
fogcached-ros: Hybrid main memory KVS server

Koki Higashi†1 Yoichi Ishiwata†2
Takeshi Ohkawa†3 Midori Sugaya†1

Abstract: In recent years, to process a large amount of sensing data from IoT devices, it is expected to place an edge server
located closer than the cloud to reduce the delay from the distance. Edge servers are required to have high responsiveness and
reliability. Within the Edge researches, fogcached successfully reduces the response time because of introducing the KVS caches
servers, and increase reliability uses not only DRAM but also Non-Volatile-Memory (Intel Optane Data Center Persistent Memory)
to store the less access cache. It provides a dual-LRU mechanism that is extended by the memcached as a management for the
hybrid memories. However, because fogcached was only evaluated by simulation, it is not clear the mechanism also effective for
the practical applications. The purpose of this study is to evaluate the fogcached with the practical robotic application which is
necessary to apply the edge computing. These days, robotics application is developed generally on the ROS, and SLAM
(Simultaneous Localization and Mapping) application. To apply the fogcached to the ROS and SLAM, we designed an extension
of ROS namely fogcached-ros, which executed on ROS to connect to fogcached. It stores and retrieves data in fogcached with
API. In preliminary experiments, we thought SLAM as suitable for evaluation of edge computing. We evaluated the API overhead
measurement results and found that it was less than 1ms. We concluded these API support many topics.

Keywords: ROS, SLAM, KVS, memcached, Edge Computing

1. Introduction

In recent years, autonomous mobile robots have become
widespread in warehouses and facilities for the purpose of
reducing the labor. The features of these services are the
systematic operation of multiple and autonomous driving robots
such as the road surface property measurement robots and
security robots [1]. It measures the road surface from the sky with
multiple drones and calculates the position and inclination angle
of the object to measure it more accurately and regularly at a
lower cost than humans. Furthermore, it can be widely applied,
such as collecting measured data in real time, generating a map,
and using it for environmental measurement. In addition, the
security robot [2] operates multiple robots at the same time to
detect suspicious persons, detect abnormalities in the surrounding
area, and report. In addition to these two cases, there are many
uses such as an autonomous driving delivery [3], and a system
developed by Intel that uses multiple small robots to search for
and rescue victims and missing persons [4].

These robots process a large amount of sensor data at the same
time as the actuation. Conventionally, sensor data used for
grasping physical information that is used for control, and it is
not saved and is discarded after calculation processing. In recent
years, services that send data collected by robots to the cloud
generally connected to the network [5], and it is expected that a
large amount of sensor data that is sent by the multiple robots will
be stored in the cloud service. However, when storing data in a
cloud server, remote processing to the cloud is concentrated, so
the cloud server becomes overloaded and network delays such as
wireless are problems.

On the other hand, in recent years, edge computing for handling
a large amount of data at a shorter distance than the cloud has
been studied [6]. In edge computing, a design that emphasizes
responsiveness to many sensor nodes has been proposed for the
purpose of real-time response at a short distance to sensor nodes

 †1 Shibaura Institute of Technology
 †2 VA Linux Systems Japan K K

existing on the edge side close to the device. As one of the
responsiveness improvement technologies, a mechanism has
been proposed in which a cache is deployed at the edge to
effectively cache data up to the cloud on the edge server.

To improve the reliability and responsiveness of the data, Ozawa
et al. developed fogcached that is the implementation to NVM
based on memcached, which is a typical implementation of the
key-value store, and showed its effectiveness [7]. However, their
effectiveness was limited within the simulation, and it is not clear
the effectiveness for the practical applications.

To clarify the effectiveness as an edge computing, we consider
evaluating a practical robotic application that has not been
considered even if it is necessities to the responsibility and
reliability for their flexible service. Therefore, in this study, to
evaluate the fogcached, we use the practical robotics application
such as ROS and its measure application SLAM.
 To achieve the purpose, we propose a system and extension API
on ROS to connect the fogcached, since it does not have any
mechanism to apply the ROS and its application. We named it as
fogcached-ros. In this paper, we describe the detail of the design
of the extension of fogcached-ros and execute the preliminary
evaluation for the practical ROS application such as SLAM using
proposed API.

In this paper, the previous research for the research subject is
described in Section 2, the proposal is described in Section 3, the
preliminary experiment is described in Section 4, and the
summary and future issues are described in Section 5.

2. Related research

With the growth of hardware research, the speed of NVM (Non-
Volatile Memory) has increased, and those with speeds closer to
DRAM have been developed. Intel announced DCPM (Intel
Optane Data Center Persistent Memory) in 2019 [8]. DCPM is a
DDR4 standard memory with a latency that is about four times
that of DRAM [9].

 †3 Tokai University

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 39

Wu et al. proposed NVM cached [10]. NVMcached is an NVM-
based key-value cache. They considered that the conventional
technology for maintaining consistency such as copy-on-write
and journaling is heavy processing in applications that require
high-speed processing such as KVS, and proposed a method that
considers the write endurance of NVM as NVM cached.
Specifically, the list of objects (metadata) is saved in DRAM, and
the objects are saved in NVM. In consideration of write resistance,
objects that are deleted and updated in a short time are saved in
DRAM. The list saved in DRAM disappears after the crash, but
the objects saved in the NVM reflect the access history from the
client, and the list is reconstructed based on the access history. In
addition, they aimed to achieve both performance and reliability
by accelerating metadata processing with DRAM and
guaranteeing object persistence with NVM. In this study, they
improved the system throughput of real write-intensive
workloads by up to 2.8 times compared to non-volatile
memcached. However, there is a problem that data does not move
between DRAM and NVM and does not move to NVM when the
importance of stored data increases.

Ozawa et al. proposed to use NVM to hold a large amount of
data on an edge server and develop an In-Memory Key-Value
Store on a hybrid main memory consisting of DRAM and NVM
[7]. The evaluation also showed that the responsiveness of the
edge server was improved. Ozawa et al. Used DCPM as NVM
and made it accessible from memcached [11] as an In-Memory
Key-Value Store (KVS). Fogcached, an extension of memcached
proposed by Ozawa et al., has a structure that connects DRAM
and DCPM. Specifically, an LRU with the same structure as the
LRU for DRAM inside memcached was created on DCPM, and
the movement of memory objects between the two LRU
structures (Dual-LRU) was connected by a pipeline called MOVE.
The memory object automatically moves to DCPM when the
access frequency becomes low, achieving reliability while
maintaining responsiveness. Compared to the extstore, which is
an existing implementation of memcached, the latency of the
entire system is improved by about 40% and the throughput is
improved by about 19%. However, reliability has not been
discussed and is limited to the use of non-volatile memory. In
addition, in previous studies, there are problems such as (A)
insufficient evaluation in actual applications, (B) non-
implementation of cooperation with the cloud considering
reliability.

3. Proposal

3.1 Purpose
In contrast to the issues mentioned at the end of Section 2, the

purpose of this research is to realize the high speed and reliability
of the edge server when using robot applications for problem (A)
and (B).

3.2 Proposal summary
In this research, we propose that the hybrid main memory KVS

server supports SLAM. In addition, we propose (1) design and
implementation of fogcached considering robots for the problem
(A) and propose (2) design and implement a system linked with

the cloud for the problem (B).

3.3 ROS (Robot Operating System)
In this study, we consider to use the ROS [12] [13]. Since ROS

(Robot Operating System) is an open source middleware library
and tools that support software developers to create robot
applications. Specifically, hardware abstraction, device drivers,
libraries, visualization tools, message communication, package
management, etc. are provided. ROS is licensed under the BSD
license.

Currently, there are two types of ROS, ROS1 and ROS2. ROS1
is the initial version of ROS and has many users. ROS2 is an
extended version of ROS1. ROS2 is a highly versatile ROS that
supports a wide variety of robots and meets the requirements of
modern systems such as the assumptions of multiple robot teams
and real-time systems. This paper deals with ROS1.

In ROS, there are terms such as (a) node, (b) master, (c) message,
(d) topic, (e) publish, and (f) subscribe. (a) node is a process that
performs computation. ROS is designed to be modularized on a
fine-grained scale, and robot control systems usually consist of
many nodes. (b) The master manages the entire ROS
communication. In ROS1, a node cannot look for other nodes,
exchange messages, or request services without a master. (c)
message is the data of communication between nodes. One
message is a simple data structure consisting of type fields. (d)
topic is a name to distinguish the contents of message. The
message is published and subscribed through the exchange. node
sends a message according to the topic given by publish.
Regarding (e) and (f), ROS performs Pub / Sub communication.
Pub / Sub communication is an asynchronous message service
that separates the service that processes events from the service
that generates events. The side that sends the data is the Publisher,
and the side that receives the data is the Subscriber.

3.4 SLAM (Simultaneous Localization and Mapping)
 SLAM (Simultaneous Localization and Mapping) [13] is a
general term for technologies that simultaneously estimate the
self-position of a moving body and create an environmental map.
The SLAM application receives data from robots and sensor
nodes and creates a map including its own position based on
numerical values. By utilizing SLAM, it is possible to create an
environmental map in an environment where the moving body is
unknown. The robot uses the constructed map information to
perform tasks while avoiding obstacles.

3.5 Client Application
SLAM technology is installed in drones, UAVs, and robots, and

many services are used. In addition, SLAM handles various
sensor data and requires a lot of computer resources. Therefore,
the application to be evaluated is SLAM.

3.6 Proposed system.
 Figure 1 shows the overall view of the designed system. The
design contains a client application computer and edge server and
a cloud. The application on the client side is built with the existing
open source ROS application. As a ROS application, we installed
a SLAM application (gmapping) on the turtlebot3 [14]. On the
edge server, we installed the fogcached [7] implemented in the

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 40

previous research. From the edge server, on which a ROS
Application (observer) data is sent and receive to the client. In
addition, the observer sends and receive data in and out to
fogcached. As for the cloud, it is received by the ROS node,
stored in the database, and retrieved in the same way as the edge
server. The communication method is unified by using ROS
throughout this system.

Figure 1: System diagram

3.7 Design and implementation of SLAM and server
integration

With conventional ROS, there is no way to communicate with
fogcached. In addition, the topic on conventional ROS
communication is basically overwritten, and only the latest
information remains. Figure 2 shows a conventional ROS
communication diagram. As shown in Fig. 3, the proposed system
communicates with fogcached so that past data can be saved. We
thought that this would improve convenience and reliability. The
ROS application observer has two nodes which are observer_set
and observer_get.

In addition, communication between the observer and
fogcached is performed by two API. The interface is shown in Fig.
4. The detailed operation is described in 3.8.

Figure 2: Traditional ROS communication

Figure 3: Proposed system ROS communication

Figure 4: API interface

3.8 Communication API
As shown in Fig. 4, we created two API to connect fogcached.

As shown in Fig. 3, communication between ROS and fogcached
is performed by setAPI and getAPI. These are executed in the
ROS node. Since fogcached is KVS, it is necessary to generate
Key and Value. Both APIs receive topic and ID. The setAPI also
receives the message, but the getAPI message returned by
reference. Figure 5 shows the processing flow using the API
interface. In both APIs, topic and ID become key as a
concatenated character string with an underscore (_) in between
topic and ID. The upper limit of key is set to 50 bytes. The
message of setAPI is serialized and converted into a character
string. The serialized character string is entered in value, but the
heap area is dynamically allocated. In setAPI, these keys and
values are saved in fogcached. The message was serialized in
setAPI, but the message deserialized in getAPI and the restored
message in fogcached is returned. In addition, API support many
topics, not just one type. Figure 6 shows the setAPI call when it
is executed in the Subscriber callback. However, some processing
is omitted in the comments.

Figure 5: API processing flow

Figure 6: setAPI example

4. Preliminary experiment

4.1 Preliminary experiment outline
This experiment is a preliminary experiment to confirm whether

SLAM is useful as an application for 3.2 Proposal (1). The
purpose is to investigate the amount of data on ROS

int set_memcached(topic, class message, ID);
int get_memcached(topic, class& message, ID);

//callback function in Subscriber
void jointStateMsgCallback
(const sensor msgs::JointState::ConstPtr &msg)
{

 char key[KEY_BUFFER_SIZE];
 char id[ID_BUFFER_SIZE];
 // Substitute topic for key
 // Determine id arbitrarily
 set_memcached(key,msg,id);

}

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 41

communication when SLAM is executed. Table 1 shows the
equipment used in the experiment and the computer resources.
ROS Task is an open source application and ROS tool for
turtlebot3. In the experiment, we record all data on ROS
communication using rosbag. The measurement was performed
for 30 minutes in the environment of about 23 m2 shown in Fig.
7. Figure 8 shows the flow of topics on ROS.

Table 1: Computer resources and ROS tasks
ROS Task OS Memory HDD PC
ROS
master

Ubuntu
18.04
LTS

8GB 100GB Windows10
Hyper-V
Intel corei7
8550U

SLAM
gmapping
rosbag
record
turtlebot3
bring up

Ubuntu
Mate
18.04
LTS
32bit

1GB 32GB Raspberry
Pi 3B+

teleop
(keyboard
operation)

Ubuntu
Mate
18.04
LTS
32bit

1GB 32GB Raspberry
Pi 3B+

Figure 7: Measurement environment floor plan (m)

Figure 8: ROS communication diagram

4.2 Preliminary experiment results
The result of SLAM gmapping is shown in Fig. 9. The SLAM

results are displayed by the visualization tool rviz. Comparing Fig.
7 and Fig. 9 with the measurement to floor, it can be seen that the

map is created with the correct ratio.
Figure 10 is a semi-logarithmic graph of the time transition of

the amount of topic data recorded by rosbag. There were a total
of 17 types of topics on ROS communication, and there was
almost no change in the amount of data in each topic. The largest
amount of data at one time was map, which was 147500 bytes. In
addition, the cycle in which each data was communicated was
different. Although the map data communicated at one time is
large, the map has a longer cycle than other topics. Of all the
topics, the topics whose data volume has changed are tf and
rosout. tf is a coordinate transformation to associate the position
in the sensor or free space with the velocity value. rosout is a
record of the entire ROS communication. The result of tf is shown
in Fig. 11, and the result of rosout is shown in Fig. 12. The amount
of tf data fluctuated periodically and was in the range [95,210].
Figure 11 shows only about 12.0 sec, but it lasted for 30 minutes,
which is the experimental time. Unlike tf, rosout only measured
the time as shown in the table. While other topics were being
communicated quantitatively, rosout was communicated only a
few times within the 30-minute experiment time. Therefore,
neither tf nor rosout affect the transition of total data volume.

Figure 13 shows the time course of the total amount of data. The
total amount of data during SLAM execution tended to increase
with the measurement time. In addition, the cumulative amount
of data measured in 30 minutes was about 179 Mbytes, and the
amount of data required for SLAM with one unit increased by
about 6 Mbytes / s.

Figure 9: Gmapping result

Figure 10: Time transition of data volume of all topics

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 42

Figure 11: topic-Time transition of tf data volume

Figure 12: Time transition of topic-rosout data volume

Figure 13: Time transition of cumulative data volume

4.3 Preliminary experiment consideration
The space measured by SLAM in this preliminary experiment

was a very small area of about 23 m2. However, SLAM is
expected to be used in towns and structures. When measuring in
units of towns and structures, the measurement time increases and
the total amount of data increases, so a large area is required for
data storage.

From the above, SLAM is expected to handle a large amount of
data. Therefore, for evaluation of the data cache of the edge server.
It is useful to use SLAM applications.

5. Evaluation

5.1 Evaluation method
We measured the API overhead shown in Proposal (2). The

client applications used are SLAM (gmapping) used in the
preliminary experiment and turtlebot3 on the simulation software
gazebo. It also runs fogcached and the ROS application observer
on the edge server. However, fogcached has enabled the binary
protocol. Table 2 lists the edge server computer resources and
tasks. Table 3 shows the specifications of the edge server. In
addition, fogcached used 4GB of DRAM and 32GB of DCPM.
However, if a cache miss occurs, deserialization will not be
executed, so it is excluded from consideration of overhead. We
evaluate API by running SLAM for 30 minutes and measuring the
API overhead from the observer.

Table2: Computer resources and ROS tasks
ROS Task OS Memory PC
SLAM
gmapping

Ubuntu
18.04
LTS

8GB Windows10
Hyper-V
Intel corei7
8550U

teleop
(keyboard
operation)
turtlebot3
in gazebo
ROS
master

Ubuntu
Mate
18.04
LTS

196GB Edge
server

observer

Table 3: Edge server specifications
OS DRAM DCPM CPU
Ubuntu
18.04LTS

16GB
×12

126GB×12
AppDirectMode
Device dax

Intel(R) Xeon(R)
Gold 6230 CPU
@ 2.10GHz ×2

5.2 Evaluation result
Figure 14 shows the message data size for each topic. Figure 15

shows the overhead rate of the set API, and Figure 16 shows the
overhead rate of the get API. SET and GET are the time it takes
to send and receive data using the libmemcached library [15].
Serialization and deserialization are operations by the serializer
included in ROS. The time required to perform both serialization
and deserialization did not reach 1ms. Furthermore, both setAPI
and getAPI show a correlation between message data size and
overhead. As the message data size increased, the overall API
overhead increased. Also, as the data size increases, the
percentage of time it takes to serialize or deserialize tends to
increase relative to the overall API time. Also, the largest data,
map, took 629 μs to serialize and 596 μs to deserialize. And no
message had a higher overhead than map.

Figures 17 and 18 show the total API overhead per 1000 seconds.
The transmission frequency varies greatly depending on the Topic.
Imu is sent more than 100 times per second, while map is sent
only 0.07 times per second. In addition, scan is transmitted 4.9
times per second, join_states is transmitted 23 times per second,
and tf is transmitted 66 times per second. It is observed that the
overhead on the map is negligible when viewed per 1000 seconds.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 43

Figure 14: Topic message data size

Figure 15: SetAPI overhead per one time

Figure 16: GetAPI overhead per one time

Figure 17: SetAPI Overhead per 1000 seconds

Figure 18: GetAPI Overhead per 1000 seconds

5.3 Discussion
Overhead is affected by serialization when the message size is

very large. However, for messages of about 1kB, the serialization
overhead has little effect.

The usage is longer than 1000 seconds, and the higher the
transmission frequency, the higher the overhead. Therefore, it is
considered that there is no problem for a map with a large
overhead per time as the usage time becomes longer. Frequent
ones have a large overhead like Imu, but this is not directly related
to API. Therefore, it is not considered in this paper.

6. Conclusion

 In this paper, we proposed that the hybrid main memory KVS
server supports SLAM. In preliminary experiments, we
determined that SLAM was suitable for using the edge server,
therefore We extended ROS to create a mechanism to
communicate with fogcached and measured the overhead as a
evaluation. As a result, the serialization overhead was less than
1ms. The largest data, map, took 629 μs to serialize and 596 μs to
deserialize. However, since this map is sent infrequently and
there is no overhead when viewed in units of 1000 seconds, we

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 44

concluded that there is no problem for a map with a large
overhead per time as the usage time becomes longer. Therefore,
these API support many topics.
 In the future, we would like to improve versatility by moving to
ROS2. In addition, we would like to specifically examine the
improvement of reliability by using the non-volatility of DCPM.

Reference
[1] V.A.Knyaz, A.G.Chibunichev,”Photogrammetric Techniques for

Road Surface Analysis, “ ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume XLI-B5, 2016, pp.515-520

[2] SMP Robotics Systems Corp., “Security Robot System”

https://smprobotics.com/security_robot/robot-security-system/
(accessed 2020-09-28)

[3] Dr Khasha Ghaffarzadeh, Dr Na Jiao, “Mobile Robots,
Autonomous Vehicles, and Drones in Logistics, Warehousing, and
Delivery 2020-2040”, IDTechEx Research

[4] Vinayak Honkote, Dileep Kurian, Sriram Muthukumar, Dibyendu
Ghosh, Stish Yada, Kartik Jain, Bradley Jackson, Ilya Klotchkov,
“Distributed Autonomous and Collaborative Multi-Robot System
Featuring a Low-Power Robot SoC in 22nm CMOS for Integrated
Battery-Powered Minibots, ” 2019 IEEE International Solid-State
Circuits Conference, pp.48-50, San Francisco, USA, 07 March
2019.

[5] FlytBase, Inc.,“FlytBase”https://flytbase.com/
(accessed 2020-09-29)

[6] Kashif Bilala,b, Osman Khalidb, Aiman Erbada, Samee U. Khan,
“Potentials, trends, and prospects in edge technologies: Fog,
cloudlet, mobile edge, and micro data centers, ” Computer
Networks Volume 130, pp.94-120, 15 January 2018.

[7] Kouki Ozawa, Takahiro Hirofuchi, Ryousei Takano and Midori
Sugaya, “DRAM-NVM Hybrid Memory - Based KVS server for
Edge Computing,” 2020 International Conference on Edge
Computing, August.2020.

[8] Intel, “Intel® Optane™ Persistent Memory”.
https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html (accessed 2020-08-
04)

[9] Takahiro Hirofuchi, Ryousei Takano,”A Prompt Report on the
Performance of Intel Optane DC Persistent Memory Module, ”
IEICE Transactions on Information and Systems E103.D(5),
pp.1168-1172, May 2020.

[10] X. Wu, F. Ni, L. Zhang, Y. Wang, Y. Ren, M. Hack, Z. Shao, and S.
Jiang, “NVMcached: An NVM-based Key-Value Cache”. in
Proceedings of the ACM SIGOPS Asia-Pacific Workshop on
Systems, pp. 1–7, August.2016.

[11] “memcached” http://memcached.org/ (accessed 2020-08-04)
[12] “ROS”, https://www.ros.org/ (accessed 2020-08-04)
[13] Lum, J.S., “Utilizing Robot Operating System (ROS) in Robot

Vision and Control.,” National Technical Reports Library U.S
Department of Commerce,2015

[14] ROBOTIS, “turtlebot3-emanual”
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
(accessed 2020-9-29)

[15] “libmemcached”, https://libmemcached.org/libMemcached.html
(accessed 2020-9-29)

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 45

