Asia Pacific Conference on Robot [oT System Development and Platform 2020 (APRIS2020)

Dynamic Linking Method for
an Embedded Component System

1

Karsuva Yamaucut'® Tomoakr KAwADA

Hirosur OvamA

2 3 1

Takuya Azumr Hiroak1 TAKADA

Abstract: This paper presents a dynamic linking method using the TOPPERS Embedded Component System (TECS).
Dynamic linking mechanisms (e.g., Shared Object and Dynamic Link Library) are responsible for loading and linking
software modules at run-time. Such mechanisms are useful to allow a software module to be combined with other
modules which are not known beforehand during the module’s development, such as third-party applications and fu-
ture versions of an application that is intended to be combined with the said module. Another benefit is the ability
to update application modules individually, and to reduce the delivery cost of software updates. Those mechanisms
have been put into practical use in general-purpose software systems. The use of a dynamic linking mechanism for
embedded systems is also being considered; however, existing solutions are not always appropriate for embedded sys-
tems because of their tight memory constraints. Therefore, this paper proposes a linking method suitable for embedded
systems that utilizes TECS, which has the advantage of ensuring interface consistency.

Keywords: Dynamic Linking, TECS, Loadable Module, Component-based Development, Embedded System

1. Introduction

Dynamic linking mechanisms (e.g., Shared Object and Dy-
namic Link Library) are responsible for loading and linking soft-
ware modules at run-time [1], [2]. Such mechanisms are useful
to allow a software module to be combined with other modules
which are not known beforehand during the module’s develop-
ment. Another benefit is the ability to update application modules
individually, and to reduce the delivery cost of software updates.
Those mechanisms have been put into practical use in general-
purpose software systems. On the other hand, in recent years,
a technology for updating software wirelessly (over-the-air pro-
gramming) has become widespread [3]. By using these technolo-
gies, partial software updates can be done efficiently. However,
there is a problem that the memory amount required for link-
age resolution becomes large. For this reason, existing solutions
are not always appropriate for embedded systems that have tight
memory constraints.

TOPPERS Embedded Component System (TECS) is a com-
ponent system suitable for embedded systems [4]. Component
system is a system that is divided into subsystems and made
into parts to improve reusability. Dividing into subsystems fa-
cilitates parallel development and module changes. By using
TECS, systems can enjoy the benefits of component-based devel-
opment (e.g., reduction of initialization time and suppression of
increased memory usage) without reducing execution efficiency
[5], [6], [7]. Therefore, development suitable for a real-time sys-
tem can be performed.

This paper proposes a dynamic linking method suitable for em-

Nagoya University, Nagoya, Japan
OKUMA Corporation, Niwa-gun, Japan
Saitama University, Saitama, Japan

¥ katsuyama@ertl.jp

(© 2021 Information Processing Society of Japan

bedded systems utilizing TECS. By utilizing TECS, the benefits

of component-based development can be applied to embedded

systems. Therefore, even the embedded systems with tight mem-
ory constraints can use the dynamic linking mechanisms appro-
priately while suppressing the increase in memory usage.

In this study, we first applied TECS to a dynamic loading mode
of TOPPERS/EV3RT which is a target environment of this study.
Then, we designed a dynamic linking method utilizing TECS for
TOPPERS/EV3RT and checked the operation if it works prop-
erly.

Our contributions in this paper are as follows:

(1) We designed to apply TECS to a dynamic loading mode of
TOPPERS/EV3RT so that the functions by TECS can be
used in this platform.

(2) We designed an API that utilizes TECS and implemented a
dynamic linking method in embedded systems.

(3) We evaluated the application size before and after using
TECS.

The remainder of this paper is organized as follows. After de-
scribing TECS and TOPPERS/EV3RT in Section 2, we will intro-
duce the flow of applying TECS to TOPPERS/EV3RT in Section
3. Section 4 includes the design of the dynamic linking method
utilizing TECS and comparison of application size. Finally, Sec-
tion 5 concludes the paper and offers an outlook for future re-
search.

2. Background
In this section, we describe TECS and TOPPERS/EV3RT,

which our study targets.

2.1 TECS
TECS is a component system suitable for embedded systems.
We explain the development process, component model, and

14

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

celltype tCellTypel {
call sSignature cCall;

|8

celltype tCellType2 {
entry sSignature eEntry; // Entry Port
attr { int Attr; }; // Attribute
var { int Var; }; // Variable

|8

// Call Port

[domain(HRP, "user™)]

region rSample {
cell tCellTypel Celll { cCall = Cell2.eEntry; };
cell tCellType2 Cell2 { Attr=1; };

|8

// Joined

Fig. 1 Description of celltypes and cells in CDL file

TECS plugin defined by the TECS specification [4], [8], [9].
Development Process

The first step of the TECS-based development process is to de-
fine the component types and the interfaces between them. Com-
ponent definitions are written in TECS CDL and then processed
by the TECS generator to generate the interface code. This code
is combined with the celltype code that defines the behavior of
each component.

Component Model

Cells are instances of TECS components. Cells have zero or
more entry ports and call ports. The entry port is an interface that
provides its own functions, and the call port is an interface for
using the functions of other cells. These ports can be joined and
provide the functions of one cell to another. The types of ports are
called signatures. Each signature can contain one or more func-
tion header definitions which allows access between ports. When
an entry port and a call port are joined, their signatures must be
the same. Each call port must be joined with one entry port, and
when joining with multiple entry ports, should be defined as a call
port array. On the other hand, the entry port can be joined with
any number of call port including zero.

Cells can also contain zero or more attributes and variables.
Attributes are constants associated with each cell, and they can
be read by the application and plugins. Variables are similar to
attributes, but their values can change dynamically.

A celltype is a concept for representing a type of component.
The entry ports, call ports, attributes, and variables of cells are
defined in the celltype, and each cell can have unique values for
attributes and variables. The behavior of a cell is defined by the
celltype code associated with its celltype.

A region defines the protected boundaries of the cell. Cells in
the same region can be freely joined, and access between different
regions is possible by specifying the region to which the joined
cell belongs.

Fig. 1 and Fig. 2 show an example of TECS CDL code and di-
agram that defines celltypes and cells.

TECS Plugin

TECS plugins are extensions written in Ruby that the TECS
generator can use. When the TECS generator reads the CDL file,
it calls and uses the corresponding plugin function. The domain
plugin is one of the plugin types supported by the TECS genera-

(© 2021 Information Processing Society of Japan

tCelltypel tCelltype2

Call eEnt
Celll |2 YL ce2

sSignature

Fig. 2 Diagram corresponding to the description

tor as shown in Fig. 1. By defining [domain(HRP, "user”)], the
plugin specifies rSample as the user domain.

2.2 TOPPERS/EV3RT

In this study, we used a robot development terminal named
Lego Mindstorms EV3 which was released by LEGO [10]. Func-
tions such as screen display (LCD), motor, and sensor can be used
with EV3. TOPPERS/EV3RT [11] is a software platform for this
terminal based on TOPPERS/HRP3 (a real-time operating system
with memory protection) [12].

There are two types of executables for EV3RT, which are a
dynamic loading mode and a standalone mode. The former is a
mode that builds the base system and the application separately,
and the latter is a mode that builds them as one binary file. In this
study, we targeted the dynamic loading mode. The base system
has functions that are common to all applications (e.g., kernel and
device drivers for Mindstorms EV3). In the application, the tasks
to run on EV3 are defined in C or Ruby language. Each applica-
tion is built as a separate executable file and is called Loadable
User Module (LUM). When the LUM is executed, it loads the dy-
namic library, and the base system loads/links it. These modules
can be added and removed dynamically at run-time in this mode.

TECS is not used in the current dynamic loading mode, and
all application tasks must be prepared manually. If TECS can be
used, the TECS generator processes the CDL file and generates
the interface code, which reduces the amount of description and
makes it easier to change the task. In the next section, this pa-
per proposes the design of applying TECS to LUM to facilitate
application changes.

3. Apply TECS to LUM

In this section, we describe the flow of applying TECS to the
LUM. To use TECS, all developers have to do is call a set of
TECS generator and TECS plugins from the makefile. In this
study, the base system of EV3RT is not changed, and TECS is
applied only to the LUM.

3.1 Change the Kernel of LUM

Before applying TECS to the LUM, we focused on how to gen-
erate static APIs. Static API is an interface for defining kernel
object generation information and initial state. The HRP ver-
sion of the application uses TECS plugin to generate it. Fig.3
shows an example of a static API for creating tasks. TA_ACT,
TASK PRIORITY, and STACK SIZE represent the task’s initial
state, priority, and stack size, respectively. The developers set
the values for these parameters, and the TECS generator auto-
matically creates a static APIL.

LUM uses a static API for LUM instead of a static API for
TOPPERS/HRP. If anything, a static API for LUM is similar to a
static API for TOPPERS/ASP (a real-time operating system that

15

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

CRE.TSK (TASK1 , { TA_ACT, 0, task,
TASK_PRIORITY, STACK SIZE, NULL });

Fig. 3 Static API

factory {
write(“ tecsgen.cfg ",
“ CRE_TSK(%s, { %s, $Scbp$, tTask_start_task,
%s, %s, NULL}); " ,
id, taskAttribute, priority, stackSize);

Fig. 4 Factory description of static API in ASP

is the basis of HRP). There are not as many APIs for LUM as for
HRP, and the processing is not complicated. In other words, LUM
does not have enough static API to define even using a TECS
plugin like HRP. Therefore, we changed the kernel of LUM from
HRP to ASP. In the ASP version, the static API is generated by
factory description as Fig. 4.

Due to the kernel change, some of the description used in the
ASP kernel had to be modified for use in LUM (e.g., change spec-
ifier and removal of unsupported functions). After all the changes
are complete, call the new kernel and TECS generator from the
makefile to apply TECS to LUM.

3.2 Adding a Task by TECS

In the previous section, we made kernel changes and applied
TECS to LUM. This makes it possible to add tasks with TECS
without changing the entire application. We added a task in the
application by TECS to check if TECS was applied correctly. The
component definition of the added task is as Fig. 5.

tSampleTaskMain is the celltype of SampleTaskMain, and this
task has an entry port (eTaskBody). rSample is a definition of
the region and is specified as user domain by the plugin. tTask
is an existing celltype used to generate a task. It has attributes
that define the task status, priority, and stack size, and also has an
entry port and a call port (cBody). By joining cBody and eTask-
Body, SampleTaskMain becomes the entry point of the applica-
tion’s main task. The TECS generator processes this TECS CDL
code and generates a template file to define the task. The task
is completed when the developer describes the operation in this
template file.

By inspecting the log output of the message with this task,
we confirmed that the task added by TECS worked as intended.
Thus, we confirmed that TECS was successfully applied to LUM.

4. Dynamic Linking Method Utilizing TECS

In this section, we describe the design of the dynamic linking
method utilizing TECS.

4.1 Adding API Cells by TECS

We applied TECS to the LUM in the previous section. The next
thing to do is to add cells that define the API of Mindstorms EV3.
By adding these cells, we extended the behavior of API to work
within the TECS framework. Fig. 6 shows a system configuration
of a dynamic loading mode with added cells.

User Application, Application Programming Interface, Device

(© 2021 Information Processing Society of Japan

celltype tSampleTaskMain {
entry sTaskBody eTaskBody;
I3

[domain(HRP, “user”)]
region rSample {
cell tSampleTaskMain SampleTaskMain {};
cell tTask SampleTask {
taskAttribute = C_EXP("TA_ACT™);
priority = 42;
stackSize = 1024;
cBody = SampleTaskMain.e TaskBody;
|8
|5

Fig. 5 The component definition of the added task

I User Application |

Application Programming Interface Bridge Cell

poser | [aspapt] [EV3API] [Newld] | |[LcD][]
Kemel Device Drivers Cell

P [Sensor] [Motor | [LcD] [LED] [] ||[LcD][]

| TOPPERS/HRP3 Kemel |

Fig. 6 A system configuration of dynamic loading mode with added cells

[domain(HRP, “user”)]
region rUserDomain {
cell nMruby::tsLCD BridgeLCD {
c¢TECS = rKernelDomain::LCD.eLCD;
|8
|8

[domain(HRP, “kernel™)]
region rKernelDomain {
cell tLCD LCD {
cButton = Button.eButton;
|3
|5

Fig. 7 The definition of extended service call

Drivers, and TOPPERS/HRP3 Kernel are the existing system con-
figurations used in the dynamic loading mode. The first two are
defined in the user domain, and the other two are defined in the
kernel domain, which makes up LUM and the base system, re-
spectively.

We added Bridge Cells for user domain and Cells for the ker-
nel domain, and joined them. With such a cell configuration, the
access is performed in the flow of an application, Bridge Cell,
and Cell at the time of loading. However access beyond the do-
main is not allowed. It can be done by using the extended service
call function. Extended service calls are generated by the TECS
plugin by specifying the domain to join as shown in Fig. 7. rKer-
nelDomain is specified when joining from BridgeL.CD to LCD.

There are more than a dozen APIs for Mindstorms EV3, only
the LCD and Button which are the most frequently used APIs
were joined with the extended service call. For other APIs, both
Bridge Cell and Cell are in the user domain.

16

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

[node, to_through(rKernelDomain, HRPSV CThroughPlugin, “”)]
region rSample { ... };

[node, to_through(rKernelDomain, HRPSV CThroughPlugin, “”)]
region rUserDomain { ... };

[domain(HRP, “kernel ")]
region rKernelDomain { ... };

Fig. 8 The division method by node

namespace nLUM {
celltype tTask {
[inline] entry sTask eTask;
[inline] entry siTask eiTask;
call sTaskBody cBody;
|5
k

Fig. 9 Kernel division by namespace

4.2 Division of Cell Structure and Kernel Functions

We added Bridge Cells and Cells to define the APIs for Mind-
storms EV3 in the previous section. Since all of these cells are
defined in the same CDL file, TECS generator cannot determine
which cells belong to the LUM. First of all, we describe how to
divide these cells into the base system side and the LUM side.

By specifying the region, Bridge Cells belong to the user do-
main and Cells belong to the kernel domain. A region can op-
tionally have an attribute called node. It is a unit consisting of
one processor and one memory, and one node can be configured
for each region. By specifying a node in the region, it can be re-
garded as a separate system even within the same CDL file. Fig. 8
shows the division method by the node.

HRPSVCThroughPlugin is a plugin for extended service call
[13]. By making such a description, rSample, rUserDomain, and
rKernelDomain are devided into node units, and access to rKer-
nelDomain from rSample and rUserDomain becomes possible.
In the kernel domain, it is done implicitly without defining the
node. These three regions are regarded as separate nodes, and
can be distinguished by this definition.

Then, we describe the division of kernel functions. Since we
changed the kernel of LUM in Section 3.1, the kernel used in the
base system and LUM are different. These kernels are also called
from the same CDL file, and some functions (e.g., tKernel and
tTask) are commonly defined in both kernels. Therefore, TECS
generator cannot determine which function to use in LUM.

Namespace is effective for kernel division. It is an identifier
used to separate name scopes and prevents name collisions of
celltypes and signatures. Fig. 9 shows kernel division by names-
pace.

Fig. 9 is a part of the kernel on the LUM side. By enclosing the
celltype in a namespace, tTask becomes a celltype with an iden-
tifier of nLUM. However, the same tTask definition exists in the
kernel on the base system side, since it does not have an identifier,
it is treated differently from the tTask as shown in Fig. 9. This al-
lows functions with an nLUM identifier to be used by LUM, and
functions without an nLUM identifier to be used by the base sys-
tem.

(© 2021 Information Processing Society of Japan

celltype tSampleTaskMain {

entry nLUM::sTaskBody eTaskBody;

call sLCD cLCD;

[optional] call nMruby::sInitializeBridge cInit;
I3

region rSample {
cell tSampleTaskMain SampleTaskMain {
cLCD = rKernelDomain::LCD.eLCD;
cInit = VM_TECSInitializer.eInitialize;
|8
|8

Fig. 10 The component definition of Mruby VM

SampleTask
SampleTask Bridge SVCCaller
MrubyVM Main LCD LCD
MrubyVM
Initializer
SVCBody
LCD Lch

Fig. 11 The final cell composition of dynamic loading mode

Nodes and namaspaces allow the TECS generator to determine
the information needed to build a LUM. As a result, the infor-
mation required for each of the base system and the application
could be divided.

4.3 Adding MrubyVM

By designing up to Section 4.2, the structure utilizing TECS
was added to the existing dynamic loading mode. This change
allowed to extend the dynamic loading mode to the system that
is more suitable for embedded systems. In addition, this section
introduces the design of the environment that uses MrubyVM.

MrubyVM is a set of cells for executing an application writ-
ten in Ruby [14]. It can be used by calling the VM initialization
cell from the main task cell as shown in Fig. 10. Since the initial-
ization cell of Mruby VM is prepared, it can be used by defining a
call port in the task and joining it with the entry port of MrubyVM
cell.

Fig. 11 shows the final cell composition of our system. Sam-
pleTask and SampleTaskMain are the tasks added in Section 3.2,
and are included in LUM. Bridge LCD and LCD are the API cells
added in Section 4.1. MrubyVM and MrubyVMInitializer are the
cells added in this section. SVCCallerLCD and SVCBodyLCD are
the intermediate cells automatically generated by the extended
service call plugin. SampleTaskMain is the entry point of the
application’s main task and calls the LCD function of EV3 and
MrubyVM.

4.4 Evaluation of Application Size

With the designs so far, TECS could be applied to LUM
and utilizing it. This section evaluates how the application size
changed before and after applying TECS.

Table 1 shows the size breakdown of applications without and

17

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

Table 1 Size comparison of applications without and with TECS

without TECS ~ with TECS
.text 3241 32.90
.rodata 3.91 391
.dynsym | 0.11 0.11
.rel 1.38 1.40
.dynstr 0.06 0.06
.hash 0.05 0.05
.got 0.44 0.44
.data 1.05 1.05
.bss 12.18 12.18
total 51.59 52.10

Round off to the second decimal place. [KB]

mtet »rodda mdia mbs othes

0 10 20 30 0 50 0

Fig. 12 The graph of size comparison

arm-none-eabi-strip app —strip-debug

Fig. 13 Strip command

with TECS. Fig. 12 also shows the size comparison of the main
elements in the breakdown. These applications have the same
behavior of displaying a simple message on the screen of EV3.
In addition, since the application without TECS does not have
MrubyVM, the application with TECS in this evaluation has un-
coupled MrubyVM.

The .text section stores the executable code. The reason for the
increase in this section is due to the addition of new functions
by applying TECS. The .rodata section stores the constants. The
.data section and the .bss section stores the variables. Variables
of the .data section have initial values, and variables of the .bss
section do not have initial values. The size did not change in
these sections because there were not many additional constants
and variables defined when the task was created. Finally, Table 1
shows an increase in the size of the .rel section, which contains
relocation information.

The compiled application contained debug information that
had nothing to do with execution. Although it does not affect
the application size, it can be removed with the strip command
shown in Fig. 13. The values shown in Table 1 and Fig. 13 ex-
clude debug information.

From these results, applying TECS does not significantly affect
the application size. This is due to the advantage of component-
based development, which is the effect of suppressing the in-
crease in memory usage. Therefore, even in embedded systems
with tight memory constraints, a dynamic linking method that
utilizes TECS is effective.

5. Conclusion

This paper proposed a dynamic linking method suitable for em-

(© 2021 Information Processing Society of Japan

bedded systems that utilizes TECS. First, we applied TECS to a
dynamic loading mode of EV3RT to make it easier to add tasks
to applications. Furthermore, we constituted API cells that can
be used in EV3, and expanded systems to work within the TECS
framework. Finally, we compared the size of applications with-
out and with TECS. These changes allowed to extend the existing
dynamic linking mechanism that can be used well in embedded
systems.

However, this study has not made a perfect design. The TECS
generator and plugin did not support this design method, and
some files could not be automatically generated. Therefore, it was
necessary to prepare an ideal output file by hand-coding. Extend-
ing the TECS generator and plugins is one of the future works.

Another future work is to strengthen the security aspect. Cur-
rently, the extended service calls make it easy to access cells in
different domains. Therefore, we are considering a method of as-
signing a unique ID to the entry port. The task has the ID of the
entry port to be joined as an attribute. After authenticating the
declared ID in the task and the ID of the entry port, the applica-
tion starts the operation of the task. By designing as above, the
application can be executed only when the ID is known, and we
believe that the safety of the base system can be further improved.

References

[1] M. Zaslavskiy, E. Ryabikov, K. Krinkin: Lightweight Linux dynamic
libraries profiling technique for embedded s , in Proc. of the
9th Central & Eastern European Software Engineering Conference,
(2013).

[2] A.Acharya, J. Saltz: Dynamic Linking for Mobile Programs, Interna-
tional Workshop on Mobile Object Systems, (1996).

[3] M. Villegas, C. Orellana, H. Astudillo: A study of over-the-air (OTA)
update systems for CPS and IoT operating systems, in Proc. of the 13th
European Conference on Software Architecture (ECSA 19), (2019).

4] T. Azumi, M. Yamamoto, Y. Kominami, N. Takagi, H. Oyama, and
H. Takada: A new specification of software comp ts for embedded
systems, in Proc. of the 10th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing (ISORC
07), pp. 46-50 (2007).

5] X. Cai, M. R. Lyu, K.-F. Wong, R. Ko: Component-based software en-
gineering: Technologies, development frameworks, and quality assur-
ance schemes, in Proc. of the 7th Asia-Pacific Software Engineering
Conference (APSEC 2000), pp. 372-379 (2000).

[6] I Cmkovic: Component-based Software Engineering for Embedded
Systems, in Proc. of the 27th International Conference on Software
Engineering, pp. 712-713 (2005).

[71 B. Bonakdarpour, S. S. Kulkarni: Compositional Verification of Fault-
tolerant Real-time Programs, in Proc. of the 7th ACM International
Conference on Embedded Software (EMSOFT 09) pp. 29-38 (2009).

[8] TECS Specification, V1.0.2.32 ed., TOPPERS Project, Inc., (2011).

[9] T.Kawada, T. Azumi, H. Oyama, H. Takada: Componentizing an Op-
erating System Feature Using a TECS Plugin, 2016 IEEE 4th Interna-
tional Conference on Cyber-Physical Systems, Networks, and Appli-
cations (CPSNA), (2016).

[10] LEGO Education (online),
available from (https://education.lego.com/en-us/),

(accessed 2020-11-2).

[11] Y. Li, Y. Matsubara, H. Takada: EV3RT: A Real-time Software Plat-
form for LEGO Mindstorms EV3, Computer Software Volume 34 Is-
sue 4, pp. 91-115 (2017).

[12] TOPPERS Project, Inc. (online),

available from (https://dev.toppers.jp/trac_user/ev3pf/wiki/WhatsEV3RT),

(accessed 2020-9-29).

[13] T.Ishikawa, T. Azumi, H. Oyama, H. Takada: HR-TECS: Component
Technology for Embedded Systems with Memory Protection, in Proc.
of the 16th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC 2013), (2013).

[14] T. Azumi, Y. Nagahara, H. Oyama, N. Nishio: mruby on TECS:
Component-based Framework for Running Script Program, in Proc.
of the 18th IEEE International Symposium on Real-Time Computing
(ISORC 2015), (2015).

18

