ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. Asia Pacific Conference on Robot IoT System Development and Platform (APRIS)
  4. 2020

A development of visual-feedback automatic control for robotic manipulator

https://ipsj.ixsq.nii.ac.jp/records/210330
https://ipsj.ixsq.nii.ac.jp/records/210330
4d658dca-a936-476e-a486-6db44bc03aab
名前 / ファイル ライセンス アクション
IPSJ-APRIS2020014.pdf IPSJ-APRIS2020014.pdf (1.4 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2021-03-15
タイトル
タイトル A development of visual-feedback automatic control for robotic manipulator
タイトル
言語 en
タイトル A development of visual-feedback automatic control for robotic manipulator
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Department of Electrical Engineering, Prince of Songkla University
著者所属
Department of Electrical Engineering, Prince of Songkla University
著者所属(英)
en
Department of Electrical Engineering, Prince of Songkla University
著者所属(英)
en
Department of Electrical Engineering, Prince of Songkla University
著者名 Hiroshi, Nakahara

× Hiroshi, Nakahara

Hiroshi, Nakahara

Search repository
Kittikhun, Thongpull

× Kittikhun, Thongpull

Kittikhun, Thongpull

Search repository
著者名(英) Hiroshi, Nakahara

× Hiroshi, Nakahara

en Hiroshi, Nakahara

Search repository
Kittikhun, Thongpull

× Kittikhun, Thongpull

en Kittikhun, Thongpull

Search repository
論文抄録
内容記述タイプ Other
内容記述 In this work, an automatic robotic manipulator control based on visual information for object tracking is presented. The tracking process employ Recurrent Neural Network technique to predict the location of target object which is used to calculate movement of the robot. We also propose an object analysis based on image processing technique for object width estimation. We implemented the proposed system with an actual robotic manipulator with a gripper for experiments. The experiments shown that object size estimation method results the maximum accuracy at 1.13% and the tacking process can effectively keep the target object in the position suitable to perform grasp.
論文抄録(英)
内容記述タイプ Other
内容記述 In this work, an automatic robotic manipulator control based on visual information for object tracking is presented. The tracking process employ Recurrent Neural Network technique to predict the location of target object which is used to calculate movement of the robot. We also propose an object analysis based on image processing technique for object width estimation. We implemented the proposed system with an actual robotic manipulator with a gripper for experiments. The experiments shown that object size estimation method results the maximum accuracy at 1.13% and the tacking process can effectively keep the target object in the position suitable to perform grasp.
書誌情報 Proceedings of Asia Pacific Conference on Robot IoT System Development and Platform

巻 2020, p. 67-68, 発行日 2021-03-15
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:11:43.598362
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Hiroshi, Nakahara, Kittikhun, Thongpull, 2021: 情報処理学会, 67–68 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3