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Abstract: We consider the 1-maximal independent set (1-MIS) problem: given a graph G = (V, E), our goal is to
find a 1-maximal independent set (1-MIS) of a given network G, that is, a maximal independent set (MIS) S ⊂ V of
G such that S ∪ {v, w} \ {u} is not an independent set for any nodes u ∈ S , and v, w � S (v � w). We give a silent,
self-stabilizing, and asynchronous distributed algorithm to construct a 1-MIS on a network of any topology. We as-
sume the processes have unique identifiers and the scheduler is weakly-fair and distributed. The time complexity, i.e.,
the number of rounds to reach a legitimate configuration in the worst case of the proposed algorithm is O(nD), where
n is the number of processes in the network and D is the diameter of the network. We use a composition technique
called loop composition [Datta et al., 2017] to iterate the same procedure consistently, which results in a small space
complexity, O(log n) bits per process.
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1. Introduction

Nowadays, distributed systems generally consist of numer-

ous computers (or processes) where the processes collaboratively
solve a problem by communicating with each other. Because of
the huge scale, distributed systems are prone to have faults in
their components. Therefore, it is important to design an algo-
rithm, which works correctly even if some of the processes have
failed, the topology of a network changes, and/or the stored data
of some processes are corrupted arbitrarily.

Self-stabilization [5] is a promising technique to achieve high
fault tolerance. An execution of a self-stabilizing algorithm is
guaranteed to reach a safe configuration eventually (Convergence

property), which satisfies the specification of a given problem and
keeps the legitimacy thereafter (Closure property). These two
properties of self-stabilization make distributed systems tolerate
any number and any kind of transient fault in the sense that the
system can recover and attain the desired behavior from any ille-
gitimate configuration that those faults may cause.

In this paper, we consider the 1-maximal independent set prob-
lem which is a variant of the maximal independent set problem.
Given a graph (or a network) G = (V, E), a set S ⊆ V of nodes (or
processes) is independent if any two nodes in S are not neighbors.
Finding a large independent set of a given graph is important for
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many applications in distributed systems, for example, clustering
in wireless networks (See Ref. [1] in detail). However, finding the
maximum independent set is NP-hard [12]. Therefore, many stud-
ies in the literature give solutions to find a maximal independent
set (MIS), i.e., an independent set such that no proper superset
of it is independent. Unfortunately, the maximality of an inde-
pendent set does not always guarantee a large cardinality of the
set. For example, every star graph has an MIS consisting of only
one node. Therefore, we consider a stronger maximality called
1-maximality, which Bollobás et al. [2] introduced *1. An MIS
S ⊆ V is 1-maximal if S ∪ {v, w} \ {u} is not independent for any
u ∈ S , and v, w � S (v � w). The 1-maximality offers a better
solution in many cases. For example, the star graph of n nodes
has exactly one 1-maximal independent set (1-MIS), whose size
is n − 1.

1.1 Related Work
The maximal independent set problem is one of the most fun-

damental problems in graph theory and the field of distributed
computing, thus it has been studied in much literature.

Table 1 summarizes recent results on self-stabilizing MIS al-
gorithms, where n and D denote the number of processes and the
diameter of the network, respectively.

In 1995, Shukla et al. [10] gave a self-stabilizing MIS algo-
rithm for any anonymous network. Their algorithm assumes the
central scheduler, i.e., exactly one process executes an atomic ac-

A preliminary extended abstract [11] of this paper appeared in the pro-
ceedings of SSS 2019.
The preliminary version of this paper was published at the IPSJ Kansai-
Branch Convention in September 2019. The paper was recommended to
be submitted to Journal of Information Processing (JIP) by the program
chair of the convention.

*1 They actually introduce more general maximality, k-maximality for any
k ≥ 1
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Table 1 Self-stabilizing maximal and 1-maximal independent set algorithms. n denotes the number of
processes, D denotes the diameter of the network.

problem topology ID scheduler
convergence time

steps rounds
space

[10] MIS any unavailable central O(n) O(n) O(1) bits
[7] MIS any available distributed O(n2) O(n) O(1) bits
[12] MIS any available distributed O(n) O(n) O(1) bits
[9] 1-MIS tree unavailable central O(n2) O(n) O(1) bits
[8] 1-MIS any available central - O(n2) O(n log n) bits

Proposed 1-MIS any available distributed - O(nD) O(log n) bits

tion at each step. Its worst-case convergence from any configura-
tion to a configuration where an MIS is constructed requires O(n)
steps and it uses only O(1) bits per process. Ikeda et al. [7] gave
a different self-stabilizing MIS algorithm. Their algorithm as-
sumes the existence of the process-identifiers, however, it works
correctly under the distributed scheduler, which can activate any
number of enabled processes simultaneously at each step. Its
space complexity is still O(1), but the convergence time increases
to O(n2) steps. Turau [12] gave a self-stabilizing MIS algorithm
with an improved convergence time of O(n) in the same settings.

Shi et al. [9] gave the first self-stabilizing 1-MIS algorithm.
It assumes that the network topology is a tree and assumes the
central scheduler. Its convergence time is O(n2) steps and the
space complexity is O(1) bits per process. Namba [8] gave a self-
stabilizing 1-MIS algorithm for any arbitrary graph. It assumes
the central scheduler. No analysis was presented for convergence
time in terms of the number of steps, but its convergence time
is O(n2) (asynchronous) rounds. To construct a 1-MIS, his algo-
rithm runs n sub-algorithms in parallel, thus it uses O(n log n) bits
of memory space per process.

To the best of our knowledge, there has been no literature that
studies a non-self-stabilizing algorithm for the 1-maximal inde-
pendent set problem. It is worthwhile to mention that determinis-
tic construction of an MIS (and thus a 1-MIS) is impossible in an
anonymous network of an arbitrary topology with the distributed
scheduler, due to the impossibility of symmetry breaking.

1.2 Our Contributions
We give a silent self-stabilizing 1-MIS algorithm under the

distributed scheduler for any arbitrary network. We assume the
existence of process-identifiers. Its convergence time is O(nD)
rounds, where D is the diameter of the network, while the space
complexity is O(log n) bits per process. We use a composition
technique called loop composition, which Datta et al. [3] intro-
duced recently. This technique enables the processes to execute
the same subalgorithm repeatedly in a consistent way until a 1-
MIS is constructed, which results in a smaller space complexity,
O(log n) bits per process. To the best of our knowledge, the loop
composition technique is utilized only for the k-grouping prob-
lem [3] although it seems applicable to many problems. Thus,
our result shows the applicability by providing the second suc-
cess case of the loop composition.

2. Preliminaries

An undirected network G = (V, E) consisting of process set V

and link set E is given. We denote the number of processes and
the diameter of G by n and D, respectively. We assume n ≥ 2.

We assume that the network G is connected without loss of gen-
erality; if G is not connected, it suffices to construct a 1-MIS
for each component of G. Each process v has a unique iden-
tifier v.id chosen from a set ID of non-negative integers where
|ID| = O(poly(n)). Let Nv denote the neighbors of a process v,
i.e., Nv = {u ∈ V | {u, v} ∈ E}. We call the processes in Nv v-

neighbors. By an abuse of notation, we will identify each process
with its identifier, and vice versa, whenever convenient. We call
a member of ID a false identifier if it is not the identifier of any
process in V .

We use the locally shared memory model [5]. A process is
modeled by a finite state machine. The state of a process is de-
fined by the values of its variables. A process can read the vari-
ables of its own and its neighbors simultaneously, but can update
only its own variables. A distributed algorithm defines the behav-
ior of each process v by a finite set of (guarded) actions of the
following form: < label >< guard >−→< statement >. The
label of each action is a number used for reference. The guard is
a predicate on the variables and identifiers of v and it’s neighbors.
The statement updates the state (or variables) of v. An action can
be executed only if it is enabled, i.e., its guard evaluates to true,
and a process is enabled if at least one of its actions is enabled.
The evaluation of the guard and the execution of the correspond-
ing statement are presumed to take place in one atomic step. For
simplicity, we use notation “v.x ←− χ(v)” to represent an action
“v.x � χ(v) −→ v.x ← χ(v)” for any variable x and any function
χ(v). Thus, the action “v.x ←− χ(v)” is enabled if and only if
v.x � χ(v). We also use a symbol ⊥ to represent a “null value”
and define min ∅ = ⊥ and min{a,⊥} = a.

A configuration of the network is an n-dimensional vector con-
sisting of the process states, one for each process in the network.
We denote by γ(v).x the value of variable x of process v in config-
uration γ. Each transition from a configuration to another, called
a step of the algorithm, is driven by a scheduler. We assume the
distributed scheduler in this paper. At each step, the distributed
scheduler selects one or more enabled processes to execute their
action. If a selected process has two or more enabled actions,
it executes the action with the smallest label number. We write
γ �→A γ′ if configuration γ can change to γ′ by one step of algo-
rithmA. We define an execution of algorithmA to be a sequence
of configurations γ0, γ1, · · · such that γi �→A γi+1 for all i ≥ 0.
We assume the scheduler to be weakly-fair, meaning that a con-
tinuously enabled process must be selected eventually.

A self-stabilization algorithm ensures that any execution even-
tually recovers a correct configuration even if it is started from
any configuration, i.e., each process may start from any state. An
execution is maximal if it is infinite, or it terminates at a final con-
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figuration, i.e., a configuration where no process is enabled. Let
L be a predicate on configurations. We say that a configuration
γ of A is safe for L if every execution γ0, γ1, . . . of A starting
from γ (i.e., γ0 = γ) always satisfies L, that is, L(γi) holds for
all i ≥ 0. Algorithm A is said to be self-stabilizing for L if there
exists a set C of configurations ofA such that every configuration
in C is safe for L and every maximal execution γ0, γ1, . . . of A
reaches a configuration in C, i.e., γi ∈ C holds for some i ≥ 0. We
also say that A is silent if every execution of A is finite. Thus, a
silent algorithm A is self-stabilizing for predicate L if and only
if every final configuration satisfies L.

We sometimes regard a predicate on configurations as the set
of configurations. For example, we write γ ∈ L1 ∩ L2 when a
configuration γ satisfies both predicates L1 and L2.

We measure time complexity of an execution in rounds [6]. We
say that process v is neutralized at step γi �→ γi+1 if v is enabled at
γi and not at γi+1, but v executes no action at the step. We define
the first round of an execution � = γ0, γ1, . . . to be the minimum
prefix γ0 . . . γs during which every process enabled at γ0 executes
an action or is neutralized. The second round of � to be the first
round of the execution γs, γs+1, . . . and so forth. We evaluate the
number of rounds of �, denoted by R(�), as the execution time of
�.

2.1 Problem Specification
We specify the 1-maximal independent set problem. A set

S ⊆ V of processes is called an independent set (or just IS) of
G if no two processes in S are neighbors in G, that is, ∀u, v ∈ S :
{u, v} � E. An independent set of G is called a maximal indepen-

dent set (or just MIS) of G if it is not a proper subset of any other
independent set of G. A maximal independent set S of G is called
a 1-maximal independent set (or just 1-MIS) of G if we cannot
increase the cardinality of S without violating the independent

property by removing one process and adding two or more pro-
cesses, that is, for any process u ∈ S and any distinct processes
v, w � S , set S ∪ {v, w} \ {u} is not an independent set. We assume
that each process v has a variable v.mis ∈ {true, false}. We define
predicate L1MIS on configurations as follows: L1MIS(γ) = true
holds if and only if, in configuration γ, {v ∈ V | v.mis = true}
is a 1-maximal independent set. Our goal is to give a silent and
self-stabilizing algorithm for L1MIS.

3. Loop Composition

We use the loop composition [3] to design a silent self-
stabilizing 1-MIS algorithm. The loop composition is a technique
to execute a given algorithm repeatedly in a consistent way. To
utilize the loop composition, we must design two algorithms A
and P and a predicate E for a given predicate L. AlgorithmA is
a base algorithm that we aim to execute repeatedly. It must sat-
isfy the three requirements, shiftable convergence, loop conver-

gence, and correctness. These requirements are defined in the se-
quel. Predicate E: V �→ {false, true} is a locally checkable error-
detecting predicate. We say that a configuration γ is erroneous for
E if E(v) holds for some v ∈ V in γ. Otherwise, we say that γ is
non-erroneous for E. AlgorithmP is a silent self-stabilizing algo-
rithm that brings the system to a non-erroneous configuration for

Fig. 1 An execution of Loop(A, E,P).

E, starting from any configuration. Then, we obtain a composite
algorithm Loop(A, E,P) [3], which is a silent and self-stabilizing
algorithm for L. Very roughly speaking, Loop(A, E,P) shows
the following behavior (See Fig. 1). Recall that a configuration is
final forA if and only if no action ofA is enabled in any process.

1: repeat
2: if the current configuration is erroneous then
3: Execute P, which brings the system to a non-erroneous

configuration.
4: else
5: Execute A, which brings the system to a final configu-

ration with a better solution forA
6: Copy the outputs ofA to the inputs ofA
7: end if
8: until The current configuration is final and the inputs and the

outputs ofA are the same.

In what follows, we describe the requirements forA and P and
explain the meaning of copying from the outputs of A to the in-
puts of A. We define OA (resp. OP) as the set of variables of A
(resp.P) whose values can be updated by actions of A (resp.P),
and IA (resp. IP) as the set of variables ofA (resp.P) whose val-
ues are never updated and only read by actions ofA (resp.P). We
assume OA ∩ OP = ∅ and IP = ∅. The error detecting predicate
E(v) is evaluated by process v ∈ V , and its evaluation depends
on variables in IA ∪ OP of the v-neighbors and v itself. Let E be
a predicate on configurations such that E(γ) holds if and only if∨
v∈V E(v) holds in configuration γ. We assume that algorithmA

has a copying variable x ∈ IA for every variable x ∈ OA. We
define γcopy as the configuration obtained by replacing the value
of v.x with the value of v.x for every process v and every variable
x ∈ OA in configuration γ. We define predicateCgoal(A, E) as fol-
lows: configuration γ satisfies Cgoal(A, E) if and only if γ ∈ ¬E,
γcopy = γ, and no action ofA is enabled in any process. We must
designA to satisfy the following three requirements:
Shiftable Convergence Every maximal execution of A that

starts from a configuration in ¬E terminates at a configu-
ration γ such that γcopy ∈ ¬E.

Loop Convergence There exist two integers LA and RA that
satisfy the following proposition: if �0, �1 . . . is an infi-
nite sequence of maximal executions of A where �i =

γi,0, γi,1, . . . , γi,si , γ0,0 ∈ ¬E, and γi+1,0 = γ
copy
i,si

for each i ≥ 0,
then γ j,s j ∈ Cgoal(A, E) and R(�0) + R(�1) + . . .R(� j) ≤ RA
hold for some j < LA , and

Correctness γ ∈ Cgoal(A, E)⇒ γ ∈ L holds for every configu-
ration γ.

Two intergers LA and RA are an upper bound on the number of
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Fig. 2 An execution of Loop(A, E,P).

iterations ofA’s executions and an upper bound on the total num-
ber of rounds of those (iterated) executions in A. We also must
design P such that every maximal execution of P terminates at a
configuration in ¬E within TP rounds.

If we design A, E, and P that satisfy the above requirements,
the composited algorithm Loop(A, E,P) presented in Ref. [3]
has the property described in the following theorem.
Theorem 1 (Refs. [3], [4] *2). Algorithm Loop(A, E,P) is a

silent and self-stabilizing algorithm for predicate L. Every exe-

cution of Loop(A, E,P) terminates within O(n+TP+RA+LAD)
rounds. Its space complexity is O(SA + S P + log n) bits per pro-

cess, where SA (resp. S P) is space complexity of A (resp. P) in

bits per process.

We briefly describe the behavior of Loop(A, E,P) in the rest
of this section. In an execution of Loop(A, E,P), the processes
simulate an execution of A or an execution of P. Starting from
any configuration, the processes eventually agree with which al-
gorithm they should simulate. When they detect that the cur-
rent configuration does not satisfy ¬E, they simulate an execu-
tion of P, by which a configuration in ¬E is reached (See the
(leftmost) thick arrow in Fig. 2). If the current configuration sat-
isfies ¬E, then the processes simulateA. (See the solid arrows in
Fig. 2). Whenever a simulated execution ofA terminates, the pro-
cesses check whether or not they already reach a configuration in
Cgoal(A, E). If it does, they will do nothing thereafter. Otherwise,
they copy the values of all output variables to the corresponding
copy variables, which results in transition corresponding to the
dashed arrows in Fig. 2. After that they simulate a new execu-
tion of A again. From the property of the shiftable convergence
and the loop convergence of A, they eventually reach a config-
uration in Cgoal(A, E) and they terminate (although they cannot
detect termination). Thereafter, legitimate predicate L is always
satisfied thanks to the correctness property ofA.

4. Self-stabilizing 1-MIS Algorithm

In this section, we design a silent self-stabilizing algorithm
for constructing a 1-MIS using the loop composition method de-
scribed in the previous section. Specifically, we give a base al-
gorithm Inc, an initialization algorithm Init and an error detect-
ing predicate EMIS such that Loop(Inc, EMIS, Init) is a silent and
self-stabilizing algorithm for L1MIS. The space complexity of
Loop(Inc, EMIS, Init) is O(log n) bits per process and the worst

*2 Loop composition Loop(A, E,P) was originally given in Ref. [3],and its
time complexity was slightly improved by Ref. [4].

case time complexity is O(nD) rounds.
Every process v maintains a Boolean variable v.mis ∈

{false, true} and the corresponding copying variable v.mis ∈
{false, true}. A variable v.mis is an output variable of Init and
an input variable of Inc. A variable v.mis is not accessed by Init.
It is updated only by Inc. We define two sets S I = {v ∈ V | v.mis}
and S O = {v ∈ V | v.mis}. Define Linput as the predicate on con-
figurations such that Linput(γ) = true if and only if S I is an MIS
in a configuration γ.

Our goal is to design Inc, EMIS, and Init such that;
• If S I is not an MIS, i.e., the current configuration deviates

from Linput, then at least one process v must detect the de-
viation with an error detecting predicate EMIS(v), that is,
Linput(γ) holds if and only if ¬∨v∈V EMIS(v) holds in a con-
figuration γ,

• Every maximal execution of Init starting from any config-
uration terminates within O(n) rounds at a configuration in
Linput,

• Every maximal execution � of Inc starting from a configura-
tion in Linput where S I is not a 1-MIS terminates at a config-
uration where S O is an MIS such that |S O| ≥ |S I | + 1, within
O(ε+1) rounds where ε is |S O|−|S I | in the final configuration
of �, and

• Every maximal execution � of Inc starting from a configu-
ration in Linput where S I is a 1-MIS terminates within O(1)
rounds at a configuration where S O = S I .

Note that the predicate Linput corresponds to ¬E in the previous
section. If the above conditions hold, then Inc, EMIS, and Init sat-
isfy all the requirements of the loop composition for L = L1MIS,
TInit = O(n), RInc = O(n), LInc = n, thus Loop(Inc, EMIS, Init)
is a silent and self-stabilizing algorithm for L1MIS and its time
complexity is O(n + TInit + Rinc + Linc · D) = O(nD) rounds.

We give Init and EMIS in Section 4.1 and give Inc in Sec-
tion 4.2.

4.1 Error Detecting Predicate EMIS and Algorithm Init
First, we give the error detecting predicate EMIS as follows:

EMIS(v)≡ (v.mis∧∃u ∈ Nv :u.mis)∨(¬v.mis∧∀w ∈ Nv :¬w.mis).
Lemma 1. For any configuration γ, Linput(γ) holds if and only if

¬∨v∈V EMIS(v) holds in γ.

Proof. Note that ¬EMIS(v) ≡ (v.mis ⇒ ∀u ∈ Nv : ¬u.mis) ∧
(¬v.mis⇒ ∃w ∈ Nv : w.mis). Suppose that ¬∨v∈V EMIS(v) holds
in a configuration γ, that is, we have ¬EMIS(v) for all v ∈ V in γ.
Then, every process in S I has no neighbor in S I and every process
in V \ S I has at least one process in S I . Hence, S I is an MIS in γ
and Linput(γ) holds. Suppose the other case, that is,

∨
v∈V EMIS(v)

holds in γ. In this case, some process in S I has a neighbor in S I

or some process in V \ S I has no neighbor in S I . Hence, S I is not
an MIS in γ and Linput(γ) does not hold. �

Next, we give an algorithm Init. The goal of this algorithm is
to bring the network to a configuration where S I is an MIS within
O(n) rounds starting from any configuration. The algorithm Init

consists of only one action I1 as given in Table 2.
In this algorithm, a process with a smaller identifier has a

higher priority for becoming a member of S I . If a process v finds
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Table 2 Init.

[Actions of process v]
I1: v.mis ←− (∀w ∈ Nv : ¬w.mis ∨ (v.id < w.id))

that there is no neighbor with a smaller identifier in S I , then v
becomes a member of S I , that is, v executes v.mis ← true. Oth-
erwise, if there exists a process with a smaller identifier in Nv∩S I ,
v executes v.mis← false.

We give an example of the initialization in Fig. 3 (1) and (2).
Suppose that an execution of Inc begins from a configuration γ in
Fig. 3 (1) that S I = {19, 21, 53, 62, 81, 87}, which is not an MIS.
Then, Linput(γ) does not hold because process 31 � S I has no
neighbor in S I and process 19 ∈ S I has a neighbor in S I (i.e.,
21). Thus, initialization algorithm Init is executed. Processes 5
and 71 become members of S I within one round because they
have no neighbor in S I with a smaller identifier and processes 13,
19, 21, 28, 31, 62, 79, and 87 converge to non-members of S I

by the end of the next round because they have neighbors 5 or
71. After that, process 23 becomes a member of S I within one
round because they have no neighbor in S I with a smaller identi-
fier and processes 35, 53, and 67 converge to non-members of S I

by the end of the next round because process 23 is their neighbor.
Thus, any execution of Init terminates at a configuration whose
output is an MIS of G, in this example, a configuration such that
S I = {5, 23, 71}.
Lemma 2. Every maximal execution of Init starting from any

configuration terminates within O(n) rounds at a configuration in

Linput.

Proof. First, we claim that any final configuration of Init sat-
isfies Linput. By definition of notation “v.x ←− χ(v)” (See Sec-
tion 2), a process v is enabled if and only if v.mis � (∀w ∈ Nv :
¬w.mis ∨ (v.id < w.id))). Therefore, in any final configuration γ,
where no process is enabled, every process v in S I has no neigh-
bor in S I and every process v in V \ S I has at least one neighbor
in S I . Thus, any final configuration satisfies Linput.

Next, we prove that every maximal execution terminates within
O(n) rounds. Let v1, v2, . . . , vn be the processes in V such that
v1.id < v2.id < · · · < vn.id. The guard of I1 in process v, i.e.,
v.mis � (∀w ∈ Nv : ¬w.mis ∨ (v.id < w.id)), depends only
on v.mis and w.mis such that w.id < v.id. Therefore, v1 be-
comes disabled in the first round of any maximal execution of
Init and never becomes enabled thereafter. Similarly, vi becomes
disabled within one round after all neighboring processes with
smaller identifiers than vi are disabled. Thus, any maximal exe-
cution terminates within O(n) rounds. �

4.2 Algorithm Inc
We give an algorithm Inc in this section. This algorithm as-

sumes that S I is an MIS of G. The goal of this algorithm is to
bring the network to a configuration where S O is an MIS such
that |S O| ≥ |S I | + 1 if S I is not a 1-MIS. Otherwise the goal is to
reach a configuration where S O = S I holds. Note that if S I is not
a 1-MIS, S O such that |S O| ≥ |S I | + 1 holds necessarily exists.
4.2.1 Key Idea

In this subsection, we give a key idea to find an MIS S O such
that S O = S I if S I is a 1-MIS of G, otherwise |S O| ≥ |S I | + 1.

Fig. 3 Example of Init and Inc.

Implementation of this idea as a distributed algorithm will be de-
scribed in Section 4.2.2.

First, we define the parent-child relationship on processes: If
a process v ∈ V \ S I has exactly one neighbor u in S I , i.e.,
Nv ∩ S I = {u}, we say that u is a parent of v and v is a child

c© 2021 Information Processing Society of Japan
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Fig. 4 The first and the second filters.

of u. The relationship only constructs trees of height 1. As
we will see later, each process v memorizes the identifier of
its parent in v.parent if v has a parent. Otherwise, we assign
v.parent = ⊥. Define Cu as the set of children of process u,
that is, Cu = {v ∈ Nu | v.parent = u}. Let u and v be any
two processes such that u is a parent of v, i.e., v.parent = u. If
|Cu| − |Cu ∩ Nv| ≥ 2, we call v a candidate. In other words, v is a
candidate if and only if it has a parent and this parent has another
child in V \ Nv. Let us see an example (See Fig. 4 (1)). Process
31 is a candidate because its parent, process 5, has another child,
process 62, which is not a neighbor of process 31. On the other
hand, process 13 is not a candidate because all other children of
process 5 are neighbors of Process 13. We use the word “can-
didate” because we can increase the size of the MIS by adding
some candidates and removing their parent. For example, we ob-
tain a larger MIS than S I if we remove process 5 and add the
two non-neighboring candidates among its children, processes 31
and 62. However, we cannot add all candidates to obtain a larger
MIS. This is because some of the candidates may be neighbors
and thus have conflicts to join the independent set. For example,
we cannot add both processes 53 and 79, and we cannot add both
processes 35 and 81.

Next, we perform two distinct filters to avoid the conflicts. We
call a process that survives the first filter (resp. the second filter)
a qualifier (resp. a winner). If a candidate v does not have any
neighboring candidate w such that w.parent < v.parent, v is a
qualifier. Otherwise, v is not a qualifier. For example, in the ex-
ample of Fig. 4 (2), process 79 is not a qualifier because the iden-
tifier of its parent is 71 and one of its neighbors, process 53, has a
parent with identifier 23 < 71. All the other candidates are quali-
fiers in this example. Any two qualifiers that have distinct parents
are not neighbors, thus do not have an inter-tree conflict while
some two qualifiers with the same parent may have an intra-tree
conflict. The second filter chooses winners among the qualifiers

by comparing their identifiers in the same way as algorithm Init.
The winners are decided by each parent such that it has two or
more qualifiers. Let q1, q2, . . . , qs be the qualifiers of G in as-
cending order, i.e., q1.id < q2.id < . . . qs.id. Define the set W

of qualifiers recursively as follows; q1 ∈ W, and for each i ≥ 2,
qi ∈ W if and only if there is no qi-neighbor q j ∈ W such that
j < i. The qualifiers in the resulting W are winners and the other
qualifiers are non-winners. In the example of Fig. 4 (3), processes
31, 35, 62, 67, and 87 are winners. We have the following two
lemmas about winners.
Lemma 3. There is at least one process that has two or more

winners in its children if S I is not a 1-MIS of G.

Proof. Let u be the process with the minimum identifier such
that it has a candidate among its children. Such u clearly exists if
S I is not a 1-MIS. Let c1 be the candidate in Cu with the small-
est identifier. By definition of the candidates, there exists one or
more other candidates in Cu that are not c1-neighbors. Let c2 be
the candidate with the smallest identifier among them. Both c1

and c2 survive the first and the second filters thanks to the mini-
mality of u’s identifier and the absence of a candidate in Cu that
makes c1 or c2 drop in the second filter. Hence, there exist at least
two winners in u’s children. �
Lemma 4. There exists no winner if S I is a 1-MIS of G.

Proof. Assume for contradiction that S I is a 1-MIS of G and
there is a candidate v ∈ V . Let u be the parent of v. By definition
of a candidate, u has at least one candidate other than v, say w, in
its children, which is not a neighbor of v. Since v and w are candi-
dates, S I∩ (Nv∪Nw) = {u} holds. Therefore, S O = S I∪{v, w}\{u}
is an independent set and |S O| = |S I | + 1, which contradicts the
assumption that S I is a 1-MIS of G. �

Finally, we choose S O = S A(S I) ∪ S B(S I) ∪ S C(S I) where
S A(S I), S B(S I), and S C(S I) are the sets of processes that we
will define in the following. These sets depend on S I , but we
always omit S I from their notations, i.e., just write S A, S B, and
S C , whenever it is clear from the context. Define S A as the set
of all processes u in S I such that u has only one or no winners
in its children. Define S B as the set of all winners v such that
v.parent � S A. By definition, S A ∪ S B is an independent set of
G. Moreover, |S A∪S B| ≥ |S I |+ |S B|/2 ≥ |S I |+1 holds if S I is not
a 1-MIS. This is because (i) S B � ∅ holds by Lemma 3, and (ii)
each process in S I \ S A has at least two winners in its children,
thus |S B| ≥ 2|S I \ S A| holds. On the other hand, S A = S I and
S B = ∅ holds if S I is a 1-MIS, by Lemma 4. Note that S A ∪ S B is
an independent set but may not be an MIS of G (if S I is not a 1-
MIS). In the example of Fig. 4 (3), S A ∪ S B = {31, 35, 62, 67, 71}
is not an MIS because S A ∪ S B ∪ {21} and S A ∪ S B ∪ {19, 28}
are also independent sets of G. Let u1, u2, . . . , us be the processes
in V \ (S A ∪ S B) such that there is no neighbor in S A ∪ S B in
ascending order, i.e., u1.id < u2.id < . . . us.id. Define the set S C

recursively as follows; u1 ∈ S C , and for each i ≥ 2, ui ∈ S C

if and only if there is no ui-neighbor u j such that j < i. Thus,
S C = {19, 28} in the example of Fig. 4 (3). The set S A ∪ S B ∪ S C

is an independent set since each process in S C does not have a
neighbor in S A ∪ S B ∪ S C . Furthermore, S A ∪ S B ∪ S C is an MIS
of G because otherwise there must be a non-winner v ∈ V \ S I

such that there exists no v-neighbor in S A ∪ S B ∪ S C , but it im-
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plies v ∈ S C by definition of S C , a contradiction. Therefore, we
have the following three lemmas.
Lemma 5. The set S A ∪ S B ∪ S C is an MIS of G if S I is an MIS

of G.

Lemma 6. |S A ∪ S B ∪ S C | ≥ |S I | + |S B|/2 + |S C | ≥ |S I | + 1 if S I

is an MIS but not a 1-MIS of G.

Lemma 7. S A ∪ S B ∪ S C = S I and S B = S C = ∅ if S I is a 1-MIS

of G.

Thus we achieve our goal by letting S O = S A∪S B∪S C . If S I is
not a 1-MIS, |S O| ≥ |S I |+ 1. Otherwise, S O = S I . In the example
of Fig. 4 (3), S A = {71}, S B = {31, 35, 62, 67}, S C = {19, 28}, and
hence |S O| = 7 > 3 = |S I | (See Fig. 3 (2) and (3)).

We show how to reach a configuration in Cgoal(Inc, EMIS) for
S I in Fig. 3. When the first execution of Inc terminates, pro-
cesses copy the values of all output variables to the corresponding
copy variables, that is, S O computed by the first execution of Inc

(See Fig. 3 (3)) is copied to S I of the second execution of Inc

(See Fig. 3 (4)). When the second execution of Inc terminates,
S O = {19, 28, 31, 35, 62, 67, 79, 87} holds because processes 79
and 87 are winners and only process 71 in S I has two or more
winners in its neighbors (See Fig. 3 (5)). In the third execution of
Inc, S I = S O holds because there exists no winner, that is, S I is a
1-MIS of G (See Fig. 3 (6)). Hence, all the processes do nothing
thereafter (See Fig. 3 (7)).
4.2.2 Distributed Implementation

Each process v has six variables v.parent ∈ ID, v.numchild ∈
{0, 1, 2, . . . , |Nv|}, v.cand ∈ {false, true}, v.qualifier ∈
{false, true}, v.winner ∈ {false, true}, and v.mis ∈ {false, true},
and the corresponding copying variables for the six variables.
Each child v, i.e., a process in V \S I that has exactly one neighbor
in S I , stores the identifier of its parent on v.parent. Each process
u in S I stores the number of its children, i.e., |Cu|, on u.numchild.
Since |ID| = O(poly(n)), the two variables parent and numchild
require O(log n) bits per each process. The Boolean variable
v.cand, v.qualifier, and v.winner represent whether or not a

Table 3 Inc.

[Actions of process v]
M1: v.parent ←− Parent(v)
M2: v.numchild ←− |Cv |
M3: v.cand ←− Cand(v)
M4: v.qualifier ←− Qualifier(v)
M5: v.winner ←− Winner(v)
M6: v.mis ←− InS A(v) ∨ InS B(v) ∨ InS C(v)

Table 4 Functions of Inc.

Parent(v) =

⎧⎪⎪⎨⎪⎪⎩
w.id for w ∈ Nv with w.mis = true if |{w ∈ Nv | w.mis}| = 1

⊥ otherwise

Cv = {w ∈ Nv | w.parent = v}
Cand(v) ≡ v.parent � ⊥

∧ (v.parent).numchild − |{w ∈ Nv | v.parent = w.parent}| ≥ 2

Qualifier(v) ≡ v.cand ∧ (∀w ∈ Nv : w.cand⇒ v.parent ≤ w.parent)
Winner(v) ≡ v.qualifier ∧ (∀w ∈ Nv : v.id < w.id ∨ ¬w.winner)

InS A(v) ≡ v.mis ∧ |{w ∈ Cv | w.winner}| ≤ 1

InS B(v) ≡ ¬v.mis ∧ v.winner ∧ ¬(v.parent).mis

InS C(v) ≡ ¬v.mis ∧ ¬v.winner ∧
⎛⎜⎜⎜⎜⎜⎝
∀w ∈ Nv s.t. w.mis :

¬
(
w.mis ∨ w.winner ∨ w.id < v.id

)
⎞⎟⎟⎟⎟⎟⎠

process v is a candidate, a qualifier, and a winner, respectively.
Actions of Inc are given in Table 3 and the functions used in

Table 3 are given in Table 4. We use a hierarchical composition to
design Inc. Actions M1,M2, . . . ,M6 maintain variables parent,
numchild, cand, qualifier, winner, and mis, respectively.
We say that an action Mi converges if all of M1,M2, . . . ,Mi are
disabled in all the processes. Generally, action Mi (i ≥ 2) refers
the variables maintained by M1,M2, . . . ,Mi−1. Therefore, before
Mi−1 converges, some of those variables in some process may not
be correct, thus action Mi does not compute the correct value of
the variable it maintains. However, after Mi−1 converges, those
variables maintained by M1,M2, . . . ,Mi−1 are correct in all the
processes, thus action Mi can use the correct values of those vari-
ables.

Actions M1, M2, M3, and M4 are simple and straightforward.
By these actions, each process v computes its parent (if it has),
the number of its children, whether or not it is a candidate, and
whether or not it is a qualifier, respectively. Action M5 simu-
lates the second filter. By M5, a qualifier v sets v.winner = true
(becomes a winner) if and only if every w ∈ Nv such that
w.winner = true has a larger identifier than v. The second filter
implemented by Action M5 obviously computes the correct value
of winner, i.e., v.winner holds if and only if v ∈ W, the set of
winners. However, it sometimes requires more than a constant
number of rounds. In the example shown in Fig. 4 (2), process 67
may become the first winner because there is no winner among
its neighbors in the configuration shown in the figure. However,
process 53 may become a winner later, and then, process 67 will
get back to a non-winner since process 53 has a smaller identifier.
Process 53 also must get back to a non-winner because a neigh-
boring process 35 with a smaller identifier eventually becomes a
winner. After that, process 67 will become a winner again be-
cause now it has no winner among its neighbors. Eventually, an
execution of Inc reaches the configuration shown in Fig. 4 (3). As
we will see later, the flipping behavior like this example may re-
quire Θ(k) rounds in the worst case when some process in S I has
k winners among its children after this filter converges.

A variable v.mis is maintained by Action M6. Our goal is to
set v.mis such that S O = S A ∪ S B ∪ S C holds. After M5 con-
verges, every process v ∈ S I computes v.mis correctly within
one round by M6; every v ∈ S I executes v.mis ← true if and
only if v ∈ S A, i.e., there is only one or no winner among v’s
children. Every v ∈ W computes v.mis correctly in the follow-
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ing rounds; it executes v.mis ← true if and only if v ∈ S B, i.e.,
(v.parent).mis = false. Thereafter, every process v � S I ∪ W

computes v.mis correctly; it executes v.mis← true if and only if
v ∈ S C , i.e., there is no v’s neighbor w such that w ∈ S A ∪ S B or
w ∈ S C ∧w.id < v.id. Since the last computation (for v � S I ∪W)
is recursive, it requires O(|S C |) rounds for the same reason as the
computation of M5.
Lemma 8. Every maximal execution � of Inc starting from a

configuration in Linput terminates at a configuration where S O =

S A ∪ S B ∪ S C, within O(1 + |S B| + |S C |) rounds.

Proof. By definition of the six actions of Inc, S O = S A∪S B∪S C

holds when � terminates. Therefore, it suffices to show that �
terminates within O(1 + |S B| + |S C |) rounds. Actions M1, M2,
M3, and M4 converge within O(1) rounds because Action Mi

(1 ≤ i ≤ 4) refers only variables that are maintained by the actions
M1 . . . ,Mi−1. The same does not hold for Action M5 because it
is recursive in the sense that a qualifier v may refer a variable
winner of some neighbors to compute its own winner. In the
following, for any process v and any variable x, we say that v.x
converges at a point of a maximal execution if v does not change
the value of v.x after the point. Let u be any process in S I and Wu

be the set of winners among u’s children, i.e., Wu = W ∩ Cu. Let
wu,1, wu,2, . . . , wu,|Wu | be the processes in Wu in ascending order of
their identifiers. After M4 converged, wu,1.winner converges to
true within one round and v.winner of all its neighbors v con-
verges to false within the next round. After that, wu,2.winner

converges within one round since wu,2 has a smaller identifier than
any qualifier in Nwu,2 \ Nwu,1 . Generally, wu,i.winner converges to
true within O(i) rounds after M4 converged. Thus, Action M5

converges within O(maxu∈S I |Wu|) = O(|S B|) rounds. After M5

converges, M6 converges within O(|S C |) rounds for the same rea-
son. �

In what follows, we show that algorithm Inc satisfies three
requirements, shiftable convergence, loop convergence, and cor-
rectness.
Lemma 9 (Shiftable Convergence). Every maximal execution �

of Inc starting from a configuration in Linput terminates at a con-

figuration γ such that γcopy ∈ Linput.

Proof. In the final configuration γ, S O = S A ∪ S B ∪ S C holds
by Lemma 8. This set S O is an MIS of G by Lemma 5. Clearly,
S O in γ is equal to S I in γcopy. Then, S I is an MIS of G in γcopy,
which yields γcopy ∈ Linput. �

Recall that, for any configuration of Inc, γ ∈ Cgoal(Inc, EMIS)
means that γ ∈ Linput, γcopy = γ, and no action of Inc is enabled
in any process.
Lemma 10 (Loop Convergence). If �0, �1, . . . is an infinite se-

quence of maximal executions of A where �i = γi,0, γi,1, . . . , γi,si ,

γ0,0 ∈ Linput, and γi+1,0 = γ
copy
i,si

for each i ≥ 0, then γ j,s j ∈
Cgoal(Inc, EMIS) and R(�0) + R(�1) + . . .R(� j) = O(n) hold for

some j ≤ n.

Proof. By Lemma 9, the initial configuration of every exe-
cution �i satisfies γi,0 ∈ Linput by induction on i ≥ 0. Let
S I,0, S I,1, . . . be S I in the initial configurations γ0,0, γ1,0, . . . of
�0, �1, . . . , respectively. Let S O,0, S O,1, . . . be S O in the final con-
figurations γ0,s0 , γ1,s1 , . . . of �0, �1, . . . , respectively. By defini-
tion, S I,i+1 = S O,i holds for all i ≥ 0. By Lemmas 6 and 8,

|S I,i| < |S I,i+1| holds unless S I,i is a 1-MIS of G. Since |S I,i| < n

holds for all i and |S I,0| ≥ 1, there exists j′ < n such that
S I, j′ = S I, j′+1 = S I, j′+2 = . . . , i.e., S I,k is the same for all
k ≥ j′ by Lemmas 7 and 8. We consider the minimum such j′

in what follows. Algorithm Inc refers only variable mis among
the six copying variables. Therefore, letting v ∈ V be any process,
v.mis in γ j′ ,0 equals to v.mis in γ j′ ,s j′ because γcopy

j′ ,s j′
= γ j′+1,0. and

v.mis never changes in execution � j′+1. Therefore, γcopy
j′ ,s j′
= γ j′ ,s j′ ,

which yields γ j′ ,s j′ ∈ Cgoal(Inc, EMIS). Lemmas 6, 7, and 8 give
R(�0) + R(�1) + . . .R(� j′ ) = O(n). �
Lemma 11 (Correctness). Every configuration γ ∈
Cgoal(Inc, EMIS) satisfies L1MIS.

Proof. We have S I = S O because γ ∈ Cgoal(Inc, EMIS). As-
sume for contradiction that S O(= S I) is not a 1-MIS of G in
γ. Since γ is a final configuration (i.e., no process is enabled),
S O = S A(S I) ∪ S B(S I) ∪ S C(S I) holds by Lemma 8. Therefore,
|S O| ≥ |S I | + 1 holds by the assumption and Lemma 6, which
yields S O � S I , a contradiction. �
Theorem 2. Algorithm Loop(Inc, EMIS, Init) is silent and

self-stabilizing for L1MIS. Every maximal execution of

Loop(Inc, EMIS, Init) starting from any configuration termi-

nates within O(nD) rounds. Algorithm Loop(Inc, EMIS, Init) uses

O(log n) bits per process.

Proof. Immediately follows from Theorem 1 and Lemmas 1, 2,
9, 10, and 11 because O(n + TInit + RInc + LInc · D) = O(nD). �

5. Conclusion

We have presented a silent self-stabilizing algorithm for
the 1-maximal independent set problem by using the loop-
composition [3]. The time complexity is O(nD) rounds and the
space complexity is O(log n) bits per process, where n is the num-
ber of processes and D is the diameter of a given network.

We have seen that the loop-composition technique fits well
to the 1-maximal independent set (1-MIS) problem so that we
successfully obtained a self-stabilizing 1-MIS algorithm. The
loop composition fits this problem well because (i) we can de-
tect whether {v ∈ V | v.mis = true} is an MIS or not, (ii) we
have a self-stabilizing MIS algorithm, and (iii) we can design an
algorithm Inc such that given a feasible solution (i.e., MIS) X as
an input, Inc outputs a better MIS (i.e., an MIS with larger size)
if X is not a 1-MIS, and Inc outputs X without any change if X is
already a 1-MIS. From these facts (i), (ii), and (iii), all we have to
do is to construct an MIS when we detect that the current input is
not an MIS, and execute the algorithm A repeatedly. Namba [8]
implements this strategy in a naive way: each process executes
n instances of Inc in parallel such that the k-th instance uses the
output of (k − 1)-th instance as its input for any k. Thus, his algo-
rithm requires O(n log n) bits and has to know (at least an upper
bound on) n. The loop composition is a framework that enables
executing a given algorithm (i.e., Inc) repeatedly in a sequential
way, not in parallel. Thus, by using the loop composition, we
succeeded in implementing the above strategy in a much more
sophisticated way. As a result, we obtained a self-stabilizing 1-
MIS algorithm with O(log n) bits per process, which requires no
global knowledge such as n.
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The loop composition is a general framework, not specific to
the 1-MIS problem. Once we design time and/or space efficient
modulesA, E, andP for any problem, we can immediately obtain
an efficient self-stabilizing algorithm for the problem by using the
loop composition. Our future work is utilizing the loop composi-
tion to design self-stabilizing algorithms for various problems.
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Editor’s Recommendation
This paper reports a self-stabilizing distributed iterative algo-

rithm for the 1-maximal independent set problem. The paper is
described concisely and simply, including the problem setup, def-
inition, and application of the algorithm, and is considered to be
highly useful. Therefore, the paper has been selected as a recom-
mended paper.
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