
A Method for Determining whether a Simulink Model is Ready for
Test Generation

TAKUYA OGATA†1 YUGE LIU†1
KENJI HISAZUMI†1

Abstract: Model-based development (MBD), in which development specifications are written in Simulink, is widely used in the
development of embedded control systems. Automatic test generation tools are used to reduce the effort of creating test cases.
However, depending on how the model is written, automated generation tools may fail, and it takes time to determine generation
failure. In this paper, we propose a method to predict the feasibility of the model test case generation. Specifically, we evaluate
the validity of feature generation using the bag of nodes representation of our method and summary statistics of the graphs. The
results show that although the AUC of 0.628 is not practically accurate, the initial results using large amounts of data are
promising.

Keywords: Simulink, Machine Learning, Graph

1. Introduction

Traditionally, development specifications for embedded
control systems have been written in natural language. However,
in recent years, model-based development (MBD) [1][2] has
become more popular to cope with the expansion of the scale of
development, shortening of development time, and improvement
of development efficiency. In MBD, development specifications
are written in MATLAB/Simulink [3], and there are tools that
automatically generate test cases to do this efficiently. The
success or failure of test case generation is often not known until
the test cases are executed. There are many cases where test case
generation succeeds by rewriting the model.

In this paper, we report the results of a study on a method for
determining the success or failure of test case generation using a
Simulink model for machine learning.

1.1 System Overview
This section proposes a method for determining whether or

not to generate tests for Simulink models. The proposed system
consists of four parts: a Simulink model collection block, a test
case generation time measurement block, a feature extraction
block, and a supervised learning block. An overview of the
system is shown in Figure 1. In the data collection block, a
Simulink model is generated, and data is collected. The test case
generation time measurement block applies the Simulink model
generated in the data collection block to the test case generation
software. It automatically generates test cases and measures the
test case generation time. In the feature extraction block, feature
extraction is performed from the collected Simulink models. In
the supervised learning block, the features extracted in the
feature extraction block are used to determine whether the test
case generation time has elapsed using supervised learning.

In the following, we describe the feature extraction block in
particular.

 †1 Kyushu University

Figure 1: Overview of the system

1.2 Feature Extraction
The feature extraction block converts the Simulink model into

a directed graph in order to perform feature extraction. This
transformation is done by storing internally stored variables into
nodes. It then performs the following operations.
1.2.1 Bag of Nodes

Bag of nodes is a method for counting the frequency of nodes
and characterizing the number of nodes in a graph; the Simulink
model takes some input at the input block, computes it in
various arithmetic blocks, and finally performs a control
operation with the form of output from the output block. It takes
all the shortest paths from input to output and converts the node
information of the longest path into frequency information. This
is done in order to characterize the most informative path
information in the data flow of the control block. First, a list of
input blocks (Import block), a list of constant blocks (Constant
block), and a list of output blocks (Outport block) are obtained,
respectively.

The shortest path to the Outport block of the Simulink model,
obtained from these blocks, is obtained. However, the Constant
block is converted to “Constant+N” (where N is the 10th order
part of Constant’s constant value). The specific blocks shown in
Table 1 below are converted to “Specific Block Name +
Constant+N” if the input includes a Constant block.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 77

Table 1. the specific block whose name will be converted

Finally, we characterize the frequency of occurrence of the
blocks in the path obtained above as a vector. An overview of
the above is shown in Figure 2.

Figure 2: Overview of bag of nodes

1.2.2 Graph statistics
We extract four features (number of edges, number of nodes,

the density of the graph, and average cluster coefficient) that can
be extracted from a directed graph. We extract the above
features in order to include properties such as the complexity of
the whole model as features.

Extract features that can be extracted from an effective graph.
Add the following four features: the number of nodes in the
graph G, n, the number of edges, m, the graph density d, the
average cluster coefficient c in the graph G.

2. Evaluation
In this section, we evaluated the proposed method in order to

examine its usefulness.

2.1 Evaluation Environment
Table 2 shows the environment in which the test cases were

generated. The number of classes used in the evaluation is 54
models that time out and 445 models that can generate test cases
without time out. Due to the biased number of test cases, in
order to improve the generalization performance, the training
split the training data into 10 negative cases and created 10
training models consisting of all negative cases and one segment
of positive cases. [4] LightGBM [5] was also used for the
training model, and the model was built without adjusting the

hyperparameters.

Table 2. the environment in which the test cases were generated

OS macOS Sierra 10.12.6
Processor 1.3GHz Intel Core i5t
Memory 16GB 1867 MHz LPDDR3

Test case generator
for Simulink models Simulink Design Verifier

2.2 System Evaluation
We compare the discrimination accuracy of the three training

models presented in the previous section using the feature
extraction method. The results of the evaluation are shown in
Table 3. The AUC was 0.628, which is not a high predictive
ability result.

Table3: System evaluation results

Macro
accuracy

Macro
recall

Macro
Precision

Macro
F1-measure

Macro
AUC

0.802 0.563 0.622 0.570 0. 628

3. Conclusion
In this paper, we proposed a system to determine if the test

case generation time for a Simulink model times out or not. To
test the usefulness of our system, we conducted an initial
evaluation of a randomly generated Simulink model as a case
study. The results showed that the model was successfully
constructed with an accuracy of 0.628 AUC.

In this study, we focused on data flow in feature extraction,
but there are various machine learning methods for current
graphs, such as GCN. However, there are various machine
learning methods for current graphs, such as GCN, that are
expected to be used in future research.

Reference
[1] Akira Ohata, and Kenneth R. Butts, “Improving Model-based

Design for Automotive Control Systems Development,” 17th IFAC
World Congress, Vol. 41, Issue 2, pp. 1062—1065, 2008.

[2] Mutz, M., Huhn, M., Goltz, U., & Krömke, C. “Model based
system development in automotive.” No. 2003-01-1017. SAE
Technical Paper, 2003.

[3] The MathWorks Inc.: MATLAB/Simulink, (n.d.). Retrieved
October 6, 2020 from http://www.mathworks.com/.

[4] Wallace, B. C., Small, K., Brodley, C. E., & Trikalinos, T. A.
"Class imbalance, redux." 2011 IEEE 11th international conference
on data mining. IEEE, 2011.

[5] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu,
T. Y. Lightgbm: A highly efficient gradient boosting decision tree.
In Advances in neural information processing systems pp.
3146-3154. 2017.

Block name Block description
If Select subsystem execution using logic

similar to the if-else statement
Switch Combining multiple signals into a single

signal
Relational
Operator

Apply the specified comparison operations
to the input

Add Adding or subtracting inputs
Product Scalar, non-scalar multiplication and

division, or matrix multiplication and
division

Unit delay Delay the signal by one sampling cycle.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 78

