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Abstract: Functional reactive programming (FRP) is a programming paradigm where a system is described using
declarative abstractions of the change propagation of discrete events and continuous signals. This paper presents a
purely functional reactive programming model that facilitates a uniform description of distributed coordination and
per-node computation. A case study of a wireless sensor-actor network (WSAN) shows that both inter-node coor-
dination and intra-node computation can uniformly be written as reactive behaviors. The paper also describes an
implementation method of the model using Distributed XFRP, a pure FRP language for distributed systems.
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1. Introduction
Functional Reactive Programming (FRP) is a programming

paradigm to support the development of reactive systems such
as embedded systems and GUIs. In FRP, reactive behaviors are
described as change propagation among time-varying values (aka
signals) that represent continuously changing values or discrete
events [3]. Originally, FRP is introduced to describe interactive
animations in the purely functional language Haskell [6]. Un-
til now, the paradigm and its non-functional variants have gained
popularity in various fields such as Web programming, mobile
application development, mobile IoT networks, and embedded
systems.

The change propagation among time-varying values can be
viewed as dataflow computation. From this viewpoint, FRP pro-
vides a high-level and declarative abstraction for describing con-
current systems. Thus, integrating FRP with existing concurrent
computation models is interesting in both theoretical and prac-
tical aspects. We proposed an actor-based execution model of
an FRP language for embedded systems, which can reduce the
execution cost of a program written in the language by utilizing
asynchronous messages in the change propagation [18]. Van den
Vonder et al. introduced another direction of integration named
Actor-Reactor model that can widen the expressiveness of a re-
active programming language by using actors to describe long-
lasting or stateful behaviors [16].

To develop distributed applications, we designed and imple-
mented Distributed XFRP, a statically-typed, purely functional
reactive programming language [15]. The runtime system of the
language is based on the Actor model [1] and change propagation
among time-varying values is implemented as asynchronous mes-
sage passing. In our previous paper [15], we proposed a new al-
gorithm for change-propagation via asynchronous messages and
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showed that such a distributed runtime system can be used to im-
plement pure FRP without suffering from the phenomenon called
glitches (temporal inconsistencies in the change propagation).

The compiler*1 of the language translates a source program
into an Erlang program. In contrast to our previous work [18] that
introduced an actor-based execution model of an FRP language
as a concurrent runtime system for resource-constrained unipro-
cessor systems, Distributed XFRP actually supports distributed
execution of pure FRP programs.

The main contribution of this paper is to show that FRP is suit-
able for describing distributed coordination via a case study on
a wireless sensor-actor network (WSAN) that controls the air-
environment of a long corridor. Since the program of the WSAN
is written in Distributed XFRP, inter-node communication re-
quired to achieve the coordination is realized in a straightforward
manner by time-varying values that support single-source glitch
freedom. Moreover, the incremental development of such appli-
cations is discussed.

The rest of the paper is organized as follows. The next section
introduces the non-distributed subset of our language to explain
some basic notions of FRP. In Section 3, the execution model
of Distributed XFRP is described briefly. Section 4 presents a
WSAN case study to emphasize that Distributed XFRP is benefi-
cial for describing coordination. Section 5 surveys related work
and Section 6 concludes the paper.

2. XFRP
XFRP is a general-purpose functional reactive programming

language developed as a successor of Emfrp [14], which is de-
signed for small-scale embedded systems. Before presenting how
a WSAN example is developed using Distributed XFRP [15] in
Section 4, this section briefly describes a non-distributed subset
of the language.

*1 https://github.com/45deg/distributed-xfrp
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1 module FanController % module name
2 in tmp : Float, % temperature sensor
3 hmd : Float % humidity sensor
4 out fan : Bool % fan switch
5

6 % discomfort (temperature-humidity) index
7 node di = 0.81 * tmp + 0.01 * hmd * (0.99 * tmp - 14.3) + 46.3
8

9 % fan status
10 node init[False] fan = di >= th
11

12 % threshold
13 node th = 75.0 + if fan@last then -0.5 else 0.5

Fig. 1 Fan Controller in XFRP
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Fig. 2 Graph Representation of FanController

2.1 Basics
In XFRP, a system (module) is composed of the definitions of

time-varying values and other components. Time-varying val-
ues are called nodes in the language. Nodes are classified in the
following categories: source (input), sink (output), and internal.
Source nodes (hereinafter referred to as sources) emit externally
given values such as keyboard inputs, network packets from an-
other computer, and measurements from a sensor device. Sink
nodes (hereinafter referred to as sinks) are the destinations of
propagation. They receive results and normally affect the outer
world by, for example, displaying characters, changing the volt-
age output, etc. Internal nodes lie between sources and sinks and
update their values by evaluating associated expressions every
time sources change. The definition of an expression is given
in a functional style, which means it has no side effects or muta-
ble states. In summary, changes of sources propagate throughout
internal nodes and finally reach sinks.

Fig. 1 shows a simple fan controller example from our pre-
vious paper [17]. The program has two sources tmp and hmd

respectively representing the current temperature [◦C] and rela-
tive humidity [%] measured by external sensors. The node di

expresses the current discomfort index (the degree of discomfort
experienced by human). The value of di immediately reflects any
changes in the sensor readings (tmp or hmd).

The operator @last allows access to the previous value (the
value at the previous moment) of an arbitrary node. Using this
operator, we can define history sensitive (or stateful) behaviors.
In Fig. 1, @last is used to realize a simple hysteresis control that

protects the fan motor from frequent switching. The definition of
th (line 13 in Fig. 1) contains the subexpression fan@last that
refers to the value of fan at the previous moment. This means that
if fan is already true, th becomes 74.5 (otherwise 75.5). With
such shifts of the threshold, we can avoid frequent changes of
fan when di drifts around the threshold (75.0).

2.2 Execution Model
An XFRP program can be represented as a directed graph

whose nodes and edges correspond to nodes (time-varying val-
ues) and their dependencies respectively. Fig. 2 shows the graph
representation of Fig. 1, which consists of five nodes and five
edges. The edges (dependencies) are categorized into two kinds:
past and present. A past edge from node m to n means that n has
m@last in its definition. A present edge from node m to n, in
contrast, means that n directly refers to m. In Fig. 2, the dotted
arrow line from fan to th is the only past edge. All other edges
are present.

By removing the past edges from the graph representation of
the program, we should obtain a directed-acyclic graph (DAG)
(i.e., no cycles consisting of present edges are allowed.). The
topological sorting on the DAG gives a sequence of the nodes.
For Fig. 2, a possible sequence is: tmp, hmd, di, th, fan.

The runtime system of the language updates the values of the
nodes by repeatedly evaluating the elements of the sequence. A
single evaluation cycle is called an iteration. The order of up-
dates (scheduling) in an iteration is compatible with the partial
order determined by the above mentioned DAG.

The expression n@last is implemented to denote the value of
n in the last iteration. At the first iteration, where no nodes have
their previous values, n@last refers to the initial value c specified
with init[c] in the definition of n. In Fig. 2, the initial value of
fan is specified as False (line 10).

3. Distributed XFRP
Distributed XFRP [15] is a distributed dialect of XFRP. This

section briefly introduces some important concepts of the lan-
guage.

3.1 Glitches
Glitches are temporal inconsistencies in the value propagation

of FRP systems. Consider the program fragment below.

node x = a + a

node y = a * 2

node z = x == y

A glitch-free system guarantees that the values of the all occur-
rences of the same node (time-varying value) are the same at
every moment. Thus, in a glitch-free system, the value of z is
always true. In contrast, in a system with glitches, this property
does not hold due to the possible differences in the time of change
propagation. In such a system, the value of z may have chances
to be false.

Margara and Salvaneschi classified glitch-freedom into two
types: single-source and complete [9]. The former guarantees
that the changes in a single source (node) are propagated to its
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dependent nodes without glitches but other sources are not con-
sidered. The latter takes the causal relation of all the sources into
account in addition to the requirement of the former. Distributed
XFRP supports the single-source glitch freedom.

3.2 Execution Model
This subsection briefly explains the execution model of Dis-

tributed XFRP, The detailed description can be found in our pre-
vious paper [15].

The runtime system of XFRP is based on the Actor model [1].
Each source, sink, or internal node is implemented as a single ac-
tor. Change propagation of time-varying values is realized using
asynchronous messages. When the value of a source changes, the
source sends its updated value to other nodes that depend on it.
Similarly, when a node receives a message that conveys the up-
dated value, it updates its value and sends the result to nodes that
depend on it.

As described in Section 2.2, the dependency between nodes is
represented as a directed graph. In the actor-based implementa-
tion, vertices are node actors and edges are reference relationship
between them (for example, if node a has a reference to b, there
is an edge from b to a). As in XFRP, cycles consisting of present
edges are not permitted. A root of a node is a source that has at
least one present edge path to the node.

Each source has a counter that increments when it sends a new
value. The pair of the ID of the source and the value of its counter
is associated with the propagation messages to keep track of the
happened-before relation between changes. The associated infor-
mation is called version. The relation from version to the value of
a node is surjective. If the value of a node n results in the value v
by receiving a message with version (s, i), the value of n is said to
be v at version (s, i). The use of the IDs of the sources in versions
enables the single-source glitch-freedom in our language [15].

Each actor implementing a node has special internal values
Buffer, Last, and Deferred to represent its computational states.
Buffer holds the received values before they are processed. It is a
map whose keys are versions and values are also maps which map
the depending nodes to their value at the version. Last is a set of
latest received input values used to complement values for differ-
ent versions. Deferred is a list of versions which are received but
their processing is postponed because the node lacks the inputs to
calculate the expression.

The update algorithm is divided into two phases. One is the
matching phase, where an actor collects inputs for calculating
the expression from its Buffer. Every versions in the Buffer is
scanned to find an entry that is sufficient to evaluate. The entry
consists of input values that have the same source, therefore, at
evaluation, the values are merged with inputs using other sources
using Last and Deferred. For example, consider a node x has an
expression r + s + t, where r and s have the same source and t
has another source, and the Buffer in the node has an entry with
the value of r and s in any version. Then x can be evaluated with
the value of t in the Last field in x. Second phase is the receiving
phase, where the actor waits for a new message from dependent
nodes. An arriving message is stored in the Buffer by its attached
version. In this time, the value referenced with @last is placed at

a next Version in the Buffer, which means version (s, i + 1) if the
Version of the value is (s, i).

4. Case Study
This section presents a wireless sensor-actor network (WSAN)

described in XFRP. The purpose of this case study is to demon-
strate that the language is suitable for describing coordination.

Wireless sensor-actor networks (WSANs) [2], [7] are a variant
of wireless sensor networks (WSNs) that contain actor nodes in
addition to sensor nodes. The responsibilities of actor nodes in-
clude controlling actuators, making local decisions, and perform-
ing coordination tasks. Note that the term “actor” here is different
from the one in the Actor-model.

4.1 WSAN Example
Fig. 3 shows a wireless sensor-actor network (WSAN) that

monitors and controls the temperature and humidity of the air
in a long corridor. The corridor is divided into several seg-
ments that are numbered sequentially. Each odd-numbered (even-
numbered) segment is equipped with a temperature (humidity)
sensor and a temperature (humidity) controller. A tempera-
ture (humidity) controller here indicates a special kind of air-
conditioner that controls air temperature (humidity). The purpose
of this WSAN is to regulate the air environment of the corridor
by lowering the difference in discomfort index among the corri-
dor segments.

The behavior of the WSAN is described as follows: Let i ( j)
be a positive odd (even) integer, and k be a positive integer. The
node*2 named ti (h j) is the source node that is connected to the
temperature (humidity) sensor located at the i-th ( j-th) segment.
Similarly, the node named tci (hc j) is the sink node that is con-
nected to the temperature (humidity) controller located in the i-th
( j-th) segment. Note that there is another source node named th
— not shown in Fig. 3 for simplicity — that represents the thresh-
old for determining which output nodes should be activated. The
node named dik(k+1) represents the discomfort index of the in-
between area of the k-th and (k + 1)-th segments. The node
named ddik calculates di(k−1)k − dik(k+1), which indicates the de-
gree of imbalance in the data measured by the sensors located in
the (k−1)-th and (k+1)-th segments. Thus, if it is larger (smaller)
than th (−th), the controller with index k − 1 (k + 1) is activated
to lower the difference.

4.2 WSAN Example in XFRP
Fig. 4 shows the XFRP code for the example. The code is

a straightforward implementation*3 of Fig. 3. For simplicity rea-
son, the host specifiers in the code is omitted. To deploy the nodes
(time-varying values) to appropriate physical sensor/actor nodes
(computers) in the WSAN, we can freely put host specifiers at the
source node declarations (lines 3 and 5 in Fig. 4) or at the node
definitions (lines 18–22, 25–28 and 31–36). The single-source

*2 The term “node” is used to indicate a time-varying value in XFRP rather
than a physical sensor/actor node (computer) in the WSAN.

*3 The current version of the language does not allow indices in node
names. So we should write, for example, di23 for di23 and hence repeat
similar definitions. It may not be difficult to add appropriate syntactic
support in the future version.
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Fig. 3 WSAN for Regulating the Air-Environment of a Corridor

1 module WSANExample
2 in % temperature sensors
3 t1 : Float, t3 : Float, t5 : Float,
4 % humidity sensors
5 h2 : Float, h4 : Float, h6 : Float,
6 % threshold
7 th : Float
8 out % temperature controllers
9 tc1 : Bool, tc3 : Bool, tc5 : Bool,

10 % humidity controllers
11 hc2 : Bool, hc4 : Bool, hc6 : Bool
12

13 % discomfort index
14 fun di(t, h) = 0.81 * t
15 + 0.01 * h * (0.99 * t - 14.3) + 46.3
16

17 % discomfort index nodes
18 node di12 = di(t1, h2)
19 node di23 = di(t3, h2)
20 node di34 = di(t3, h4)
21 node di45 = di(t5, h4)
22 node di56 = di(t5, h6)
23

24 % di-difference nodes
25 node ddi2 = di12 - di23
26 node ddi3 = di23 - di34
27 node ddi4 = di34 - di45
28 node ddi5 = di45 - di56
29

30 % controller nodes
31 node tc1 = ddi2 > th
32 node hc2 = ddi3 > th
33 node tc3 = ddi2 < -th || ddi4 > th
34 node hc4 = ddi3 < -th || ddi5 > th
35 node tc5 = ddi4 < -th
36 node hc6 = ddi5 < -th

Fig. 4 XFRP Code for Fig. 3

glitch-free property of the language guarantees that no temporal
inconsistencies can be observed in any deployment configuration.

Using a simple example scenario, the rest of this subsection
demonstrates the effectiveness of the single-source glitch-free

property in the WSAN. In the following, the value of th is fixed
to 2.0 and assume that ddi5 ≤ th. Suppose that h2 = 70.0, t3
= 24.0, and h4 = 75.0. From the node definitions in Fig. 4, we
have di23 = 72.36, di34 = 72.84, and ddi3 = -0.48. Thus, nei-
ther hc2 nor hc4 is activated because th ≥ ddi3 ≥ −th and
ddi5 ≤ th. Now suppose that t3 changes to 25.0 but h2 and
h4 remain the same in the next moment. At that moment, thanks
to the single-source glitch-free property, both di23 and di34 are
guaranteed to observe that t3 = 25.0. Thus di23 = 73.87 and
di34 = 74.39 holds, and both hc2 and hc4 are still inactive be-
cause ddi3 = −0.52 ≥ −th. However, without the single-source
glitch-free property, it may be possible that di23 sees t3 = 24.0
and di34 sees t3 = 25.0 at the same time, and hence di23 = 72.36
and di34 = 74.39 may hold. In such case, hc4 is incorrectly acti-
vated because ddi3 = −2.03 < −th hold.

4.3 Discussion
As the example shows, XFRP provides a declarative way

to express inter-node (inter-computer) behaviors of WSNs and
WSANs. In other words, the language can be used as a macro-
programming language [12]. Especially, the single-source glitch-
freedom enables a convenient way to program WSANs. Because,
when merging data from two or more actor nodes that directly
or indirectly receive data from the same sensor node, we don’t
need to be bothered with the synchronization among the actor
nodes. Moreover, the single-source glitch freedom is more effi-
cient than complete glitch-freedom such as [8]. If we need the
glitch-freedom with regard to multiple sensor nodes, we can use
source unification feature provided by the language.

In addition, since the design of the language is based on Em-
frp [14], we can also write the internal behaviors of physical
sensor/actor nodes in XFRP. Thus, the language enables a uni-
form way to express whole (inter- and intra-node) behaviors of
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WSANs. This sort of uniformity is important because it eases the
development process of WSANs as follows. First, we can con-
struct a prototype of a WSAN as a single module that defines the
entire (inter- and intra node) behaviors of the WSAN. The mod-
ule has no host specifiers initially and the source and sink nodes
are connected to some debug/test stubs written in Erlang. After
the local testing, we can gradually deploy nodes (time-varying
values) to actual physical sensor/actor nodes by incrementally
adding host specifiers and source unifiers to the module defini-
tion.

5. Related Work
DREAM [8], [9] is a distributed reactive middleware that sup-

ports multiple consistency models: FIFO, causal, single-source
glitch freedom, and complete glitch-freedom, but they assume
that all messages are delivered in a FIFO order.

REScala [13] is a functional reactive library implemented in
Scala. SID-UP (Source IDentifier Update Propagation) [4], [5]
is an efficient propagation algorithm for distributed reactive pro-
grams realized in REScala and it supports complete glitch-
freedom while the execution model is iterative.

Recently, a new propagation method for REScala is pro-
posed [10]. The method provides fault tolerance for distributed
reactive programming with reasonable performance. Besides,
Myter et al. proposed another method for handling partial fail-
ures in distributed reactive systems [11]. However, these methods
focus on node crashes rather than on network inconsistencies.

Regiment [12] is a functional macroprogramming language
for wireless sensor networks (WSNs). The language enables
us to write a WSN as a whole via functional reactive program-
ming. However, it does not provide mechanisms that support ac-
tor nodes.

6. Concluding Remarks
This paper emphasizes that, via a case study on a wireless

sensor-actor network (WSAN) written in Distributed XFRP, pure
functional reactive programming (FRP) with distribution support
is suitable for developing coordinating distributed applications.
Since each computational node in a coordinating distributed sys-
tem can be seen as a reactive component, FRP is well suited
for describing the intra-node computation. Besides, Distributed
XFRP supports inter-node communication via time-varying val-
ues. This language feature enables us to write a distributed appli-
cation as if it were a non-distributed program. Problems regard-
ing synchronization are partially resolved thanks to the single-
source glitch freedom realized by the language’s runtime system.
Also, an incremental development method for distributed appli-
cations is discussed.

Evaluation through the development of actual distributed ap-
plications remains for future work. One of the challenges is in-
vestigating the possibility of distributed FRP in coordinating dis-
tributed applications other than WSAN.
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