
Predictive Many-core Allocation Method for Edge Off-Road Services 

Masato Fukui†  Yoichi Ishiwata‡ Takeshi Ohkawa§  Midori Sugaya† 

Abstract: In recent years, edge computing has been attracting attention for the purpose of offloading advanced processing by IoT 

and robot services. It needs to efficiently provide services to multiple robotics services while dynamically switching abundant 

computational resources such as many-core resources. In Many-core research, many studies have been conducted to increase the 

degree of parallelism of tasks to improve responsiveness and computational efficiency. However, there is still not enough discussion 

on how to effectively allocate resources in a way that is suitable for integrated services and to achieve both efficiency and 

responsiveness. In this study, we construct an efficient resource allocation prediction formula as a study of an efficient Many-core 

allocation method for edge offload. In addition, as a specific service, we decided to evaluate the offload of AI processing of 

communication robots. In the construction of the prediction formula, it was confirmed that sufficient processing performance and 

responsiveness can be obtained with the minimum core by automatically calculating the optimum number of cores from the actual 

application operation.   

Keywords: Many-core, Edge computing, Off-Road 

1. Introduction

In recent years, robots equipped with advanced AI have widely

spread [1]. Among them, service robots are expected to realize 

advanced interaction with humans using AI [2]. These robots 

support people not only at home but also at educational 

institutions, watching over the elderly, and providing medication 

support. In the further, it is widely spread. 

 These high-performance communication robots require 

advanced computational processing to achieve more advanced 

human robot interaction such as to understand the complex 

emotions and behaviors of humans. Unibo provides a personal 

interaction mechanism through offloading (load distribution) the 

calculation process of image data on the cloud [2]. This is because 

the robot itself is not always equipped with a high-performance 

computer, and it is necessary to reduce the load of advanced 

calculation processing. In addition, if the use of a large amount 

of data such as images that increases due to the recognition 

processing of moving objects by robots, it is predicted that data 

transfer to the cloud will become a responsive bottleneck [3]. 

 As a solution for reducing computational power, edge 

computing has been proposed as a technology for supporting 

those high-performance required service [4]. In edge computing, 

a server with abundant computing resources such as manycore 

server is installed near the robot device. It needs to efficiently 

provide services to multiple robotics while dynamically 

switching abundant computational resources. In many-core 

research, several studies have been conducted to increase the 

degree of parallelism of tasks to improve responsiveness and 

computational efficiency [6-8].   

  However, there is still not enough discussion on how to 

effectively allocate resources in a way that is suitable for 

integrated sophisticated multiple robotic interactive services with 

satisfying their requirement of responsiveness.  

  In addition, empirical research on edge servers that considers 

† Department of Information Science and Engineering, College of Engineering, Shibaura Institute of Technology 

‡ VA Linux Systems Japan K K 

§ Tokai University

the use and responsiveness of multiple data has not been 

sufficiently discussed. In this study, we firstly developed an 

efficient resource allocation mechanism for considering the 

actual robotic service and its requirement with the many-core 

edge server, and propose a prediction formula as a study of an 

efficient many-core allocation method for the edge offload. We 

consider the sufficient processing performance and 

responsiveness can be obtained with the minimum core by 

automatically calculating the optimum number of cores from the 

actual application operation.   

  The structure of this paper is as follows. Section 2 describes 

related research and issues. Section 3 describes the proposal, 

Section 4 describes the experiment for verification, Section 5 

describes the creation and verification of the estimation formula 

based on the experiment, and Section 6 describes the summary 

and future issues. 

2. Related research

In edge computing, research is being conducted to improve

items such as Latency, Bandwidth, Availability, Energy, Secure, 

and Privacy with the aim of satisfying a large amount of resource 

demands around us [5]. Latency is especially important for robots 

to provide interaction services with humans. The most efficient 

method for processing multiple parallel processes at high speed 

is to perform advanced parallel processing such as machine 

learning with multiple cores to improve responsiveness. 

Ogoshi et al. Introduced an edge server between the IoT device 

and the cloud. By offloading processing from an IoT device with 

limited computer resources to an edge server, they have realized 

efficient operation of DNN model learning in deep learning using 

a huge amount of learning data [6]. However, research is limited 

to a specific AI model, and a general-purpose model for the 

many-core server that considers the resource management of 

them has not yet been sufficiently proposed.  

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 46



Oka et al. Introduced parallelism at the local task level into the 

task-driven coarse-grained parallel processing of java's Fork / 

Join Framework for environments equipped with manycore 

processors. As a result, they succeeded in shortening the 

execution time of parallel processing on the manycore processor 

[7]. Also, Takamaeda et al. Have proposed a method to reduce the 

latency caused by inter-core communication in manycore 

processors. In this research, parallelism between processing and 

communication is detected by hardware. In this way, the 

processing can be executed without waiting for the transfer to be 

completed, so the stall time due to communication can be reduced 

by up to 40% [8]. However, sufficient research has not been 

conducted on the application of methods focusing on off-road 

processing of advanced robot processing. 

3. Proposal

To achieve the service with minimum response time, we 

propose an efficient resource allocation mechanism for the many-

core edge server, and to achieve them, propose a prediction 

formula as a study of an efficient many-core allocation method 

for edge offload.  

In developing the prediction formula, we assumed actual 

robotic service that operates as shown in Figure. 1. As a specific 

example of advanced interaction, we assume a robot that uses 

human related information such as brain waves, which is 

expected to develop in recent years, to grasp human emotions by 

processing using machine learning in the future. This robot 

system is requested to return a response within 1 second [9] after 

receiving the data. During the 1 second, the system should (3) 

analyze the data, (4) modeling with machine-learning (5) selects 

the control operation based on the model, (6) instruction for the 

robot. Generally, this operation requires the several steps, it is 

necessary to execute the application composed program with 

parallel manner.  

Figure 1: advanced interaction system overview 

The purpose of this study is to realize load offload by manycore. 

However, it is not clear how to allocate resources to manycore 

with considering supporting interactive service for the robotics. 

From the experiences of the robotics application development 

[10], we consider the following points to satisfy the allocation 

mechanism. (1) The resource requirement of the robotics service 

totally depends on each different robotic service. (2) Generally, 

the robotic service is composed of the several types of execution 

components such as streaming data treatment, and control 

calculations, and signal processing. To achieve the purpose to 

suitable allocation with satisfying the response time requirement, 

we consider dynamically assign the core satisfying the request of 

the robotics service (Figure 2). To achieve them, we consider 

some predictive method to know how much cores should be 

assigned to the robotics service. 

Figure 2: Application-dependent dynamic allocation image 

To clarify the predictive allocation for the service, and to make 

some models for them, we conducted an experiment that has a 

purpose to investigate the relationship between the execution 

time when the processor affinity was set in the multithreaded 

program and the multi process program, and the number of 

allocated processors, and clarified the relationship. 

4. Experiments

To achieve the proposed idea, we conducted two set of

experiments. To know the appropriate assignment for the cores, 

we firstly consider the benchmark program that is constitute by 

threads and processes. We planned the two experiments by 

threads and process as follows. 

4.1 Experiment 1: Multi thread 

To execute the component robotics application parallels, we 

consider developing a program that execute the number of 

pthreads and evaluated the execution time of that program.  

Since threads will achieve the parallel execution on the 

manycore with the right-weight manner. In each thread, 10 

million for() loops were executed to derive the pi using the Monte 

Carlo method. In addition, there is no communication or 

dependency between each thread. Allocate available processors 

by using the sched_setaffinity () system call for the first process 

that issues the pthread_create() library call. The processor was 

assigned to the thread group. The group by utilizing the fact that 

the thread created from the first process is also executed by the 

same processor. 

4.2 Experiment 2: Multi process 

Inside each process, 10 million for() loops were executed to 

derive the pi using the Monte Carlo method. In addition, there is 

no dependency such as inter-process communication in each 

process. In the experiment, the processes with parent-child 

relationship were set as process groups, and processors were 

assigned to the process groups. When a fork() system call is 

issued in a process for which processor affinity is set using the 

sched_setaffinity () system call. A child process is created from 

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 47



one of the parent in the process group, the child process inherits 

the processor allocation of the parent process. Using this, a 

processor was assigned to the process group. 

4.3 Experimental Environment 

We set up the experimental environment based on the manycore 

environment. The Intel Xeon Gold 6230 (20Core, 2.1GHz, 

27.5MB cache) has 20 cores and we use the two CPU that means 

40 cores for the experiment. To avoid the effect of the cache and 

hyper-threading, we disabled the cache and hyper-threading 

respectively. To evaluate the execution time, we use the UNIX 

time command to measure the execution time of the developed 

benchmark program.  

Table 1 Machine Spec 

OS Ubuntu 18.04 LTS 

CPU Intel Xeon Gold 6230 (20Core, 2.1GHz, 

27.5MB cache) x 2 

memory DDR4-2933 REG ECC 16G x 12 

4.4 Result 

4.4.1 Result: Experiment 1 

The results of varying the number of allocated processors and 

increasing the number of threads in stages at this time are shown 

below. First, the results were plotted on a 3d graph. (Figure 3) 

The execution time is the z label, the number of processors is the 

x label, and the number of threads is the y label. The two-

dimensional graphs Figure 4 and 5 also show execution time. In 

this graph the horizontal axis is the number of threads. 

Figure 3: 3D graph of the execution time of the increased 

number of threads and processors 

Figure 4: Execution time of the threads runs on one processor 

Figure 5: Execution time of the threads runs on 

40 processors 

4.4.2 Result: Experiment 2 

The results of changing the number of allocated processors and 

gradually increasing the number of processes at this time are 

shown below. First, the results were plotted on a 3d graph. (Figure 

6) The execution time is the z label, the number of processors is

the x label, and the number of processes is the y label. The two-

dimensional graphs Figure 7, 8 and 9 also show execution time. 

In this graph the horizontal axis is the number of threads. 

Figure 6: 3D graph of the execution time of the increased 

number of process and processors 

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 48



Figure 7: Execution time of the process runs on 

1 processor 

Figure 8: Execution time of the process runs on 

20 processors 

Figure 9: Execution time of the process runs on 

40 processors 

4.5 Discussion 

Since the threads and processes created by performing 

pthread_create() or fork() in Experiment 1 and Experiment 2 

perform the same processing, the number of threads or the 

number of processes is considered to be equivalent to the 

computational load. However, looking at 4.3.1, when threads 

were adopted, there was no correlation with execution time when 

the number of threads was increased. Also, when we checked 

which processor each thread was assigned to when executing the 

benchmark program, we confirmed that it was assigned to the 

same processor consecutively. 

On the other hand, when a computational load is applied as a 

multi-process program, the relationship between the increase in 

the number of processes and the execution time is increasing 

proportionally. If the number of allocated processors exceeds the 

number of processes, it is possible to perform processing in a 

certain period. In addition, when comparing the cases where the 

same amount of calculation is performed, there is an inverse 

relationship between the calculation time and the case where the 

processor allocation is large and the case where the processor 

allocation is small. 

For these reasons, it is difficult to estimate the execution time 

for the computational load when using threads. On the other hand, 

in the case of a process, a correlation was found, so we selected a 

target for a multi-process program and created and verified a 

prediction model of execution time. 

5. Resource allocation predictive model

5.1 Creating a predictive model 

Based on the above results, the relationship between the 

number of processes that one processor can execute. As we 

described in the 4.5, if the number of allocated processors 

exceeds the number of processes, it is possible to perform 

processing in a certain period. Therefore, it is not necessary to 

consider the case. To avoid the case, we omit the case of data from 

the original evaluation result data. Based on the remaining data, 

we develop an execution time calculation formula that was 

derived by multiple regression analysis. The result is shown in 

Equation 1. Table 2 shows the standard deviation, t-value, and p-

value at this time. From the values, this formula is considered 

reliable. 

Formula 1 estimation of program execution time 

(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒)𝑇𝑒𝑥𝑒𝑐 =  0.11
𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝐶𝑜𝑟𝑒
+  0.18

Table 2: result of multiple regression analysis 

Process/Core: Number of processes processed per processor 

standard deviation t-value p-value

0.0064 17.172 2.798 

 Based on the formula, we considered that the accuracy of the 

estimation formula was sufficiently high and generalized as the 

predictive formula. To generalized the formula, we use α and β, 

instead of the variables 0.18 and 0.12 that are determined by the 

program in the multiple regression analysis respectively. Finally, 

we set the formula 2 for estimating the execution time of the 

entire program with an arbitrary number of jobs can be expressed. 

Formula 2: estimation of software execution time 

(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) 𝑇𝑒𝑥𝑒𝑐 = ∑ (𝛼𝑖 ×
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖

𝐶𝑜𝑟𝑒𝑖
+ 𝛽𝑖)

𝑗𝑜𝑏𝑠
𝑖=0

 In this equation, α and β are constants determined by the 

program, with the number of jobs included in the program as 

“jobs”. 

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 49



5.2 Model validation 

 In order to verify the created model, we assumed a software 

component named A that consists of the three software programs 

(a)(b)(c).  The A is internally composed of programs that apply 

to (a) and (c). It is assumed that the requirement of the software 

component must be completed within 1 second. In order to find 

out how many processors should be assigned to this software to 

execute it in order to satisfy the requested response time, it was 

calculated by applying it to formula 2. 

Table 3 programs composed of the software component A 

program Number of process α β 

(a) 3 0.2 0.1 

(b) 2 0.5 0.2 

(c) 2 0.3 0.3 

Using the formula 2, we solve the formula 3 for xp, where the 

number of processors to allocate is xp. 

Formula 3   Apply to calculate the execution time with the 

parameters from the (a)(b)(c) program assignment. 

1 = ( 0.2 ×
3

𝑥𝑝
+ 0.1 ) + ( 0.5 ×

2

𝑥𝑝
+ 0.2 ) 

+ ( 0.3 ×
2

𝑥𝑝
+ 0.3 )

∴ 𝑥𝑝 > 5.5

 From this formula, the execution time of the software 

component is less than 1 second in the case of executing on 6 

processors or more. 

6. Conclusion

In this study, we have constructed an efficient resource 

allocation prediction formula as a study of an efficient many-core 

allocation method for edge offload server. We developed an 

execution time prediction formula based on the measurement of 

the benchmark program. This can be used to calculate the 

minimum number of cores to run an application. Currently, the 

target of the prediction formula is a benchmark program, so this 

formula may not be applicable. In the future, we will apply the 

method to a practical robot service that consist of the application 

and consider applying a prediction formula to assign multiple 

cores dynamically for the requested applications. 

Reference 
[1] “ Real world feedback and robots ” ,

https://www.soumu.go.jp/ict_skill/pdf/ict_skill_1_4.
pdf , (ref 2020/08/05)

[2] “Unibo | The world's first partner robot to learn
individuality "unibo" | Unirobot Corporation ” ,
https://www.unirobot.com/unibo/ , (ref 2020/08/05)

[3] Weisong Shi, “Edge Computing: Vision and
Challenges”, IEEE INTERNET OF THINGS
JOURNAL, VOL. 3, NO. 5, 2016

[4] Kashif Bilala,b, Osman Khalidb, Aiman Erbada,
Samee U. Khan, “Potentials, trends, and prospects in

edge technologies: Fog, cloudlet, mobile edge, and 
micro data centers, ” Computer Networks Volume 130, 
pp.94-120, 15 January 2018. 

[5] Weisong Shi, “Edge Computing”, PROCEEDINGS
OF THE IEEE , Vol107, No. 8,2019

[6] Junpei Ogoshi ,Naofumi Hama ,Nobukazu Kondo,
“Proposal and evaluation of DNN model operation
method by cloud edge cooperation”, Proceedings of
the 80th National Convention, 2018

[7] Hiroki Oka , Akimasa Yoshida，” Task-driven coarse-

grained parallel processing with local task co-execution on

manycore”, Information Processing Society of Japan
Journal Computing System Vol.12 No.3 1–13, 2019

[8] Shinya Takamaeda Yoichi Mori Kise
Kenji,”Examination of inter-core communication
latency concealment method in manycore processor”，
Proceedings of the 72nd National Convention，2010

[9] Takuma Sumiya Yutaka matsubara Miyuki Nakano
Midori Sugaya, “IXM:Rapid Inter-Process
Communication Middlewarefor Robotics Software”,
Information Processing Society of Japan Journal, Vol.
58-10, 2017.

[10] Masato Fukui Yoichi Ishiwata Takeshi Ohkawa
Midori Sugaya, “Consideration of edge server that
supports robot interaction”, Cloud Network Robot
Study Group (CNR), 2020

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 50


