp. 48-64.

[24] J. S. Fitzgerald and P. G. Larsen, “Formal specification
techniques in the commercial development process”, ICSE-
17 workshop on Formal Methods Application in Software
Engineering Practice (Seattle, USA), April 1995.

[25] S. Gerhart, D. Craigen, and T. Ralston, “Observation on
industrial practice using formal methods”, Proc. of the 15th
International Conference on Software Engineering, IEEE CS
Press, 1993, pp. 24-33.

