
Translation Rules of Regular Expression Code

for Hardware Accelerator

HENDARMAWAN†1 Morihiro KUGA†2 Masahiro IIDA †2

Abstract: In the field of industrial robotics, it is necessary to aggregate sensor information from many edge devices in an IoT

environment. Therefore, in situations where real-time is required, it is necessary to perform appropriate load balancing on each tier

of edge nodes, intermediate nodes, and server nodes, and to select an adequate embedded processor and to reduce network traffic

between nodes. Powerful processors cannot be used on edge nodes that are required to reduce power consumption for low-cost

processor. As a solution, heavy duty function of an application is effective to be implemented on FPGA as an accelerator to support

the computation to address the power consumption and optimize the performance. Furthermore, real-time data streaming

application become ubiquitous in the future, as industrial robotic IoT will required to process all requirement and processing into

meaningful information. One of the important streaming data processing is pattern matching algorithm. There is a method to

describe search pattern by a regular expression when performing data pattern matching, but it is faster to use an accelerator using

hardware FPGA as IoT than using a general-purpose processor. However, it is difficult and time-consuming to design the hardware

for the FPGA for each regular expression pattern. In order to improve user convenience, we are researching a method for

automatically designing hardware for processing regular expressions by high-level synthesis from C language. In this research, we

proposed rules and methods towards translation regular expression pattern into supported hardware code as our contribution to

promote HW-SW co-design ecosystem and to allow the efficient utilization of FPGAs with low power consumption and high

productivity. The performance evaluation is based on the regular expression algorithm for data streaming application on ARM

processor, Core i7 CPU server and FPGA. We challenge the performance of same system of optimized C/C++ and Python Library,

RE2C and our proposal rules. While, the proposed rule has been evaluated in lower cost programmable SoC device. Our result

shows that it enables to speedup data streaming applications by up to 2000 and 30,000 times of C/C++ Library, 320 and 3400 times

of Python Library, 15 and 180 times while compared to RE2C on CPU server and ARM respectively. In the same time reducing

significantly the energy consumption with 118,000 [MB/s/J] energy efficiency.

Keywords: Industrial IoT, Stream Processing, Pattern Matching, Hardware Accelerator

1. Introduction

New trends for real-time utilization of IoT data streams

become more and more common compared to data analysis on

stored big data. In the future, data aggregation and processing

algorithm like pattern recognition and its high speed processing

for massive sensing data in Robotics IoT for Real time processing

is become a must [1].

Regular expression (regex) pattern matching and feature

extractions are core of big data analytics and processing real-time

data from IoT for meaningful information where many

implementation, rules, methodologies and surveys for IoT,

Industrial IoT, data processing and analytics proposed [2].

Majority scientist and company using python as high-level

programming language to perform these processes because of

high productivity with rich library and support [3]. However, its

performance is slow and power consumption also high. Therefore,

big company recently employ FPGA accelerator to speed up and

scale up performance and in the same time lower the energy

consumption [4].

 There is limitation when we are going to program FPGA

specially to perform text pattern matching. Not to mention extra

struggle for non-hardware programmer to implement regex on

hardware programming language like Verilog HDL or VHDL.

Thankfully, there is High Level Synthesis (HLS) to help synthesis

from high level programming language C/C++ into low level

programming languages to program FPGA. However, developers

 †1 Graduate School of Science and Technology, Kumamoto University, 2-39-1,

Kurokami, Kumamoto, 860-8555 Japan

Email: hendarmawan@arch cs kumamoto-u ac jp,

couldn't just implement algorithm and design pattern equipped C

program into HLS directly. Some Hardware limitation apply on

this condition, for example library support, dependency, and state

machine wouldn’t run unless some adjustment with the

requirement and hardware support [5]. In this paper, we designing

the rules for implementing regex patterns that can be applied to

FPGA and evaluate the circuit scale and operating frequency.

A remain of this paper is organized into five sections; state of

the art from past research explained in section two. The

compatibility problem of High-Level Synthesis FPGA, which is

have big impact on high productivity for Software and Hardware

co-design thus affecting the performance of FPGA, is described

in section three. The new rules of translation for C programming

technique into supported HLS C is proposed. In section four,

Implementation using different scenarios with CPU servers,

ARM processors and FPGA accelerators, implemented on 5

different case studies will be explained. Section 5 would be

evaluation of all case studies, and finally conclusion remark on

section 6.

2. Related Work

Big data processing which need processing high volume of

event stream in real time like finance, stock exchange, network

surveillance and health-care require processing of stream event in

real time scenario [6]. While software based stream monitoring

has limitation due to high network packet rates as shown in [7].

Event Processing Hardware using FPGA accelerator has been

 †2 Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1,

Kurokami, Kumamoto, 860-8555 Japan

Email: kuga@kumamoto-u ac jp, iida@kumamoto-u ac jp

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 51

implemented by ETH Zurich University on publication [8]

achieving high performance regex engine over data stream by

which they have developed using VHDL low level programming.

By using native design flow will enable to boost the performance,

however it has drawbacks on low productivity as it required many

years to developed their Pattern matching hardware accelerator

due to complexity.

 FPGA have demonstrated great speed performance and power

efficiency advantages over conventional computers in various

domains, such as image processing, communication, and data

analysis. In reality, design and implementation of hardware on

FPGA normally take longer period of time due to its complexity

for core development and it requires understanding and skills for

circuit design to use tools to develop accelerator application on

FPGA. This disadvantageous attribute makes development cost

on FPGA become expensive.

 Pattern matching and feature extraction engine is mainly

using regex. regex matching is an important mechanism used by

popular network intrusion detection system (NIDS) such as Bro

[9] and Snort to perform deep packet inspection against potential

threats. There are few implementations on software-based regex

for security like research by [10] to perform SNORT detection

[11]. For hardware based, implementation for pattern matching

and stream processing feature extraction have been carried out by

[12] from ETH Zurich team which developing regex engines for

hardware circuits using hardware description language VHDL.

Another research in [13], a design, implementation and

evaluation of a high-performance architecture for pattern

matching is performed on FPGA to counteract the problem of

increasing number of patterns to be scanned and network

bottleneck. The main objective of using FPGA to solve this

problem is to accelerate the system to achieve high performance.

 This research is based on the evaluation from past research on

data processing pattern matching using regex over software on

processors and hardware FPGA. The original objectives of the

authors at first, would like to knowing and investigating the

different approach on high level programming library like C and

Python for pattern matching software and how to improve the

performance over traditional pattern matching software using

hardware accelerators. Secondly, improve productivity for

software and hardware developers by designing automation

building block process each development flows from given

pattern to code generation using high level programming

language into hardware logic abstraction, design synthesis and

implementation and finally generating bit-stream for hardware

overlays for hardware accelerator. Third, proposing technique on

the hardware design and abstraction in order to optimize and

utilize hardware resources to get higher results and evaluations.

3. Proposed Rules for FPGA Pattern Matching

3.1 Problem and Challenges

 There are problem and challenge to achieve our research’s

objectives: first, to pursue the ideal on how to get better

performance over traditional pattern matching software and use

lower power consumption resources in the same time. Secondly,

knowing and investigating on how to improve productivity for

software and hardware developers by designing automation

building block process each development flows. Third, we want

to optimize and utilize hardware resources by encouraging

resource sharing within FPGA. Problem and challenge arises as

follows:

1. Development flow of FPGA Application need complex and

complicated hardware expertise, however, it guarantees better

performance and low energy consumption. The initial

challenge for hardware developers required to hard coded

algorithm into codes and hand wire blocks of hardware

programmable arrays logics from bottom – up in order to

present Intellectual Property (IP) and finally utilize shells of

designed vendor FPGA to be implemented on hardware level.

These bottom – up principles are quite challenging and often

become obstacles for software developer to design and

deploy their applications on hardware level.

2. Complexity of each development process on Hardware layer

and time consuming while progressing these steps are against

rapid development scenario on high productivity principles.

Therefore, some changes are required in order to simplify and

automate the process.

3. Pattern matching software on processors are easy to use with

library provided by high level programming language like C/

C++ and Python. However, performance of these

implementation commonly lower compared to hard coded

pattern matching software. Meanwhile, practicing pattern

matching and feature extraction on processors are by far

lower performances and higher energy consumption

compared to hardware in chips implementation which

promises higher performance and lower energy uses.

 We proposed rules for designing translation for regex

Hardware Accelerator aiming the high-efficiency low-cost

HW/SW co-design which means short development curve and

development time because we can reduce development

complexity and language barrier between high-level and low-

level programming languages to be synthesize on hardware level.

This can be achieved by implementing code translation and linker

into supported ones. After series of experiments, we developed

Modification of linker RE2C [14] together with the HLS

technique, it is possible to develop an accelerator in short time

with an attractive acceleration performance. In addition, some

optimization also provided to avoid data overhead and

performing pipelines data operation.

3.2 Developing Pattern Matching and Feature Extraction

Majority of High-level programming language like C/C++,

Python and Java are offering extensive library to help

programmer to get easy-to-use functions and procedures to be

implemented on their algorithm and application. For pattern

matching algorithm for example, C/C++ provide regex library

and python provided re library which can be easily deploy by

importing this library into their code. There are advantages and

disadvantages either using software or hardware for programmers

to perform their pattern matching algorithm illustrated in figure

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 52

1. In term of productivity, computing performance, difficulties,

limitation, complexity and energy consumption.

Fig.1 Different approach on software and hardware pattern matching

 C/C++ and Python library enable users to use pattern of regex

into coding. For C/C++ programming, it only needs to declare the

header files called regex, while on Python programming, users

just need to import re as described in the table.1. for the similarity

between C/C++ and Python coding abstraction for pattern

matching. Users then can define the need either to find first match,

find all and so on. For example, frequent item counting’s

algorithm to collect word by word then accumulate these word

pattern match and save the number of exact match over dataset.

Table.1 How to program using C++ and Python regex library

C++ Library Python Library

#include<regex>

std::regex rx(R"(ABCD)");

import re

regex=re.compile(r'ABCD')

 Programmer have freedom to express their way of thinking

and problem solving technique which called algorithm on

Software Principles. However, there will be huge challenge in

order to achieve rapid development process, solving

compatibility issues, trouble-shooting, resource allocation and

performances for hardware implementation like FPGA which

offer high performance and low energy consumption [15].

 Hardware developer and vendors introduced HLS [16], state-

of-art C-to-FPGA synthesis solutions in order to improved design

productivity. Using HLS, help programmer to implement

algorithm using C language then HLS translate it into Hardware

Description Language (HDL) like VHDL and Verilog. However,

C library cannot be used on High Level Synthesis (HLS) due to

limitation as described on [5]. Therefore, author employ RE2C to

implement pattern matching using regex on hardware level

because RE2C is DFA based which suitable for programming

logic FPGA. Our proposed method combines high productivity

from RE2C and HLS, enable rapid development for both

hardware and software developers to implement regex pattern

matching accelerators on hardware.

3.3 Overview of RE2C Code generator

 Regular expression to C (RE2C) is a free and open-source

software laxer generator for C. Originally written by Peter

Bumbulis and described in his paper, [14] it was put in public

domain and has been since maintained by volunteers. It is the

laxer generator adopted by projects such as PHP, Spam Assassin,

ninja build system and others. Problem and challenge of using

regular expression pattern for data stream applications area as

follows:

1. Limited support for Hardware implementation

2. Slow performance when using C Library for Regex

3. Scarce guidelines for beginners and hardware accelerator

4. Low productivity, hard coded necessary for each step, which

drawbacks for HW-SW co-design principles

In many cases, lexical analysis routines still by large using

hard coded by engineer for efficiency and compatibility reason.

Even though there are scanner generator available in the market

like Alex [17], YAPP [18] and Mkscan [19], which can generate

faster scanner than most of the hard-coded ones. However, most

generated scanner is specifically targeted for a specific

environment. In order to support different kind of environment it

will need more effort as it is complicatedness. Fortunately, there

is an open source toolkit called RE2C which proven as faster and

smaller compared to those result from other scanner generator

and more adaptable to other environment. The drawbacks from

this scanner generator are unlike other generator, it does not

provide default rules, end of input pseudo-token and buffer

management routines [20] which need to be provided by users.

Internal Process of RE2C

 Pattern matching using RE2C begin with scanner get input of

regex then passing into parser generator, then it further processed

in semantic analyzer before it optimized and generated into C++

code. Simplified of rule from RE2C are:

1. Constructing DFA

First step of RE2C scanner generator is constructing DFA

from pattern in order to recognize the implemented regex

provided by user.

2. Generating Code

After constructing DFA, the next step is parser generator,

semantic analyzer generator, optimizer and code generator.

Because of using DFA, code generated by RE2C relatively

straightforward. It will create some additional code to save

backtracking information. Example command usage:

$ re2c –o example.c example re

Then the code can be execute using C/C++ compiler:

$ gcc –o executable example.c

3. Buffering

RE2C generated scanner will perform checking if the buffer

needed by comparing YY-CURSOR and TT-LIMIT. This

attempt performed in order to reduce the amount checking.

By using this effort, it will minimize steps for checking every

running routine.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 53

 Authors utilize RE2C to generate minimalistic hardcoded C

or C++ DFA state machine with regular expression syntax input.

After that we directly compile and use the generated c code for

software evaluation. However, modification and hardcoded based

on RE2C generated output C code required to be able to run in

HLS due to compatibility and support issues. Some rules are

required in order to make HLS compatible code, in which authors

proposed in the next section.

4. Translation Rules of Regular Expression for

Hardware Accelerator

4.1 Into HLS C

 Vivado HLS is one of the HLS tools by Xilinx in order to

bridge hardware and software domain. It can help Hardware

developers to work at level of abstraction while creating high

performance hardware. Meanwhile, for Software developers, it

can be tools to accelerate computation for their algorithm on

Hardware FPGA. HLS allows them to develop algorithm in C-

Level rather than hard coding in low level programming hardware

languages like what Hardware programmer do in HDL language

like Verilog or VHDL. Furthermore, HLS allows users to verify

code and validate function more quickly than traditional DHL. It

allows control C-Synthesis through optimization directive and

also possible to create multiple implementation for different

purposes.

4.2 Proposed Rules

 As mentioned earlier, Vivado HLS does not support dynamic

memory allocation, OS operation and general pointer casting.

Therefore, in this paper, we proposed rules to solve this limitation

over HLS, by designing lexer-adaptive of RE2C in order to create

compatible C standard HLS. These rules are:

1. Avoiding Dynamic Memory Allocation

Different with Static Memory Allocation, which user required

to declare variables before using it so that compiler be able to

allocate these variables to the memory. Dynamic Memory

Allocation on the other hands, does not requires user to

specify the memory allocation required for the program in

advance, without worrying any upper limit of memory

allocations. However, this advanced features are not

supported on HLS. Therefore, the first rule is to make some

adjustment for lexical analysis routine on RE2C to avoid

dynamic memory allocation usage.

2. Directing Operating System Operation into outer

platform

With restriction all data from and to FPGA must be read and

write from input and output part respectively, Operating

System (OS) operation such as file read or write and OS

queries like time and date are not supported by HLS.

Therefore, the second rules for translation is managing OS

operation into outer platform like driver and test bench in

C/C++.

3. Changing General Pointer Casting into State Machine

C-style pointer casts in this case are the usage of “goto” of

Object-Oriented Programming approach which does not

supported by HLS. Probably because of these reasons: first,

it can be difficult to manage flow control. Secondly, it will

lead to error prone, which can cause disaster wild pointer if

excessive usage. Therefore, third rule we modified this

pointer casting with simple state machine which working

perfectly and more importantly it supported by HLS.

Following table 2. is example of our proposed rules on this

research. While RE2C is considered fastest framework for

regex pattern matching compared to optimized C and Python

regex library and code generator for re pattern into C. Our

proposal enables to accelerate its computation on hardware

level with our proposed rules.

Table.2. Rules implementation for HLS

RE2C approach Modification based our

rules

General pointer casting using

‘goto’

Example:

yych = *++YYCURSOR;

 switch (yych) {

 case '@': goto yyx

Implement state machine

like switch case

Example:

case '@':

 inState = 2;

 break;

Operating system operation:

fr = open(argv[1],

O_RDONLY);

rc = read(fr, buf,

sizeof(buf));

Change into memory

map and Direct memory

access (DMA) on

programming logic

5. Evaluation

5.1 System Setup

 For implementation and evaluation, we implemented pattern

matching using regex both on software and hardware approach.

System setup as shown in table 3, our implementation using 3

different setups: System CPU Processor using Intel Core i7

servers DDR3 memory 16GB, ARM on PYNQ Z2 which has

650MHz dual-core Cortex-A9 ARM type processor with a DDR3

memory 512MB and ZYNQ XC7Z020-1CLG400C on PYNQ Z2

boards. Pynq is an open-source project from Xilinx that makes it

easy to design embedded systems with Zynq Systems on Chips

[21].

Table.3. hardware setup

Features CPU ARM + FPGA

Vendor

Processor

Cores (threads)

Architecture

Process

Clock Freq.

Level 1 cache

Level 2 cache

Level 3 cache

TDP

Memory

OS

Intel CPU

Intel Core i7 3.4GHz

6 (12)

64 bit

32nm

3.4 GHz

256 KB

1 MB

8 MB

130 W

16 GB

Ubuntu 18.04 LTS

PYNQ Z2

A9

2

32 bit

28nm

450 MHz

32 kB

512 kB

-

4 W

512 MB

Ubuntu18.04 LTS

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 54

5.2 Dataset

The Enron email dataset contains approximately 500,000 emails

generated by employees of the Enron Corporation. It was

obtained by the Federal Energy Regulatory Commission during

its investigation of Enron's collapse between 1999 and 2003. This

is the May 7, 2015 Version of dataset [22]. Which we divided into

10 sets of datasets for the evaluation.

5.3 Case Study and Implementation

 We are using case study for most common uses of regular

expression pattern matching to solve the real-world problem like

explained in table 4. These five case studies also relevant with

datasets, nevertheless any other regex pattern also can be applied

into our proposal. From these patterns, we then perform pattern

matching using different scenarios and environment in order to

get a better understanding of the relation between pattern, regex

library on C/C++ and Python and its performance.

Table.4. regex pattern for evaluation

No Use Case Regex pattern

1 Email address [¥w.%+-]+)@([¥w.-]+¥.[a-zA-Z]

2 URL address [www]+¥.[¥w.-]+¥.[a-zA-Z]

3 Zip code (US) ¥s+[A-Z]{2} +¥d{5}

4 Phone number [(][¥d]{3}[)][]?[¥d]{3}-[¥d]{4}

5 Date d¥d¥s(?:Jan|Feb|Mar|Apr|May|Jun|

Jul|Aug|Sep|Oct|Nov|Dec)¥s¥d{4}

¥s¥d{2}:¥d{2}

 For implementation, it can be seen in table 5. There are 3

application design using C Library, Python Library and RE2C

implemented on CPU server and ARM processor and proposed

FPGA evaluation on PYNQ Z2 board.

Table.5. implementation methods for evaluation

Type Methods

A1

A2

B1

B2

C1

C2

D

C Library for CPU on PC

C Library for ARM on PYNQ

Python Library for CPU on PC

Python Library for ARM on PYNQ

RE2C for CPU on PC

RE2C for ARM on PYNQ

Proposed FPGA on PYNQ

5.4 Architecture design on PYNQ

 Our architecture design for hardware regex accelerators

(Figure 2) designed with FPGA design Tool Vivado/Vivado HLS

version 2019.1. It begins with data stream passing through PS,

using C and Python API on PYNQ framework, the data then send

to memory map on Processing System (PS) level. Using Python

kernel and shell driver, the data on memory map connected into

Direct Memory Access (DMA) on hardware FPGA, by then data

to be processed on Intellectual Property (IP) on Programming

Logic (PL) level. Communication vice-versa between DMA and

custom IP using AXI Stream with 100MHz operating frequency

and 32bit data-width. The generate result from regex IP on PL

side then transported with DMA once more time to be exported

to PS side using memory buffer. Finally, result pattern matching

and feature extraction delivered into application like Jupyter

Notebook for interactive user interface.

Fig.2. Architecture design on PYNQ Framework.

5.5 Result

 The implementation result can be seen on table 6, where all

case studies pattern matching with 10 different set of datasets

implemented on CPU, ARM and FPGA. Based on evaluation,

performance of regex pattern matching on ARM or CPU server

using C/C++ and Python Library is much slower due to type

checking and other overhead of needing to interpret code and

support C/C++ and Python's abstractions. Sometimes, also the

user faults also taking into consideration which called

Catastrophic Backtracking which recursively backtracking for

finishing line/dataset. Furthermore, the time complexity of both

C++ and Python Library which using NFA lead to overhead.

Instead of making O(N*M) complexity, it can be run O(2M) or

worst. Meanwhile, RE2C and our approach translating NFA into

DFA. It means pattern matching can be processed as linier and

time complexity will be reduced significantly at O(N) complexity

only, resulting higher performance.

 On the other hand, Implementation using RE2C for software

processors on CPU and ARM are quite fast compared to equal

benchmarks with C/C++ and Python regex library as illustrated

on figure 3. Finally using our rules to adapt C++ on HLS result

in ultrafast regex accelerators. Our approach using optimized pre-

compiled C code, is able to avoid a lot of the overhead and on

HLS side, we implement optimization using data flow, pipeline

and loop unroll. Another reason why our approach using

hardware accelerator faster than the remaining evaluation are

because of memory map and DMA to transport streaming data

and then AXI 4 Stream custom IP do the computation.

 The proposed hardware accelerator using proposed rules

shown in table 7, dominates performance up to over 31,000 times

from A2 (C/C++ Library ARM), up to 3,400 times from B2

(Python Library on ARM), up to 2,255 times compared to A1

(C/C++ Library CPU) and 321 times to B1 (Python Library CPU).

Meanwhile, compared to RE2C, our implementation also

dominated with up to 180 times on C2 and progressing up to 15.2

times compared to C1 despite the low hardware specifications

and low power consumptions of PYNQ Z2 board.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 55

Table. 6. Throughputs for all evaluation. [MB/s]

 Method
Dataset size 1 MB 2 MB 3 MB 4 MB 5 MB 6 MB 7 MB 8 MB 9 MB 10 MB

A1

C LIBRARY on CPU

EMAIL 1.10 1.14 1.20 1.23 1.22 1.19 1.15 1.11 1.09 1.06

URL 4.20 4.19 4.20 4.20 4.20 4.19 4.20 4.19 4.20 4.13

ZIP 0.35 0.33 0.20 0.22 0.23 0.26 0.30 0.34 0.29 0.32

PHONE 4.22 4.22 4.18 4.09 4.19 4.19 4.17 4.22 4.20 4.22

DATE 3.80 3.77 4.05 4.01 4.08 4.07 4.06 4.06 3.94 3.61

A2

C LIBRARY on ARM

EMAIL 0.09 0.09 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.08

URL 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

ZIP 0.03 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

PHONE 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

DATE 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

B1

PYTHON LIBRARY on CPU

EMAIL 11.37 8.70 8.98 10.37 9.45 9.45 10.23 9.69 9.47 9.12

URL 41.69 37.76 31.60 38.86 43.28 46.30 38.46 41.68 40.38 41.69

ZIP 2.55 2.36 1.39 1.50 1.52 1.78 2.10 2.37 2.04 2.27

PHONE 142.98 153.93 157.99 160.10 156.34 146.43 140.09 140.44 134.40 135.21

DATE 47.65 48.81 44.80 43.04 48.11 47.27 46.39 48.12 45.95 47.71

B2

PYTHON LIBRARY on ARM

EMAIL 0.96 0.97 1.02 1.04 1.03 1.01 1.02 1.00 0.94 0.92

URL 2.66 3.02 3.21 3.19 2.84 2.61 2.84 2.84 2.83 2.95

ZIP 0.22 0.21 0.13 0.14 0.15 0.17 0.20 0.22 0.19 0.21

PHONE 10.21 10.95 11.12 11.28 11.46 11.77 11.44 11.63 11.56 11.18

DATE 3.97 4.04 4.09 4.17 4.02 4.18 4.20 4.18 4.20 5.05

C1

RE2C on CPU

EMAIL 37.04 47.62 52.63 55.56 58.14 56.07 54.69 52.63 51.43 49.50

URL 125.00 200.00 200.00 307.69 294.12 315.79 291.67 320.00 321.43 294.12

ZIP 111.11 125.00 214.29 266.67 263.16 260.87 259.26 266.67 264.71 256.41

PHONE 125.00 200.00 250.00 307.69 312.50 315.79 333.33 320.00 321.43 303.03

DATE 125.00 222.22 200.00 285.71 277.78 285.71 269.23 275.86 300.00 270.27

C2

RE2C on ARM

EMAIL 4.44 4.74 5.04 5.10 5.10 4.91 4.76 4.64 4.46 4.19

URL 18.18 19.23 19.61 19.80 19.92 19.93 20.00 20.10 20.13 19.96

ZIP 17.54 18.18 18.75 17.39 18.87 17.49 18.87 18.74 18.63 18.42

PHONE 18.18 20.62 20.98 21.28 21.37 21.35 20.71 20.73 21.58 21.65

DATE 17.86 19.05 19.48 19.61 19.76 19.80 19.83 19.90 19.87 19.84

D

PYNQ Z2

EMAIL 75.97 157.30 236.57 312.48 366.19 422.53 518.46 628.24 711.17 752.34

URL 77.95 119.38 233.02 309.26 385.58 451.97 545.73 619.20 701.65 754.24

ZIP 72.59 151.97 227.99 287.33 380.40 456.90 530.16 605.89 686.47 726.66

PHONE 78.94 159.27 237.91 315.84 352.70 472.33 551.26 631.08 711.57 729.44

DATE 45.32 155.81 224.01 313.94 371.11 464.14 550.43 626.13 709.30 726.03

A2 B2 C2 A1 B1 C1

Email IP accelerator on FPGA 8,907 819 180 708 82 15.20

URL IP accelerator on FPGA 2,674 256 38 183 18 2.56

ZIP IP accelerator on FPGA 31,998 3,431 39 2,255 321 2.83

Phone IP accelerator on FPGA 2,624 65 34 173 5 2.41

Date IP accelerator on FPGA 2,700 144 37 201 15 2.69

Table. 7. Speedup PYNQ Accelerators (number of times speed-up).

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 56

Fig.3.Throughput [MB/s] for all evaluation.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 57

 Finally, we investigated the energy consumption of CPU on PC,

ARM on PYNQ and FPGA on PYNQ during the evaluations.

Using equation 1 and 2, we can calculate and then evaluate the

power efficiency.

𝐸[J] = 𝑃[𝑊] × 𝑡[𝑠] ……………… (1)

The energy E in joules [J] is equal to the average power P in watts

[W], times processing time t in seconds [s]. Power is measured

by USB power checker TAP-TST8 for CPU on PC and RT-

USBVATM for PYNQ.

𝐸𝐸 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑀𝐵/𝑠]

𝐸[J]
……………… (2)

The energy efficiency EE is equal to the throughput [MB/s],

divided by energy E in joules [J].

Table. 8. Energy efficiency evaluation

 Table 8 shows the energy consumption comparison software

only and the accelerated cases between the CPU, ARM and the

Zynq platform. The highest power consumption of Core i7

processors and the DRAMs is 74[W]for Python Library test with

efficiency: 0.002 [MB/s/J] for C LIB, 0.373 [MB/s/J] for Python

Lib, 7.240 for RE2C on CPU, meanwhile the Zynq platform (both

the MPSoC FPGA and the DRAM) is 5.03 [W] with RT-

USBVATM, which mean the energy consumption for accelerator

is 0.01[J] and efficiency is 118,906 [MB/s/J]. This efficiency’s

huge advantages due to lower power consumption and fast

execution time of our proposed hardware accelerator.

6. Conclusion

In this paper we presented rules and methods towards

translation of regular expression pattern into supported hardware

code. For evaluation we perform pattern matching and feature

extraction from data stream with 5 different use-cases on 7

different implementations. We able to get better performance on

Hardware Chips compared with existing high level programming

common used libraries (C/C++ and Python regex library) and

RE2C toolkit on embedded platform and processors. Our

translation rules for hardware accelerator are proven with higher

performance compared to other implementations on optimized

software regex for both CPU and ARM processors by hundred

and thousand times. With throughput excessing 754 [MB/s]

which up to over 31,000 times better than ARM evaluation using

C Library and up to 3,400 times on Python library, while

compared to CPU usage both libraries up to 2,255 and 321 times

speed up respectively. Next, when compared to RE2C achieved

up to 180x on ARM and 15.2x on CPU. Furthermore, for energy

consumption PYNQ accelerator consumed only 0.01[J] made the

efficiency 118,906 [MB/s/J]. Our evaluation also showed transfer

efficiency is achieved 94.3% on AXI Stream in 10MB dataset size.

 For future work, we will develop hardware-software co-

design framework for rapid prototyping and high productivity

with evaluation on different type of FPGA. It will enable to

develop real time data processing on FPGA accelerator for high

performance and high energy efficiency.

Reference

[1] Yasumoto, K., Yamaguchi, H., & Shigeno, H. (2016). Survey of

Real-time Processing Technologies of IoT Data Streams. J. Inf.

Process., 24, 195-202.

[2] Bok, K.S., Kim, D., & Yoo, J. (2018). Complex Event Processing

for Sensor Stream Data. Sensors (Basel, Switzerland), 18.

[3] McKinney, W. (2017). Python for Data Analysis: Data Wrangling

with Pandas, NumPy, and IPython.

[4] Teubner, J., & Woods, L. (2013). Data Processing on FPGAs. Data

Processing on FPGAs.

[5] Vivado Design Suite User Guide High-Level Synthesis UG902.

(2019). UG902 (v2020.1) June 3, 2020.

[6] Carruthers, K. (2014). How the internet of things changes

everything: The next stage of the digital revolution. Australian

Journal of Telecommunications and the Digital Economy, 2, 69.

[7] Sidhu, R.P., & Prasanna, V. (2001). Fast Regular Expression

Matching Using FPGAs. The 9th IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM'01), 227-238.

[8] Woods, L., Teubner, J., & Alonso, G. (2010). Complex event

detection at wire speed with FPGAs. Proceedings of the VLDB

Endowment, 3, 660 - 669.

[9] Paxson, V., Campbell, S., Leres, C., & Lee, J. (2006). Bro Intrusion

Detection System.

[10] Prithi, S., Sumathi, S., & Amuthavalli, C. (2017). A Survey on

Intrusion Detection System using Deep Packet Inspection for

Regular Expression Matching.

[11] Shah, S.A., & Issac, B. (2018). Performance Comparison of

Intrusion Detection Systems and Application of Machine Learning

to Snort System. Future Gener. Comput. Syst., 80, 157-170.

[12] Woods, L., Teubner, J., & Alonso, G. (2011). Real-time pattern

matching with FPGAs. 2011 IEEE 27th International Conference on

Data Engineering, 1292-1295.

[13] Yang, Y., & Prasanna, V. (2012). High-Performance and Compact

Architecture for Regular Expression Matching on FPGA. IEEE

Transactions on Computers, 61, 1013-1025.

[14] Kiat, W.P., Mok, K.M., Lee, W., Goh, H.G., & Achar, R. (2020). An

energy efficient FPGA partial reconfiguration based micro-

architectural technique for IoT applications. Microprocess.

Microsystems, 73, 102966.

[15] Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., &

Zhang, Z. (2011). High-Level Synthesis for FPGAs: From

Prototyping to Deployment. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 30, 473-491.

[16] Bumbulis, P., & Cowan, D. (1993). RE2C: a more versatile scanner

generator. LOPLAS, 2, 70-84.

[17] Mössenböck, H. (1986). Alex - A simple and efficient scanner

generator. Sigplan Notices, 21, 139-148.

[18] Simões, A., Carvalho, N., & Almeida, J. (2012). Generating flex

Lexical Scanners for Perl Parse: Yapp. SLATE.

[19] Horspool, R.N., & Levy, M. (1987). Mkscan - A Interactive Scanner

Generator. Softw. Pract. Exp., 17, 369-378.

[20] Trofimovich, U. (2020). RE2C: A lexer generator based on

lookahead-TDFA.

[21] http://www.pynq.io/

[22] https://data.world/brianray/enron-email-dataset

D A1 B1 C1

E [J] 0.01 622.78 24.44 6.84

EE [MB/s/J] 118,906 0.002 0.373 7.240

P [W] 5.03 64.9 74 43

t [s] 0.0013 9.5960 0.3303 0.1590

Throughput [MB/s] 752.34 1.06 9.12 49.5

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 58

