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Abstract: A periodic-review joint replenishment problem is considered. In literature, can-order and modified
periodic-review policies have been proposed, and either of them cannot always outperform the other depending on
the demand characteristics. In addition, whereas numerous types of joint-replenishment cost structures exist in prac-
tical settings, most studies have assumed the fixed joint-replenishment costs, and for the periodic-review system, no
study has been conducted to incorporate the practical cost structures into the existing policies. In this study, a multi-
agent reinforcement learning-based solution for a joint replenishment problem is proposed, which can be used for
problems with several demand settings, and be applied for various cost structures with minor modification. Our nu-
merical experiments demonstrate that the performance of our proposed agent equals or surpasses that of the existing
policies, which are can-order, and modified periodic policies.
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1. Introduction

A joint replenishment problem (JRP) [6] under stochastic de-
mands in a periodic-review system, where joint-replenishment
costs are shared among products, and replenishment opportunity
comes at a regular time intervals, is considered. The recent in-
crease in e-commerce has led smaller companies to participate
in international transportation using trucks or container ships. In
such a situation, the practical consideration of JRP under stochas-
tic demands is required due to the high demand deviation and the
high ratio of the shared cost to the total supply chain cost.

While most studies in JRPs have considered the deterministic
demands, those that considered the stochastic demands are lim-
ited [6]. The Markov decision processes (MDP) have been used
for formulating the problem regarding stochastic demands. The
MDP can only be solved when the number of products is less than
four because the action spaces grow exponentially with the num-
ber of products considering its combinatorial nature [17], [18].
Thus, several approximated class of policies have been proposed
for a large number of products.

However, some studies have reported the pros and cons of each
class of policy depending on the demand characteristics, e.g., de-
mand deviation or correlation among products. Specifically, for
the well-known coordinated policy, called can-order, or (s, c, S)
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policy, its performance would be worse compared to the opti-
mal solution for two-product case, when the demand correlation
among products exists [7]. Another policy, called the modified
periodic (MP) policy, has been reported to achieve good perfor-
mance compared to the can-order policy [20]. However, some
studies [11] specified that the MP policy could not outperform
the can-order policy for problems with high demand deviation.

In addition, although most studies have assumed fixed re-
plenishment cost, many types of cost structures exist in prac-
tice, e.g., capacity constraint or stepwise cost for container or
truck shipment, nonlinear cost for warehouse costs, etc. Stud-
ies [12], [14], [15] incorporated the warehouse or truck capac-
ity constraint into the existing policies. However, to the best
of our knowledge, such attempts have been only limited to the
continuous-review inventory system while we focus our attention
on the periodic-review inventory system.

Previously, a reinforcement learning based agent has been pro-
posed, called the branching deep-Q network with reward allo-
cation [21]. The previous approach is uniquely characterized by
shared representation of state-action value function followed by
the product-independent branches with credit assignment mecha-
nism, encouraging the cooperative behavior among agents while
enabling the linear growth of the total number of network outputs
regarding the number of products. However, it could not out-
perform the existing approximated policies when the number of
products became large.

In this study, we proposed a multi-agent reinforcement
learning-based solution for a JRP that does not assume a specific
class of policies, unlike existing approach including can-order
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and modified periodic policies. Our solution can be used for
problems with several demand settings, in terms of the number
of products, demand deviation, and demand correlation among
products, and be applied for various cost structures with minor
modification, including the capacitated transportion, stepwise-
transportation costs, and nonlinear holding costs.

We used the reinforcement learning (RL), that requires no
knowledge on the state transition probability and reward function,
which makes our solution applicable to various cost structures.
However, naively formulating as a single agent RL would suffer
from the large action spaces as stated above. Thus, we use the
multi-agent RL, where each agent comprises each product. The
distinguishing requirement for the solution of JRP is cooperation

among products, and for our agent to be cooperative, instead of
taking action independently among agents, we introduced a cen-
tral joint-action selection unit that decides the joint-action of all
agents simultaneously, with each agent learning the state-action
value function that is conditioned by the other agents’ actions. By
focusing on the credit assignment strategy, which decides how
to allocate the joint costs among products, we used a heuristic
joint-action search procedure which efficiently searches the joint-
action for larger total state-action value among all agents.

We found that the performance of our proposed agent equaled
the better one of the benchmark policies irrespective of the de-
mand characteristics with fixed replenishment cost by conduct-
ing several numerical experiments. In addition, our proposed
agent can easily incorporate several cost structures and outper-
formed the benchmark policies for cases with transportation ca-
pacity constraint or stepwise-transportation cost.

The remainder of this paper is as follows: Section 2 reviews
the literature on both periodic-review JRP and multi-agent RL.
Sections 3 and 4 presents our proposed solution and results of the
numerical experiment, respectively, and Section 5 provides the
conclusions of the paper.

2. Related Works

The literature review of periodic-review JRP with stochastic
demands is first considered in this section. Then, we proceed to
the survey of RL in multi-agent setting.

2.1 Periodic-review Joint Replenishment Problem under
Stochastic Demand

Two types of inventory review systems are continuous-review
and periodic-review system. In the continuous-review inventory
system, the inventory level is continuously monitored and an or-
der can be made when needed, while in the periodic-review in-
ventory system, the inventory level can only be monitored, or
an order can be put at a specific period. In practice, although
the level of inventory can be continuously monitored due to the
prevalence of information technology in the logistics industry, re-
plenishment opportunities are often limited to a specific period
either daily or weekly due to the shipment operation constraints.

For a periodic-review JRP, several approximated class of poli-
cies have been proposed in the literature. A well-known can-
order policy was first proposed for the continuous-review inven-
tory system by Balintfy [3], which places a joint order whenever

the inventory position of a product reaches its must-order level,
and other products will be included in the order if their inventory
positions are at or below the can-order level. Then, the policy
has been extended to be used for a periodic-review system [11].
Another class of joint replenishment policy for periodic review
system is a periodic policy or (T, S) policy proposed by Atkins
and Iyogun [2], which places order every T periods of time. This
policy has been improved to modified periodic policy or MP pol-
icy [24].

However, the superiority of the performance between the can-
order and MP policies depends on the demand deviation and the
existence of demand correlation. Studies [7], [14], [15] have re-
ported the weakness of the can-order policy when demand cor-
relation exists. MP policy was reported to be a good choice over
can-order policy [20], whereas the study [11] stated that can-order
policy outperformed MP policy for problems with high-demand
deviation.

Also, most studies have assumed the fixed ordering cost as a
joint replenishment cost, i.e., the fixed cost is incurred when the
replenishment take place irrespective of the volume of replen-
ishment quantities. However, practically, many variations exist
based on the joint replenishment cost. Specifically, when goods
are delivered via container ships or trucks, and the transportation
cost depends on the number of vehicles, the transportation cost
has a stepwise function regarding the number of required vehi-
cles. When the company has its own warehouse and they can use
leased additional warehouse if their inventory level exceeds their
warehouse capacity, the inventory holding cost becomes nonlin-
ear function. Studies [12], [14], [15] incorporated the warehouse
or truck capacity constraint into the existing policies. However, to
the best of our knowledge, such attempts have only been limited
to the continuous-review inventory system, and required modifi-
cation to incorporate such additional cost structure into the exist-
ing policies is demanding.

2.2 Multi-agent Reinforcement Learning
RL is an approach to obtain a solution for a MDP without any

knowledge about the state transition probability and reward func-
tion. RL maximizes the long-term discounted reward per action.
Q-learning is based on estimating the expected total discounted
future rewards of each state-action pair under the policy π. The
state-action value function, or Q function is expressed as follows:

Qπ (st, at) = E
[
rt+1 + γrt+2 + γ

2rt+2 + · · · + γT−trT |π
]
, (1)

where st, at, rt, and γ denote the states, action, reward, and dis-
count factor, respectively. The Q function can be computed re-
cursively using dynamic programming as follows:

Qπ(s, a) = Es′
[
r + γEa′∼π(s′)

[
Qπ

(
s′, a′

)] |s, a, π] . (2)

Let the optimal Q∗(s, a) denote maxπ Qπ(s, a). Then, the op-
timal Q function satisfies the Bellman equation: Q∗(s, a) =
Es′

[
r + γmaxa′ Q∗ (s′, a′) |s, a]. Q-learning is an off-policy TD

control algorithm, and the one-step Q-learning is defined by:

Q (st, at) = (1 − αt) Q (st, at) + αt

(
rt+1 + γmax

a
Q (st+1, a)

)
,

(3)
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where α denotes the learning rate.
For a large state space, Q-learning with function approxima-

tion has been proposed. In the function approximated Q-learning
using the neural net, the following loss function needs to be min-
imized in the training process:

L(θ) = E[(y − Q(s, a; θ))2], (4)

where

y = r + γmax
a′

Q(s′, a′; θ′), (5)

and θ is the parameter of the neural network. A target network
and experience replay have been proposed to cope with the prob-
lems related to non-stationarity and correlation in the sequence of
observations [16].

Independent Q-learning(IQL) [22] has been proposed for
multi-agent setting, where each agent treats other agents as a part
of the environment. When there are multiple learners in the envi-
ronment, one needs to set the credit assignment policy with which
the obtained reward is allocated to each agent. According to the
study [5], the simplest solution is to split the team reward equally
among each of the learners, called global reward. Generally, the
global reward allocation has been reported not to scale well to in-
creasingly difficult problems as the learners do not have sufficient
feedback tailored to their own specific actions. Another way is
to assess each agent’s performance based solely on its individual
behavior, which is called local reward. In this case, this provides
no incentive for an agent to help other agents. Local reward in-
duces faster learning rates, but not necessarily to better results
than global reward [5].

Several studies have shown using multi-agent RL for inher-
ently a single agent problem by handling the large action space.
Tavakoli [23] proposed the action branching architectures, a kind
of deep Q-network (DQN) treating each actuator independently in
robot control. It has the n dimensional action branches following
the shared state representation in the neural network Q-function
approximation, while enabling the linear growth of the total num-
ber of network outputs with increasing the dimensionality of ac-
tion. By incorporating the reward allocation mechanism into this
branching architecture, the branching deep Q-network with re-
ward allocation for JRP has been proposed [21]. The proposed
agent could learn the coordinated replenishment policy without
any knowledge of other products’ decision due to the existence of
the shared representation in the state-action value function. How-
ever, as the number of products increases, the performance of the
agent became worse compared to the existing approximated poli-
cies.

In the above-mentioned study [21], two types of credit assign-
ments have been examined; one is the global reward allocation,
with which the joint-replenishment cost is allocated equally to
each agent, and the other is the local reward allocation, with
which the joint-replenishment cost is allocated depending on the
order quantities of each product. Depending on the credit assign-
ment, the different characteristics of the agent’s learnt behavior
have been reported.

The agent with global reward could put an order simultane-

ously at the specific timing, called coordinate-ordering behav-
ior, but could not learn to simultaneously stop putting an order
at a specific timing, called coordinated-canceling behavior. It
could not learn coordinated-canceling because, for an agent who
places an order at a certain timing, the allocated joint cost is
equal irrespective of the other agent’s action, and does not have
large incentive to stop an order even if any other agent would
not put an order. Conversely, the agent with local reward allo-
cation could learn the coordinated-cancelling, while could not
learn the coordinated-ordering. It could not learn coordinated-

ordering because an agent without order does not incur any joint
cost allocation, and has no incentive of putting an order simulta-
neously with other products.

Therefore, the application of multi-agent RL for JRP, where
each agent decides on its action independently, was found to be
difficult for a larger number of products. In addition, the perfect
credit assignment strategy for JRP was not identified in literature.
With this in mind, a solution that explicitly takes into account the
other agents’ action while being able to handle the large joint-
action space is required.

3. Method

3.1 Problem Setting
We consider a multi-product inventory system between one

supplier and one retailer in a periodic-review system under
stochastic stationary demands to minimize the total retailer cost,
which includes the holding, penalty, and transportation costs. We
have used the following notations:

i: Item number, i = 1, . . . ,N,
t: Period, t = 1, . . . , T ,
LT : Lead time from supplier to retailer, (in weeks),
li: Lot size of item i, (in palette),
di,t: Demand for item i during period t, (in palette),
xi,t: Order quantity for item i made at time t, (in palette),
Outi,t: Shipment of item i from retailer during period t, (in
palette),
Ini,t: Replenishment for item i from supplier during period t,
(in palette),
Ii,t: Inventory of item i at the start of time t, (in palette),
I p
i,t: Inventory position of item i at the start of time t, (in

palette),
ui,t: Unsatisfied demand of item i during period t, (in palette),
We permitted the lost sales. Replenishment at time t can be

used from time t + 1. In this study, we do not consider the sup-
plier stock-out or any supply delay. Thus, the relationship among
inventory, replenishment, shipment, demand, and unsatisfied de-
mand can be formulated as follows. Here, inventory position
means the on-hand inventory plus orders that have been ordered
but have yet been received.

Ini,t+LTi = xi,t, (6)

Outi,t = min(di,t, Ii,t), (7)

Ii,t+1 = Ii,t − Outi,t + Ini,t, (8)

I p
i,t+1 = I p

i,t − Outi,t + xi,t, (9)

ui,t = di,t − Outi,t. (10)
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The order quantity unit size, called the lot size, should be an
integer in palette. Demand is specified in decimals because a cus-
tomer’s order to the retailer would be stated in pieces rather than
in palettes. In this study, we let LT (which is the time required
from order to delivery) to be 3 weeks.
3.1.1 Cost Structures

Let Ctrans, Chold, and Cpel denote transportation, holding, and
penalty costs, respectively, and U trans, Uhold, and Upel are the cor-
responding unit costs. The penalty cost is defined as follows:

Cpel
i,t = Upel × ui,t. (11)

We defined the several cost structures. One is the normal
cost setting, often assumed in the literature, where fixed joint-
replenishment cost is incurred regardless of the amount of orders,
and holding cost is proportionate to the inventory amount:

Ctrans
t = U trans

⎛⎜⎜⎜⎜⎜⎝if
∑

i

xi,t > 0

⎞⎟⎟⎟⎟⎟⎠ , (12)

Chold
i,t = Uhold × Ii,t. (13)

The second type is the capacitated-replenishment cost, where
a certain capacity of transportation (CAPtrans) is considered
(
∑

i xi,t ≤ CAPtrans), assuming the transportation using a truck
or a container ship.

The third type is the stepwise-replenishment cost, where trans-
portation cost depends on the number of vehicles required, also
assuming the transportation by a truck or a container ship;

Ctrans
t = U trans ×

⌈ ∑
i xi,t

CAPtrans

⌉
. (14)

The fourth type is the nonlinear holding cost, in which the fixed
holding cost is incurred when the inventory level is equal or be-
low the certain warehouse capacity (CAPwh), and additional cost
is incurred for the level of surplus inventory as a fee for short-term
leasing warehouse;

Chold
t = Uholdf + Uholdv ×max

⎛⎜⎜⎜⎜⎜⎝0,
∑

i

Ii,t − CAPwh

⎞⎟⎟⎟⎟⎟⎠ , (15)

where Uholdf = Uhold × CAPwh and Uholdv > Uhold.
Table 1 summarizes the cost setting above, and Fig. 1 shows

the visual presentation of the cost function of the transportation
and holding costs.

3.2 Single-agent Formulation
First, we formulate our problem as a single agent problem. In

our problem setting, if we consider the inventory level and in-
ventory position at time t as state, transportation, holding, and
penalty costs depend only on the state and orders placed at time
t. At every time step, meaning the beginning of every week,
the agent obtains information about the on-hand inventory and
inventory position, i.e., st = [(Ii,t, I

p
i,t)]

N
i=1, makes a decision

at = (a0, a1, . . . , an) ∈ A based on st, and receives an immedi-
ate reward rt+1, that is, the sum of the transportation, holding,
and penalty costs incurred at time t.

Thus, the single agent Q-learning can be formulated as Eq. (3).
However, the Q-learning (or function-approximated Q-learning,
e.g., DQN [16]) cannot converge due to the increasing action
spaces when the number of products becomes large.

Table 1 Cost scenario.

Cost scenario Transportation cost Holding cost
1) Base Fixed Linear
2) Capacitated (trans) Fixed (with CAP constraint) Linear
3) Stepwise (trans) Stepwise Linear
4) Nonlinear (hold) Fixed Nonlinear

Fig. 1 Transportation and holding cost.

3.3 Multi-agent Formulation
To handle the exponentially increasing action space with re-

spect to the number of products, we used the multi-agent ap-
proach. The simplest way to formulate as a multi-agent problem
is the IQL, where each agent treats other agents’ action as part of
the environment, that is;

Qi(si,t, ai,t) = (1 − αt)Qi(si,t, ai,t)

+ αt

(
ri,t+1 + γmax

ai

Q(si,t+1, ai)
)
,

(16)

where only the difference from the Eq. (3) is the existence of sub-
script i, and the ri,t+1 is the allocated reward for product i accord-
ing to a certain credit assignment strategy. However, IQL often
fails to converge as changes in the policy of one agent will affect
that of the others, and vice versa. This problem becomes more
serious when the function approximated Q-learning using neural
nets is used, where experience replay plays a key role [8].

The previous work [21] was an extended version of IQL that
has shared representation with the aim of encouraging the agents
to exhibit a coordinated behavior. Although it could learn the co-
ordinated ordering behavior, the performance was not found to be
better than the existing coordinated approximated policies, such
as can-order and periodic review policies. Thus, we started incor-
porating the central control unit that explicitly considers all the
agents’ actions.

In Fig. 2, our proposed solution is presented. Each agent com-
prises one product, and the agent for product i has its own state-
action value function with parameter θi. What differs most from
the earlier work [21] is that the information of the other agents’
actions was treated as part of a state in the state-action value
function. Thus, the state-action value function of each agent is
conditioned by the actions of the other agents rather than select-
ing an action independently. Moreover, we have a central joint-
action selection unit, where the joint-action is decided based on
the Q-value function of all the agents. Algorithm 1 describes the
pseudo-code of our proposed solution. The explanation of the
joint-action selection, credit assignment, and the ε-greedy explo-

c© 2021 Information Processing Society of Japan 4



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.14 No.2 1–12 (Mar. 2021)

Fig. 2 each agent’s state-action value function conditioned by sum of other agent’s order quantities.

Algorithm 1 Learning procedure
Require: Ke, Ks, Freqtarget

Initialize:

Qi, Q̂i for all i

for episode = 1, · · · ,Ke do

Initialize:

s1,a1

for t = 1, · · · ,Ks do

if random ∈ [0, 1] < ε then: � ε-greedy exploration

at ← select action at random

st ← update states based on the randomly selected actions

rt+1 ← simulate inventory movement based on (states, actions)

[ri,t+1]N
i=1 ← allocate reward rt+1 � credit assignment

st+1,at ← action selection in central unit � joint action selection

MemoryDi ← (si,t , ai,t , si,t+1, ri,t+1) for all i

update parameters of Qi for all i

if episode = 0 (mod Freqtarget) then:

Q̂i ← Qi for all i

ration strategy are provided in the following section.
When the holding cost is proportionate to the inventory quan-

tity (in the cost scenarios 1, 2, and 3), a state of each agent i

aside from the other agent’s action is only an inventory and in-
ventory position of product i. Thus, we can define the state by
si,t = (s−i,t,

∑
j�i x j,t), where s−i,t = (Ii,t, I

p
i,t) and x j,t = l ja j,t is the

order quantity of the agent j when selecting an action a j. For
the nonlinear holding cost (in the cost scenario 4), the inventory
level of the other products should be considered. In this case,
the sum of the inventory of all the products

∑
i Ii,t is added to the

aforementioned state.
At every time step, each agent in state si,t takes an action ai,t

(that is decided by the central joint-action selection unit), receives
the immediate allocated reward ri,t+1 (through credit assignment),
and moves to the next state si,t+1. Because an infinite action space
is impractical, and taking a large number of orders compared
with the demand is unrealistic from the point of view of a sup-
ply chain, we limited the possible order quantity for product i to
Xi = {liai | ai ∈ Ai = {0, 1, 2, 3, 4, 5}} where Ai denotes the ac-
tion space for product i. In this setting, the joint-action space of
all the products would be 6n. The state-action value of each agent
with function approximation is updated according to the follow-
ing loss:

Li = E(si ,ai ,ri ,s′i)∼Di

[
Lδ (yi,Qi (si, ai))

]
, (17)

where

yi = ri + γQ
−
i

(
s′i , arg max

ai

Qi(s′i , ai)
)
, (18)

Lδ denotes the Huber loss function, and Q− denotes the target
network.
3.3.1 Credit Assignment

Since an environment has several agents, a credit assignment
should be decided, which satisfies

∑
i ri,t equals the negative sum

of the transportation, holding, and penalty costs at time t. For the
transportation cost, we used the global reward allocation, where
the transportation cost Ctrans

t is equally allocated to each product,
and the holding cost can be calculated independently per product
(Eq. (13)) for the linear holding cost scenario (cost scenarios 1, 2,
and 3), that is:

ri,t+1 = −(Ctrans
t /N +Chold

i,t +Cpel
i,t ). (19)

This credit assignment strategy is tightly coupled with the joint-
action heuristics which we will explain later.

When the holding cost was also a joint-cost among products
in cost scenario 4 (Eq. (14)), we used the local and global reward
allocations for the variable and the fixed part of the holding cost,
respectively. Thus, allocated reward for each agent is defined as
follows:

ri,t+1=−
(
Ctrans

t /N+Uholdf /N+Choldf
t × Ii,t∑

i Ii,t
+Cpel

i,t

)
, (20)

where Choldf
t = Chold

t − Uholdf .
3.3.2 Joint ε-greedy Exploration Strategy

We employed the joint ε-greedy exploration strategy, in which
all the agents jointly select an action randomly with probability ε
to explore the joint replenishment opportunities. Moreover, each
agent takes a random action independently with the probability
ε/N.
3.3.3 Joint-action Selection

Since our goal is to derive the policy that obtains the maximum
total expected discounted reward, we need to take the following
joint-action:

a= (a0, a1, . . . , an)=arg max
a∈A

∑
k

Qk

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝s−k ,

∑
j�k

x j

⎞⎟⎟⎟⎟⎟⎟⎠ , ak

⎞⎟⎟⎟⎟⎟⎟⎠ . (21)

Here, we omitted the time index t for simplicity.
We, however, still face a combinatorial action selection prob-

lem. In the learning process, we need to solve this optimiza-
tion problem for each step. Thus, the efficient heuristics for the
Eq. (21) is needed.
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Algorithm 2 Joint-action selection
Require: [si]N

i=1, [Qi]N
i=1, K

function evaluate(a)

xi ← liai for all i

qthis ← ∑
i Qi(si,

∑
j�i(x j), ai)

if (qthis > qbest) then

qbest ← qthis

abest ← a

return qthis

function search(x, sequential:bool, start:integer=1)

for i = 1, · · · ,N (starting from start) do

ai ← arg max Qi(si,
∑

j�i(x j))

if sequantial then:

xi ← liai

x← {liai}Ni=1

return a, x

Initialize:

abest ← (0, 0, · · · , 0)
qbest ← evaluate(abest)

for k = 1, · · · ,K do

a,x← search(x, sequential=False) � batch search

qk
best ← evaluate(a)

for i = 1, · · · ,N do

a,xseq ← search(x, sequential=True, start=i) � sequential search

qseq ← evaluate(a)

if (qsec > qk
best) then:

qk
best ← qsec

x← xseq

return abest

3.3.4 Joint-action Selection Heuristics
With the availability of the state-action value function of each

agent, each agent decision can be modified by treating the other
agents’ actions as fixed. By incrementally modifying joint-
action tuple, we can efficiently search the action space that would
achieve higher expected discounted reward. Our algorithm is
shown in Algorithm 2 and illustration is provided in Fig. 3.

As described in Fig. 3, we started our search from the initial
solution. In each iteration, each agent updates its decision by
assuming the other agent’s action is the current solution. If the
current solution is (a0, . . . , ai, . . . , aN), the sum of all the other
agents’ replenishment quantity for agent i is

∑
j�i l ja j. Thus,

agent i can update its action given the state s−i such that Qi is
maximized, i.e., ai ← arg max Qi((s−i ,

∑
j�i l ja j), a).

Here, we use the characteristics of the learned behavior de-
pending on the credit assignment. As stated in Section 2,
the agent with the global reward allocation failed to learn the
coordinated-canceling behavior. However, if we start our search
from the joint-action, where any product does not put an order,
that is, a = (0, 0, . . . , 0), the coordinated-canceling opportunity
is examined every time.

If we use the local reward allocation, where a joint-
transportation cost is allocated in proportion to the order quan-
tities, the incremental process will not work because for an agent
given

∑
x j�i = 0, all the joint-transportation cost will be allocated

to this specific product, and this cost allocation is too expensive
for an agent to put an order. This is the reason why the agent
with the local credit assignment failed to learn the coordinated-

Fig. 3 Image of our heuristic search procedure.

ordering in the earlier study [21].
However, with the global reward allocation, given that the other

agents do not put an order at all, the allocated cost for a specific
agent is 1/N. Thus, an agent whose inventory level is low would
put an order according to the state-action value function. Once
more than one agent decides to put an order in our heuristic al-
gorithm, for agents whose inventory level is not so low, given the
updated other agents actions, they may place an order because
joint-transportation cost would be allocated regardless of their
own actions, and coordinated-ordering behavior can emerge.

In our algorithm, we update each agent’s action both in batch
and sequential manner. In batch manner, each agent updates its
decision based on the other agents’ action at the beginning of the
each iteration. In the sequential manner, each agent’s action is
sequentially updated, and each agent decides on its action based
on the updated actions of the other agents. Since the order of up-
dating its action influences the results of the action selection in
the sequential manner, in every iteration, we attempt to use all
the agents as a sequential search starting point, while randomly
selecting agents for the second and subsequent orders.

For the capacitated cost scenario, where there is transporta-
tion capacity constraint, only the joint-actions whose sum of re-
plenishment quantity is equal or below the transportation capacity
CAPtrans is allowed in our search procedure.

4. Experiments

4.1 Experimental Setting
We conducted several numerical experiments to answer the fol-

lowing questions:
1) Can the proposed agent achieve the performance equal to or
greater than the existing approximated policies under various de-
mand characteristics in the normal cost setting?
2) Can the proposed agent achieve the performance equal to
or greater than the existing approximated policies in a situation
where non-fixed joint costs exist?

To validate these questions, we conducted experiments by
varying 1) number of products, 2) cost scenario, and 3) demand
characteristics (demand deviation and correlation among prod-
ucts). In literature, the most frequently examined number of prod-
ucts in JRP ranges from 2 to 12. Thus, we examined three set-
tings: 2, 5, and 10. With regard to the demand characteristics, we
altered two parameters; cv and ρ, which defines the demand de-
viation and correlation of demand among products, respectively.
The demands are generated following the multi-variate normal
distribution (dt = [di,t]N

i=1 ∼ N(μ,Σ)). The variance for prod-
uct i is defined as cv × μi and the covariance matrix is defined as
Σi, j = σi ×σ j × ρ|i− j|. Per-step average demand μ, lot size of each
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Table 2 Demand and lot size settings in each experiment.

Cost scenario Number of Products μ Lot size CAPtrans CAPwh

1 2 [2, 2] [4, 4] - -
2 [2, 2] [4, 4] 20 -
3 [15, 15] [10, 10] 20 -
4 [2, 2] [4, 4] - 20
1 5 [0.3, 0.4, 0.5, 0.5, 0.7] [1, 1, 1, 1, 2] - -
2 [0.3, 0.4, 0.5, 0.5, 0.7] [1, 1, 1, 1, 2] 20 -
3 [3, 4, 5, 5, 7] [5, 5, 5, 5, 5] 20 -
4 [0.3, 0.4, 0.5, 0.5, 0.7] [1, 1, 1, 1, 2] - 20
1 10 [.3, .4, .5, .5, .7, .9, 1., 1., 1.2, 1.2] [1, 1, 1, 1, 2, 2, 3, 3, 3, 3] - -
2 [.3, .4, .5, .5, .7, .9, 1., 1., 1.2, 1.2] [1, 1, 1, 1, 2, 2, 3, 3, 3, 3] 20 -
3 [1.5, 2, 2.5, 2.5, 3.5, 4.5, 5, 5, 6, 6] [3, 3, 3, 3, 5, 5, 5, 7, 10, 10] 20 -
4 [.3, .4, .5, .5, .7, .9, 1., 1., 1.2, 1.2] [1, 1, 1, 1, 2, 2, 3, 3, 3, 3] - 20

product, and transportation and warehouse capacity settings are
presented in Table 2. Note that for scenario 3, where stepwise
transportation is assumed, we set larger demands so that per-step
total demands is larger than the transportation capacity CAPtrans.

To summarize, our experiments comprise the following fac-
tors;
1) number of products ∈ (2, 5, 10),
2) cost scenario ∈ (1, 2, 3, 4),
3) demand characteristics: cv ∈ (0.4, 0.6), ρ ∈ (−0.5, 0, 0.5)

4.2 Benchmark Methodology
As a benchmark policy, we selected a can-order and MP pol-

icy, because they are well-known joint-replenishment policy un-
der periodic-review inventory system.

A can-order policy has three parameters for each product: s, c,
and S represent the must-order, can-order, and order-up-to level,
respectively, whereas a MP policy has one global parameter to
represent the frequency of ordering timing, and each product has
two parameters: s and S represent must-order and order-up-to
level, respectively.

We derived the parameters of each policy using the genetic al-
gorithm (GA). GA is a part of evolutionary computing. GA starts
with a set of solutions (represented by chromosomes) called pop-
ulation. The solutions from one population are obtained and em-
ployed to form a new population that is better than the old one.
The solutions that will be used to form new solutions (offspring)
are selected according to their fitness.

For each solution, i.e., parameter set of the benchmark poli-
cies, we conducted 12 simulations, and the fitness function was
the average total cost for those 12 simulations. Crossover and
mutation are two basic operators of GA. We employed a two-
point crossover. After performing a crossover, mutation occurs.
The number of population, crossover probability, mutation prob-
ability, and number of generation are 50 × N, 0.5, 0.2, and 100,
respectively. Each s, c (for the can-order policy), and S are real-
valued, and the global parameter for the MP policy is an integer.
We employed the library deap [9] for the implementation with bi-
nary coding.

To make the comparison fair, we implemented additional logic
for cost scenario 2 and 3 to incorporate the transportation capac-
ity and loading ratio. Similar to the study [4], we implemented
a procedure that accounts for the availability of “free” remaining
capacity of transportation vehicles that have been partially filled
with other items, or remove the products if the sum of order quan-

Algorithm 3 Loading ratio adjustment procedure

Require: CAPtrans,x,I
p,s1

i ,s
2
i

n← 	
∑

i xi,t

CAPtrans



mode← decrease or increase depending on loading ratio

if mode = decrease then � emptying one vehicle

while
∑

i xi > (n − 1) × CAPtrans do

j← arg mini∈ j|I p
j <s1

j
(|S i − (Ip

i + xi − li)|
x j ← x j − l j

else � filling the ”free” remaining capacity

while
∑

i xi < n × CAPtrans do

j← arg mini∈ j|I p
j >s2

j
(|S i − (Ip

i + xi + li)|
x j ← x j + l j

return x

tities exceed its capacity or loading ratio of the vehicle is low,
where loading ratio is defined by

∑
i xi,t/(	

∑
i xi,t

CAPtrans

 × CAPtrans).

Algorithm 3 represents the pseudo code of this loading ratio ad-
justment procedure for cost scenario 3. The procedure for sce-
nario 2 is similar; however, only one vehicle is allowed. Either of
can-order and MP policy has the parameter S i which represents
the order-up-to level for product i, and our algorithm chooses the
product for adjustment whose adjusted inventory position I p

i + x̂i

is the nearest to the order-up-to level, where x̂i represents the ad-
justed order quantity for product i. Whether to decrease or in-
crease is decided based on the loading-ratio. We select the item
based on the above-mentioned criteria among products whose in-
ventory position is equal or less than s1 for decreasing mode, or
greater than s2 for increasing mode. Here, (s1, s2) is (s, c) for a
can-order and (s, s) for MP policy.

For the capacitated transportation scenario, the application of
the additional heuristic procedure is mandatory to satisfy the con-
straint regarding the transportation capacity. Conversely, adjust-
ment of the loading ratio is not a must for a stepwise transporta-
tion cost scenario.

We confirmed that by adding this procedure, the performance
of the benchmark policies increased for the stepwise transporta-
tion cost scenario. Section 4.3.3 provides further investigation
regarding this loading ratio adjustment procedure.

4.3 Experimental Results
4.3.1 Performance Evaluation

Table 3 shows the experimental results, representing the aver-
age and standard deviation of the total cost, and Table 4 shows the
statistics of the sampled time-series movement, i.e., the mean in-
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Table 3 Experimental results.

Cost scenario Number of Products (cv, ρ) can-order policy MP policy MARL(ours) % improved
1) Base 2 (0.2,0) 95.0 ± 0.9 99.2 ± 0.8 95.3 ± 0.7 −0.4%

(0.6,0) 116.5 ± 2.1 125.3 ± 2.4 115.3 ± 2.3 1.0%
5 (0.2,0) 76.6 ± 0.6 76.6 ± 0.5 73.6 ± 1.2 3.9%

(0.6,0) 87.8 ± 0.7 89.1 ± 1.2 87.0 ± 0.8 0.9%
10 (0.2,0) 173.8 ± 1.7 169.0 ± 1.5 171.6 ± 0.2 −1.6%

(0.6,0) 210.7 ± 2.7 209.4 ± 2.0 210.5 ± 1.7 −0.5%
2) Capacitated Transportation 2 (0.2,0) 98.4 ± 1.3 102.5 ± 2.5 97.1 ± 0.6 1.4%

(0.6,0) 119.0 ± 2.0 129.4 ± 5.7 118.1 ± 1.2 0.7%
5 (0.2,0) 78.1 ± 4.7 77.0 ± 0.3 72.9 ± 0.7 5.3%

(0.6,0) 87.5 ± 0.7 89.0 ± 1.3 87.1 ± 0.5 0.5%
10 (0.2,0) 192.5 ± 8.3 189.3 ± 0.6 178.5 ± 1.2 5.7%

(0.6,0) 229.3 ± 6.0 225.5 ± 1.3 219.1 ± 1.3 2.9%
3) Stepwise Transportation 2 (0.2,0) 507.5 ± 7.1 503.3 ± 4.3 506.5 ± 2.4 −0.6%

(0.6,0) 728.8 ± 16.2 718.6 ± 7.6 715.8 ± 12.8 0.4%
5 (0.2,0) 460.0 ± 4.6 479.2 ± 25.6 444.0 ± 3.6 3.5%

(0.6,0) 611.1 ± 8.5 618.3 ± 12.7 607.7 ± 4.4 0.5%
10 (0.2,0) 918.6 ± 23.4 893.6 ± 3.7 751.7 ± 3.1 15.9%

(0.6,0) 1126.4 ± 28 1108.9 ± 24.9 1014.2 ± 12.8 8.5%
4) Nonlinear Holding 2 (0.2,0) 90.2 ± 1.6 91.8 ± 0.4 90.1 ± 0.5 0.1%

(0.6,0) 103.5 ± 0.8 110.6 ± 2.0 104.0 ± 1.2 −0.5%
5 (0.2,0) 75.0 ± 0.4 74.3 ± 0.3 75.4 ± 0.3 −1.5%

(0.6,0) 81.5 ± 0.5 83.0 ± 1.3 82.2 ± 0.8 −0.9%
10 (0.2,0) 152.5 ± 2.8 148.6 ± 1.3 149.6 ± 2.4 −0.6%

(0.6,0) 191.1 ± 2.5 188.4 ± 2.1 190.1 ± 1.1 −0.9%

We conducted 6 times learning with different initialization both for benchmark and our proposed agent. In each run, results were derived by calculating the

averaged total cost over 12 simulations with different seeds in demand generation. The value in (±·) represents the standard deviation over 6 runs. % improved

represents the gap in performance of our proposed agent and better performance of the benchmark policies.

Table 4 Statistics of the sampled time-series movement of the learned policies.

can-order policy MP policy MARL (ours)
Cost scenario Number of Products (cv, ρ) Inv. Load Repl. Inv. Load Repl. Inv. Load Repl.
1) Base 2 (0.2,0) 16.5 - 23.1 16.8 - 23.6 14.6 - 21.1

(0.6,0) 19.5 - 22.6 20.8 - 21.6 17.0 - 17.9
5 (0.2,0) 14.4 - 20.2 14.6 - 20.5 10.7 - 13.7

(0.6,0) 16.4 - 18.3 15.7 - 18.3 13.7 - 13.8
10 (0.2,0) 35.6 - 39.8 33.8 - 37.9 23.2 - 18.8

(0.6,0) 41.2 - 34.0 38.7 - 30.5 30.7 - 18.6
2) Capacitated Transportation 2 (0.2,0) 15.2 93% 18.6 13.7 85% 17.0 12.7 81% 16.2

(0.6,0) 19.0 94% 18.8 20.1 77% 15.4 17.1 84% 16.7
5 (0.2,0) 13.5 91% 18.2 13.3 83% 16.7 10.5 69% 13.8

(0.6,0) 15.4 83% 16.6 15.0 81% 16.2 13.4 65% 13.1
10 (0.2,0) 33.1 91% 18.4 26.0 77% 15.3 23.5 79% 16.7

(0.6,0) 37.5 86% 17.6 32.5 77% 15.4 32.0 76% 16.3
3) Stepwise Transportation 2 (0.2,0) 59.0 97% 30.1 60.4 99% 29.9 54.5 98% 30.2

(0.6,0) 92.2 93% 37.2 93.9 97% 38.3 68.1 97% 35.4
5 (0.2,0) 51.2 91% 23.8 65.6 94% 51.6 48.8 86% 24.1

(0.6,0) 81.1 85% 24.0 93.7 92% 49.8 74.0 84% 22.5
10 (0.2,0) 213.3 90% 93.2 127.2 89% 114.8 85.2 82% 39.5

(0.6,0) 163.1 87% 59.3 165.6 90% 105.3 110.8 83% 44.4
4) Nonlinear Holding 2 (0.2,0) 18.2 - 23.7 18.9 - 23.8 18.0 - 24.9

(0.6,0) 21.7 - 22.0 23.1 - 23.6 20.3 - 23.0
5 (0.2,0) 15.9 - 20.5 16.1 - 21.6 16.7 - 23.6

(0.6,0) 18.3 - 20.0 18.2 - 19.6 18.1 - 19.5
10 (0.2,0) 32.9 - 32.1 33.6 - 37.9 28.2 - 23.0

(0.6,0) 41.1 - 31.2 39.8 - 31.8 34.8 - 22.4

Time-series statistics from the simulated results following the learned policies are presented. Since we conducted six times learning, we simulated one episode

per each result and average of the six simulations was calculated. Inv., Load, and Repl. indicate the mean inventory volume, the mean loading ratio, and the

mean replenishment quantity, respectively.

ventory level, mean loading ratio, and mean replenishment quan-
tity, with which we can examine the characteristics of the learned
policy behavior particularly focusing on how the learned policies
handle the trade-off between transportation and holding costs.

Since the demand correlation among products did not have a
significant effect on the performance gap in this study, only the
results for ρ = 0 is presented. For reference, please see Table 5,
which represents the result of the case with two products with
non-zero demand correlation.

In terms of the comparison between the can-order and MP poli-
cies, when the number of products is small, we can see that the
performance of the MP policy is worse, particularly for problems
with high demand deviation, which is consistent with the litera-
ture. However, for problems with 10 products, the performance
of the MP policy is equal to or higher than that of the can-order
policy for all the cost scenarios.

As for the performance of our proposed agent, we evaluated
our performance by comparing with the better one of the can-
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Table 5 Experimental results with demand correlation for a two-product case.

Cost scenario (cv, ρ) can-order policy MP policy MARL (ours) % improved
1) Base (0.2,−0.5) 95.8 ± 1.6 99.0 ± 1.0 95.5 ± 0.6 0.3%

(0.2, 0) 95.0 ± 0.9 99.2 ± 0.8 95.3 ± 0.7 −0.4%
(0.2, 0.5) 95.8 ± 1.9 98.7 ± 1.3 94.5 ± 0.6 1.4%
(0.6,−0.5) 116.4 ± 0.9 123.7 ± 2.8 117.3 ± 2.0 −0.7%
(0.6, 0) 116.5 ± 2.1 125.3 ± 2.4 115.3 ± 2.3 1.0%
(0.6, 0.5) 115.2 ± 1.4 123.1 ± 1.7 114.0 ± 1.8 1.0%

2) Capacitated Transportation (0.2,−0.5) 98.7 ± 1.3 105.2 ± 6.9 97.6 ± 0.4 1.1%
(0.2, 0) 98.4 ± 1.3 102.5 ± 2.5 97.1 ± 0.6 1.4%
(0.2, 0.5) 98.4 ± 0.9 101.4 ± 2.0 96.5 ± 0.8 1.9%
(0.6,−0.5) 120.0 ± 2.0 125.3 ± 4.8 118.3 ± 1.3 1.5%
(0.6, 0) 119.0 ± 2.0 129.4 ± 5.7 118.1 ± 1.2 0.7%
(0.6, 0.5) 117.0 ± 2.2 131.9 ± 5.0 116.2 ± 1.1 0.6%

3) Stepwise Transportation (0.2,−0.5) 516.6 ± 9.1 506.9 ± 5.5 506.5 ± 2.7 0.1%
(0.2, 0) 507.5 ± 7.1 503.3 ± 4.3 506.5 ± 2.4 −0.6%
(0.2, 0.5) 500.8 ± 3.2 500.3 ± 4.5 500.2 ± 2.2 0.0%
(0.6,−0.5) 733.0 ± 5.5 718.8 ± 8.0 716.1 ± 12.2 0.4%
(0.6, 0) 728.8 ± 16.2 718.6 ± 7.6 715.8 ± 12.8 0.4%
(0.6, 0.5) 729.8 ± 14.8 715.4 ± 23.4 708.5 ± 3.6 1.0%

4) Nonlinear Holding (0.2,−0.5) 90.1 ± 0.5 91.8 ± 1.1 90.0 ± 0.4 0.1%
(0.2, 0) 90.2 ± 1.6 91.8 ± 0.4 90.1 ± 0.5 0.1%
(0.2, 0.5) 89.3 ± 0.3 91.9 ± 0.7 90.0 ± 0.6 −0.8%
(0.6,−0.5) 103.7 ± 1.1 109.3 ± 2.0 104.0 ± 0.9 −0.3%
(0.6, 0) 103.5 ± 0.8 110.6 ± 2.0 104.0 ± 1.2 −0.5%
(0.6, 0.5) 102.6 ± 1.8 110.2 ± 1.6 102.6 ± 1.2 0.1%

order and MP policies.
For the base cost scenario with fixed joint replenishment cost,

the performance of our proposed agent was almost equal to that
of the better one of the benchmark policies irrespective of the de-
mand deviation and number of products. From Table 4, it can be
seen that although the gap of the total cost is not so significant,
the learned policy has different characteristics; the mean inven-
tory level for the result of our proposed agent is lower than that of
the benchmark policies, whereas the mean replenishment quan-
tity of the benchmark policies is higher than ours, particularly
when the number of products becomes large.

For the scenarios of capacitated and stepwise transportation,
our proposed agent performed better, and the difference in per-
formance increased as the number of products increased. This
improvement in the performance indicates that the benchmark
policies are not well suited for the cases with transportation ca-
pacity. To take into account the transportation capacity, we em-
ployed the additional heuristic presented in Section 4.2. How-
ever, this two-step process (GA parameter optimization and the
loading ratio adjustment) could not always find a good solution
(see further investigation regarding the two-step process in Sec-
tion 4.3.3). From Table 4, similar to the observation for the base
cost scenario, it can be seen that the inventory level of our result is
lower than that of the can-order policy, whereas the loading ratio
of the result for the can-order policy is higher than that of ours.
This indicates that our proposed solution was able to strike a bal-
ance between the holding and transportation costs better than the
benchmark two-step process.

Conversely, we also see that when the demand deviation is high
(cv = 0.6), the performance improvement against the benchmark
policy is limited. This can be due to the high variance of the ob-
tained reward in our RL approach. Another possible cause lies
in the sequential search procedure in our joint-action selection
heuristic. Because the second or later searched product is ran-
domly selected in our sequential search in Algorithm 2, the se-

lected joint-action may change, even if the input state and the
action value function parameters are the same, i.e., the selected
joint-action can be sub-optimal. The effect of random search
in the sequential search procedure is considered to increase with
high-demand deviation.

For the nonlinear holding cost scenario, the performance of
our agent was slightly lower than that of the better one of the
benchmark policies. However, the gap was insignificant when the
standard deviation over six runs was considered. From the exper-
imental results, we can deduce that the benchmark policies were
able to handle the nonlinear holding cost without any additional
procedure when the policy parameters were optimized using GA,
and the necessity of devising the new solution for the nonlinear
holding cost function is relatively low.
4.3.2 Evaluation of the Action Space Setting

In our experiments, we limited the cardinality of each agent’s
action space |Ai| to six. With an extremely small action space,
the optimal solution may not be included. Conversely, with an
extremely large action space, our algorithm may not converge
or may need longer episodes to converge. Thus, we conducted
additional experiments for the base cost scenario with cv = 0.2
with increased action space to evaluate the effect on the perfor-
mance with larger action space setting. It should be noted that
the maximum selected action among {0, 1, 2, 3, 4, 5}, meaning the
multiplier of the lot size, of all the products in our simulation with
|Ai| = 6 was 3, 4, and 2 for the base cost scenario with 2, 5, and
10 product cases, respectively. This indicates that |Ai| = 6 for all
i is sufficiently large.

From Table 6, it can be seen that the performance with |Ai| =
10 and |Ai| = 20 is almost equal to the case with |Ai| = 6 for two-
product and five-product cases. However, for ten-product case,
slight drop in performance was observed. This indicates the ne-
cessity to adjust the number of learning episodes depending on
the cardinality of each agent’s action space and the number of
products.

c© 2021 Information Processing Society of Japan 9



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.14 No.2 1–12 (Mar. 2021)

Table 6 Evaluation of the action space setting.

Number of Products |Ai | = 6 |Ai | = 10 |Ai | = 20
2 95.3 94.9 95.6
5 73.6 72.9 72.9
10 171.6 173.0 175.6

The average total costs for the base cost scenario with cv = 0.2 are

presented. Experiments with larger action space were conducted under the

same condition with the case with |Ai | = 6

Table 7 Evaluation of the effectiveness of benchmark methodology.

Loading Adjst.
policy cv GA w/o w/

can-oder 0.2 w/o 493.2 448.7
w/ 468.3 460.0

0.6 w/o 668.3 629.0
w/ 617.0 611.1

MP 0.2 w/o 536.6 508.0
w/ 489.3 479.2

0.6 w/o 692.1 663.7
w/ 626.8 618.3

The average total costs for the five-product stepwise transportation scenario

are presented. Loading adjst. indicates whether or not to apply the loading

ratio adjustment procedure.

4.3.3 Evaluation of the Benchmark Methodology
For the capacitated transportation and stepwise transportation

cost scenario, we employed the additional heuristic, described in
Algorithm 3, to consider the transportation capacity. Our bench-
mark methodology consisted of two steps; 1) use GA to find the
better parameters of the can-order and MP policies, and 2) apply
the procedure of loading ratio adjustment. To individually evalu-
ate the effectiveness of both steps, we conducted additional exper-
iments with fixed parameters (without GA optimization) and/or
without loading ratio adjustment for five-product stepwise trans-
portation scenario.

With regard to the fixed parameters, the predetermined must-
order level, si, of each item is set to the mean three-step de-
mand plus 99.9% safety stock, which can be expressed as 3μi +

3.1σi

√
LT. The predetermined can-order level, ci, of each item

is set to si plus one-step mean demand, and the order-up-to level,
S i, of each item is set to si plus the two-step mean demand. The
global parameter indicating the frequency of the replenishment
for the MP policy is set to one.

Table 7 presents the result. With regard to the effectiveness of
the GA parameter optimization, we can see that the cost without
GA is higher than that with GA, thus reflecting the improvement
by applying the parameters derived by GA (row-wise compari-
son in Table 7 without the loading adjustment procedure). With
regard to the loading ratio adjustment procedure, the total cost
decreased for all the cases (column-wise comparison in Table 7)
irrespective of the GA optimization.

However, it can also be seen that, for the can-order policy with
cv = 0.2, the cost of policy with GA and with loading adjustment
procedure (460.0) is higher than that without GA and with load-
ing adjustment procedure (448.7). This indicates that the two-step
optimization could not converge to the optimal solution, and is
considered to reflect the difficulty in extending the existing poli-
cies, including the can-order and MP policies, for non-base cost
scenarios.

Table 8 Computation time comparison.

Number of Products GA (can-order) MARL (ours)
2 23 (23) 85
5 143 (57) 235
10 540 (108) 520

The computation time is expressed in minutes. To make a fair comparison,

(·) for GA denotes the adjusted time, taking into account the different

numbers of generations with respect to the number of products.

4.3.4 Computation Time
We also analyze the computation time both for our proposed

RL-based approach and GA optimization approach. Since the ac-
tual computation time depends on the setting of the number of
generations and the individuals of each population for GA, and
the number of episodes for the RL-based approach, we focus on
the analysis of the change in the computation time with respect to
the number of products rather than the absolute computation time
comparison.

Table 8 presents the average computation time. In our MARL
approach, the same number of episodes is set, regardless of the
number of products. Conversely, in our GA setting, we utilized
the different numbers of population. Therefore, to make a fair
comparison, a virtual computation time, dividing the actual time
by N/2, is presented for GA.

The experiments were conducted on the same computer, and
any GPU has not been used. It should be noted that the use of
a GPU did not improve the computation time for our proposed
solution. This is because the architecture of the neural network
of the action value function is simple (see Section 4.4 for further
information).

We can see that, for both the MARL and GA solutions, the
computation time is almost linear with respect to the number of
products when setting the same condition, i.e., the number of pop-
ulations and generations for GA, and the number of episodes in
MARL. In our implementation of MARL, any multi-core pro-
cessing is not employed. However, the MARL solution can be
easily sped up via parallel computing, since most of the MARL
learning time is spent on the forwarding and backwarding of the
neural network of each agent’s action value function, and these
process can be parallelized per each agent.

In our formulation, since the information of other products is
summarized and fed into each agent’s network as a scalar input,
the network size of each agent would not change with respect to
the number of products. Thus, if we have plenty of CPUs, the
computation time would only increase sub-linearly with respect
to the number of products.

It should be noted that speeding up the parameter optimization
of GA is also possible via multi-processing in the evaluation of
the each solution, and/or employing the gray coding [1], [10] in-
stead of binary coding.

4.4 Experiment Detail
4.4.1 Cost Parameter Setting

We let the cost parameters Uhold, Upel, and U trans be 0.02, 1.0,
and 1, respectively. These are set based on the typical logistic
condition. With regard to the nonlinear holding cost scenario, the
fixed holding cost is set to Uholdf = 0.7 × Uholdv × CAPwh, where
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Uholdv = Uhold.
4.4.2 Multi-agent Reinforcement Learning Setting

The network that represents state-action value function had
three hidden layers with 64, 32, and 32 units. We used the Adam
optimizer. A mini-batch size was 32 and a discount factor was
0.995. We used ReLu for all hidden layers and linear activa-
tion on the output layers. A target network was updated every
10 episodes.

One of the biggest challenges in multi-agent reinforcement
learning is the non-stationary environment caused by the concur-
rent learning. To stabilize the learning process, we used the hys-
teretic learning [13], [19], where different learning rate is applied
depending on whether the calculated loss is positive or negative.
In our experiments, we used the 0.4x. learning rate for the neg-
ative loss. Also, the replay memory size with memory capacity
was set to 10,000 so that the obsolete memory would not be used
for learning.

5. Conclusion

Our numerical experiments demonstrate that the performance
of our proposed agent is almost equal to that of the better one of
the benchmark policies irrespective of the demand characteristics
for the base cost scenario. In addition, our proposed agent out-
performed the benchmark policies for cases with transportation
capacity constraint or stepwise transportation cost.

Moreover, we show the limitation of extending the existing
policies for the non-base cost scenario just by incorporating the
additional heuristic procedure.

Since our approach does not rely on the knowledge on the state
transition probability and reward functions, incorporating the new
cost structure can be done just by modifying the cost setting in our
simulator. There are many variants of cost settings in practice,
and existing studies have not covered all the conditions. We hope
our solution can be of help in complicated practical conditions.

However, for cases with high-demand deviation, the perfor-
mance improvement was limited. For future study, this should be
investigated from the perspective of the high variance of reward
in the RL and the sequential search procedure in the joint-action
selection heuristics.

One of the limitations of our study is the versatility of cost
structures. For future study, incorporating other supply chain con-
ditions, such as volume discount offered by a supplier, and the
combination of several cost settings including those examined in
our study, would be an interesting topic. Since our solution uses
the heuristic search procedure, the validity of the heuristic proce-
dure with different cost structure is worth investigating.

Our proposed solution has many parameters, which may not be
acceptable for some companies at this moment, because the de-
rived policy is not easily understandable for people. However, it
is also true that in the logistics industry, huge loss is being caused
by allowing people in operation to adjust the parameters by hand,
but ending up leaving those parameters not updated. We believe
that, in the near future, operations in inventory management will
become fully automated, and complexity of replenishment policy
like ours may not be a problem.
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