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A 3/4 Differential Approximation Algorithm
for Traveling Salesman Problem

Yuki Amano1 Kazuhisa Makino1

Abstract: In this paper, we consider differential approximability of the traveling salesman problem (TSP).
The differential approximation ratio was proposed by Demange and Paschos in 1996 as an approximation
criterion that is invariant under affine transformation of the objective function. We show that TSP is 3/4-
differential approximable, which improves the currently best known bound 3/4 − O(1/n) due to Escoffier
and Monnot in 2008, where n denotes the number of vertices in the given graph.

1. Introduction

The traveling salesman problem (TSP) finds a shortest

Hamiltonian cycle in a given complete graph with edge

length, when a cycle is called Hamiltonian (also called

a tour) if it visits every vertex exactly once. TSP is

one of the most fundamental NP-hard optimization prob-

lems in operations research and computer science, and has

been intensively studied from both practical and theoret-

ical view points [7], [19], [21], [22]. It has a number of

applications such as planning, logistics, and the manufac-

ture of microchips [4], [11]. Because of these importance,

many heuristics and exact algorithms have been proposed

[3], [13], [14], [15]. From a view point of computational com-

plexity, TSP is NP-hard, even in the Euclidean case, which

includes the metric case. It is known that metric TSP is

approximable with factor 1.5 [6], and inapproximable with

factor 117/116 [5]. Euclidean TSP admits a polynomial-

time approximation scheme (PTAS), if the dimension of the

Euclidean space is bounded by a constant [1]. We note that

the approximation factors (i.e., ratios) above are widely used

to analyze approximation algorithms.

Let Π be an optimization problem, and let I be an in-

stance of Π. We denote by opt(I) the value of an optimal

solution to I. For an approximation algorithm A for Π, we

denote by apxA(I) the value of the approximate solution

computed by A for the instance I. Let

rA(I) = apxA(I)/ opt(I),

and define the standard approximation ratio of A by

supI∈Π rA(I), where we assume that Π is a minimization

problem. Although the standard approximation ratio is

well-studied and an important concept in algorithm the-

ory, it is not invariant under affine transformation of the
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objective function. Namely, if the objective function f(x)

is replaced by a + bf(x) for some constant a and b, which

might depend on the instance I, the standard ratio is not

preserved. For example, the vertex cover problem and the

independent set problem have affinely dependent objective

functions. However they have different characteristics in the

standard approximation ratio. The vertex cover problem is

2-approximable [20], while the independent set problem is

inapproximable within O(n1−ϵ) for any ϵ > 0 [9], where

n denotes the number of vertices in a given graph. In or-

der to remedy to this phenomenon, Demange and Paschos

[8] proposed the differential approximation ratio defined by

supI∈Π ρA(I), where

ρA(I) =
wor(I)− apxA(I)

wor(I)− opt(I)

and wor(I) denotes the value of a worst solution to I. Note

that for any instance I of Π

apxA(I) = ρA(I) opt(I) + (1− ρA(I)) wor(I).

Thus we have 0 ≤ ρA(I) ≤ 1 and the larger ρA(I) implies

the better approximation for the instance I. Moreover, by

definition, the differential approximation ratio remains in-

variant under affine transformation of the objective func-

tion. For this, it has been recently attracted much attention

in approximation algorithm [2]. It is known [17] that TSP,

metric TSP, max TSP, and max metric TSP are affinely

equivalent, i.e., their objective functions are transferred to

each other by affine transformations, where max TSP is the

problem to find a longest Hamiltonian cycle and max metric

TSP is max TSP, in which the input weighted graph satis-

fies the metric condition. Therefore, these problems have

the identical differential approximation ratio.

Hassin and Khuller [12] first studied differential approx-

imability of TSP, and showed that it is 2/3-differential

approximable. Escoffier and Monnot [10] improved it to
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3/4− O(1/n), where n denotes the number of vertices of a

given graph. Monnot et al. [16], [18] showed that TSP is

3/4-differential approximable if each edge length is restricted

to one or two.

In this paper, we show that TSP is 3/4-differential ap-

proximable, which improves the currently best known re-

sults [10], [16], [18]. Our algorithm is based on an idea in

[10] for the case in which a given graph G has an even num-

ber of vertices and a triangle (i.e., cycle with 3 edges) is

contained in a minimum weighted 2-factor of G. Their al-

gorithm first computes minimum weighted 1- and 2-factors

of a given graph, modify them to four path covers Pi (for

i = 1, . . . , 4), and then extend each path cover Pi to a tour

by adding edge set Fi to it in such a way that at least one

of the tours guarantees 3/4-differential approximation ratio.

Here the definitions of factor and path cover can be found

in Section 2. We generalize their idea to the general even

case. Note that
∪4

i=1 Fi in their algorithm always forms a

tour, where in general it does not. We show that there ex-

ists a way to construct path covers such that the length of∪4
i=1 Fi is at most the worst tour length. Our algorithm for

odd case is much more involved. For each path with three

edges, we first construct a 2-factor and two path covers of

a given graph which has minimum length among all these

which completely and partially contains the path, modify

them to eight path covers, and then extend each path cover

to a tour, in such a way that at least one of the eight tours

guarantees 3/4-differential approximation ratio.

The rest of the paper is organized as follows. In Section

2, we define basic concepts of graphs and discuss some prop-

erties on 2-matchings, which will be used in the subsequent

sections. In Sections 3 and 4, we provide an approximation

algorithms for TSP in which a given graph G has even and

odd numbers of vertices, respectively.

2. Preliminary

Let G = (V,E) be an undirected graph, where n and m

denote the number of vertices and edges in G, respectively.

In this paper, we assume that a given graph G of TSP is

complete, i.e., E =
(
V
2

)
, and it has an edge length function

ℓ : E → R+, where R+ denotes the set of nonnegative reals.

For a set F ⊆ E, let V (F ) denote the set of vertices with

incident edges in F , i.e., V (F ) = {v ∈ V | ∃(v, w) ∈ F}. A
set F ⊆ E is called spanning if V (F ) = V , and acyclic if F

contains no cycle. For a positive integer k, a set F ⊆ E is

called a k-matching (resp., k-factor) if each vertex has at

most (resp., exactly) k incident edges in F . Here 1-matching

is simply called amatching. Note that an acyclic 2-matching

F corresponds to a family of vertex-disjoint paths denoted

by P(F ) ⊆ 2E . A 2-matching is called a path cover if it is

spanning and acyclic. For a set F ⊆ E, V1(F ) and V2(F )

respectively denote the sets of vertices with one and two in-

cident edges in F . For a set F ⊆ E and a vertex v ∈ V , let

δF (v) = {e ∈ F | e is incident to v}.
Definition 1. A pair of spanning 2-matchings (S, T ) is

called valid if it satisfies the following three conditions:

S

ea

eb

ecedC

T

Fig. 1: A valid pair (S, T ) of spanning 2-matchings.

(i) T is acyclic.

(ii) δS(v) = δT (v) for any v ∈ V2(S) ∩ V2(T ). (1)

(iii) V (C) ̸= V (P ) for any cycle C ⊆ S and

any path P ⊆ P(T ).
(2)

Lemma 2. Let (S, T ) be a valid pair of spanning 2-

matchings. If S contains a cycle C, then C contains

two edges ei for i = 1, 2 such that Si = S \ {ei} and

Ti = S ∪ {ei} satisfy the following three conditions:

(Si, Ti) is valid for i = 1, 2. (3)

V1(Si) ∪ V1(Ti) = V1(S) ∪ V1(T ) and

V1(Si) ∩ V1(Ti) = V1(S) ∩ V1(T ) for i = 1, 2.
(4)

P(T ) contains a path P such that P ∪ {e1} and

P ∪ {e2} are both paths.
(5)

Note that (S1, T1) and (S2, T2) in Lemma 2 satisfy

Si ∪ Ti = S ∪ T and Si ∩ Ti = S ∩ T for i = 1, 2, (6)

which immediately implies

ℓ(Si) + ℓ(Ti) = ℓ(S) + ℓ(T ) for i = 1, 2, (7)

where ℓ(F ) =
∑

e∈F ℓ(e) for a set F ⊆ E.

Figure 1 shows a valid pair of spanning 2-matchings and

two edges ec and ed in C that satisfy the three conditions

of Lemma 2.

3. Approximation for even instances

In this section, we construct an approximation algorithm

for TSP in which a given graph has an even number of ver-

tices. Our algorithm first construct four path covers from

minimum weighted 1- and 2-factors of a given graph G, and

then extend each path cover to a tour in such a way that

at least one of the tours guarantees 3/4-differential approx-

imation ratio.

Let us first explain the procedure FourPathCovers where

it can be found in Fig. 2. Let (S, T ) be a valid pair of span-

ning 2-matchings of (G, ℓ) such that S is a 2-factor. The

procedure computes from (S, T ) four path covers S1, S2,

T1, and T2 that satisfies (4), (6), V1(Si) and V1(Ti) is a

partition of V1(T ) for i = 1, 2, i.e.,
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V1(Si) ∪ V1(Ti) = V1(T ) and

V1(Si) ∩ V1(Ti) = ∅ for i = 1, 2,
(8)

and

there exist e1, e2 ∈ E and P ∈ P(T1 ∩ T2)

such that T1 \ T2 = {e1}, T2 \ T1 = {e2}, and

P ∪ {e1} and P ∪ {e2} are both paths.

(9)

In Fig. 2 we apply Procedure FourPathCovers to (S, T )

in Fig. 1.

Lemma 3. For a graph G = (V,E), let (S, T ) be a valid

pair of spanning 2-matchings such that S has a cycle. Then

Procedure FourPathCovers returns four path covers S1,

S2, T1, and T2 that satisfy (4), (6), and (9). Furthermore,

if S is addition a 2-factor of G, then the four path covers

satisfy (8).

Note that (S, T ) is a valid and V1(T ) = V , if S and T are

2- and 1-factors of G, respectively.

Let S and T be 2- and 1-factors of G, respectively. Note

that our algorithm explain later makes use of minimum

weighted 2-factor S and 1-factor T of (G, ℓ) which can

be computed from (G, ℓ) in polynomial time. We assume

that S is not a tour of G, i.e., S contains at least two cy-

cles, since otherwise, S itself is an optimal tour. Let S1,

S2, T1, and T2 be path covers returned by Procedure

FourPathCover(S, T ).

Let us then show how to construct edge sets A1, A2, B1,

and B2, such that

Si ∪Ai is tour (for i = 1, 2), (10)

Ti ∪Bi is tour (for i = 1, 2), and (11)

ℓ(A1) + ℓ(A2) + ℓ(B1) + ℓ(B2) ≤ wor(G, ℓ), (12)

where wor(G, ℓ) denotes the length of a longest tour of

(G, ℓ).

Let e1 = (p1, p2) and e2 = (p3, p4) be edges in Lemma

3. Since e1 and e2 are chosen from a cycle C and satisfy

(9), we can assume that p1 ̸= p3, p4 and p4 ̸= p1, p2, where

p2 = p3 might hold. We note that P(S1)\P(S2) consists of

a (p1, p2)-path P1 = C \ {e1}, and P(S2) \ P(S1) consists

of a (p3, p4)-path P2 = C \ {e2}.
Let Qi (i = 1, . . . , k) denote vertex-disjoint (xi, yi)-paths

such that {Q1, . . . , Qk} = P(S1) ∩ P(S2) and x1 and y1

satisfy

ℓ(p2, x1) + ℓ(p3, y1) ≤ ℓ(p2, y1) + ℓ(p3, x1). (13)

Define A1 and A2 by

A1 = {(p2, x1)} ∪ {(yk, p1)}

∪ {(yi, xi+1) | i = 1, . . . , k − 1}

A2 = {(p3, y1)} ∪ {(xk, p4)}

∪ {(xi, yi+1) | i = 1, . . . , k − 1}.

(14)

Figure 3 shows two edge sets A1 and A2 for S1 and S2 in

Fig. 2.

Lemma 4. Two edge sets A1 and A2 defined in (14) sat-

isfy (10) and A1 ∩ A2 = ∅, and A1 ∪ A2 consists of (i)

a (p1, p4)-path if p2 = p3 and either (ii) vertex-disjoint

(p1, p3)- and (p2, p4)-paths or (iii) vertex-disjoint (p1, p2)-

and (p3, p4)-paths if p2 ̸= p3.

Let us next constructB1 andB2. LetOi (i = 1, . . . , d) de-

note vertex-disjoint (zi, wi)-paths such that {O1, . . . , Od} =

P(T1) ∩ P(T2). Note that P(T1) ∩ P(T2) = ∅ (i.e., d = 0)

might hold. We separately consider the following four cases.

( 1 ) p2 = p3, p1 ̸= p4, and P(T1 ∩ T2) contains a (p1, p4)-

path.

( 2 ) p2 = p3, p1 ̸= p4, and P(T1 ∩ T2) contain no (p1, p4)-

path.

( 3 ) p2 ̸= p3, p1 ̸= p4, and P(T1∩T2) contains (p1, p4)- and

(p2, p3)-paths.

( 4 ) p2 ̸= p3, p1 ̸= p4, and P(T1 ∩ T2) contains a (p2, p3)-

path and no (p1, p4)-path.

Here we recall that e1 = (p1, p2) and e2 = (p3, p4) satisfy

Lemma 3.

Case 1: Let R1 denote a (p1, p4)-path in P(T1 ∩ T2), and

for some vertex q2, let R2 denote (p2, q2)-path in P(T1∩T2).

Then, we have

P(T1) = {O1, . . . , Od} ∪ {R1 ∪ {e1} ∪R2}

P(T2) = {O1, . . . , Od} ∪ {R1 ∪ {e2} ∪R2},

where R1 ∪{e1}∪R2 and R1 ∪{e2}∪R2 are (p4, q2)- and

(p1, q2)-paths, respectively. Define B1 and B2 by

B1 =


{(q2, p4)} if d = 0

{(q2, z1)} ∪ {(wd, p4)}
∪ {(wi, zi+1) | i = 1, . . . , d− 1}

if d ≥ 1

B2 =


{(q2, p1)} if d = 0

{(q2, w1)} ∪ {(zd, p1)}
∪ {(zi, wi+1) | i = 1, . . . , d− 1}

if d ≥ 1.

(15)

By definition, two edge sets B1 and B2 satisfy (11) and

B1 ∩B2 = ∅, and B1 ∪B2 consists of a (p1, p4)-path

Case 2: For some vertices q1, q2 and q4, let R1, R2, and R4

respectively denote (p1, q1)-, (p2, q2)-, and (p4, q4)-paths in

P(T1 ∩ T2). Then, we have

P(T1) = {O1, . . . , Od} ∪ {R4, R1 ∪ {e1} ∪R2}

P(T2) = {O1, . . . , Od} ∪ {R1, R4 ∪ {e2} ∪R2},

where R1 ∪ {e1} ∪R2 and R4 ∪ {e2} ∪R2 are (q1, q2)- and

(q4, q2)-paths, respectively. Define B1 and B2 by

B1 =


{(q2, q4), (p4, q1)} if d = 0

{(q2, z1)} ∪ {(wd, q4), (p4, q1)}
∪ {(wi, zi+1) | i = 1, . . . , d− 1}

if d ≥ 1

B2 =


{(q2, q1), (p1, q4)} if d = 0

{(q2, w1)} ∪ {(zd, q1), (p1, q4)}
∪ {(zi, wi+1) | i = 1, . . . , d− 1}

if d ≥ 1.

(16)

Similarly to Case 1, we have (11), B1∩B2 = ∅, and B1∪B2
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Procedure FourPathCovers(S, T )

/*(S, T ) is a valid pair of spanning 2-matchings such that S has a cycle. The procedure returns 4 path covers S1, S2, T1,

and T2 that satisfies (4), (6), and (9).*/

if S has exactly one cycle then

Take two edges e1 and e2 in Lemma 2.

return S1 = S \ {e1}, T1 = T ∪ {e1}, S2 = S \ {e2}, and T2 = T ∪ {e2}
else /* S has at least two cycles. */

Take an edge e1 in Lemma 2.

return FourPathCovers(S \ {e1}, T ∪ {e1})
end if

S1

x1

x2

y1

y2

p1

p2

T1

z1

w1

p3

p4

S2

x1

x2

y1

y2

p3

p4

T2

z1

w1

p1

p2

Fig. 2: Two pairs (S1, T1) and (S2, T2) computed by Procedure FourPathCovers for a valid pair (S, T ), e
(1)
1 = ea, e

(2)
1 = eb,

e
(3)
1 = ec and e

(3)
2 = ed in Fig. 1, where e

(j)
i denotes the edge chosen as ei in the j-th round of the procedure.

consists of a (p1, p4)-path.

Case 3: Let R1 and R2 respectively denote (p1, p4)- and

(p2, p3)-paths in P(T1 ∩ T2). Then, we have

P(T1) = {O1, . . . , Od} ∪ {R1 ∪ {e1} ∪R2}

P(T2) = {O1, . . . , Od} ∪ {R1 ∪ {e2} ∪R2},

where R1 ∪{e1}∪R2 and R1 ∪{e2}∪R2 are (p3, p4)- and

(p1, p2)-paths, respectively. Define B1 and B2 by

B1 =


{(p3, p4)} if d = 0

{(p3, z1)} ∪ {(wd, p4)}
∪ {(wi, zi+1) | i = 1, . . . , d− 1}

if d ≥ 1

B2 =


{(p2, p1)} if d = 0

{(p2, w1)} ∪ {(zd, p1)}
∪ {(zi, wi+1) | i = 1, . . . , d− 1}

if d ≥ 1.

(17)

Similarly to the previous cases, we have (11), B1 ∩B2 = ∅,
and B1 ∪ B2 consists of either vertex-disjoint (p1, p2)- and

(p3, p4)-paths or vertex-disjoint (p1, p3)- and (p2, p4)-paths.

Case 4: Let R2 denote (p2, p3)-path in P(T1∩T2), and for

some vertices q1 and q4, let R1 and R4 respectively denote

(p1, q1)- and (p4, q4)-paths in P(T1 ∩ T2). Then, we have

P(T1) = {O1, . . . , Od} ∪ {R4, R1 ∪ {e1} ∪R2}

P(T2) = {O1, . . . , Od} ∪ {R1, R4 ∪ {e2} ∪R2},

where R1 ∪{e1}∪R2 and R4 ∪{e2}∪R2 are (q1, p3)- and

(q4, p2)-paths, respectively. Define B1 and B2 by

B1 =


{(p3, q4), (p4, q1)} if d = 0

{(p3, z1)} ∪ {(wd, q4), (p4, q1)}
∪ {(wi, zi+1) | i = 1, . . . , d− 1}

if d ≥ 1

B2 =


{(p2, q1), (p1, q4)} if d = 0

{(p2, w1)} ∪ {(zd, q1), (p1, q4)}
∪ {(zi, wi+1) | i = 1, . . . , d− 1}

if d ≥ 1.

(18)

Similarly to the previous cases, we have (11), B1 ∩B2 = ∅,
and B1 ∪ B2 consists of either vertex-disjoint (p1, p2)- and

(p3, p4)-paths or vertex-disjoint (p1, p3)- and (p2, p4)-paths.

In summary, we have the following lemma.

Lemma 5. Two edge sets B1 and B2 defined as above

satisfy (11) and B1 ∩ B2 = ∅, and B1 ∪ B2 consists of

(i) a (p1, p4)-path if p2 = p3 and either (ii) vertex-disjoint

(p1, p2)- and (p3, p4)-paths or (iii) vertex-disjoint (p1, p3)-

and (p2, p4)-paths if p2 ̸= p3 .

Figure 4 shows two edge sets B1 and B2 for path covers

T1 and T2 in Fig. 2. Furthermore, Ai and Bi (i = 1, 2)

satisfy the following properties.

Lemma 6. Let A1, A2, B1, and B2 be defined as above.

Then they are all pairwise disjoint, and C = A1 ∪ A2 ∪
B1 ∪ B2 is a 2-factor, consisting of either one or two cy-

cles. Furthermore, there exists a tour H of G such that

ℓ(H) ≥ ℓ(C).

We are now ready to describe our approximation algo-

rithm.

Theorem 7. For a complete graph G = (V,E) with
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A1

x1

x2

y1

y2

p1

p2

A2

x1

x2

y1

y2

p3

p4

A1 ∪A2

x1

x2

y1

y2

p1

p2p3

p4

Fig. 3: Two edge sets A1 and A2 for path covers S1 and S2 in Fig. 2.

B1

z1

w1

p3

p4

B2

z1

w1

p1

p2

B1 ∪B2

z1

w1

p3

p4 p1

p2

Fig. 4: Two edge sets B1 and B2 for path covers T1 and T2 in Fig. 2.

an even number of vertices and an edge length function

ℓ : E → R+, Algorithm TourEven computes a 3/4-

differential approximate tour of (G, ℓ) in polynomial time.

Proof. We show thatAlgorithm TourEven outputs a 3/4-

differential approximate tour Tapx in polynomial time. If a

minimum weighted 2-factor S of (G, ℓ) computed in the al-

gorithm is a tour, then clearly Tapx = S is an optimal tour.

On the other hand, if S is not a tour, then we have

4ℓ(Tapx)

≤ ℓ(S1 ∪A1) + ℓ(S2 ∪A2) + ℓ(T1 ∪B1) + ℓ(T2 ∪B2)

= 2(ℓ(S) + ℓ(T )) + ℓ(A1) + ℓ(A2) + ℓ(B1) + ℓ(B2)

≤ 3 opt(G, ℓ) + wor(G, ℓ),

where the first equality follows from Lemmas 4, 5, and 6,

and the last inequality follows from Lemma 6, and ℓ(S) ≤
opt(G, ℓ), and 2ℓ(T ) ≤ opt(G, ℓ). Thus Tapx is a 3/4-

differential approximate tour. Note that minimum weighted

1- and 2-factors can be computed in polynomial time, and

Ai and Bi (i = 1, 2) can be computed in polynomial time.

Thus Algorithm TourEven is polynomial, which completes

the proof.

Before concluding the section, let us remark that 3/4-

differential approximability is known for graph with an even

number of vertices [10]. Different from the algorithm in [10],

ours is constructed in a uniform framework, which can fur-

ther be extended to the odd case.

4. Approximation for odd instances

In this section, we construct an approximation algorithm

for TSP with an odd number of vertices. Our algorithm

is much more involved than the even case. It first guesses

a path P with three edges in an optimal tour, constructs

eight path covers based on P , and extend each path cover

to a tour in such a way that at least one of the eight tours

guarantees 3/4-differential approximation ratio.

More precisely, for each path P with three edges, say,

P = {(v1, v2), (v2, v3), (v3, v4)} with all vi’s distinct, let

S be a minimum weighted 2-factor among those contain-

ing P , let T be a minimum weighted path cover among

those satisfying (v1, v2), (v2, v3) ∈ T and V1(T ) = V \ {v2},
and let T ′ be a minimum weighted path cover among those

satisfying (v2, v3), (v3, v4) ∈ T ′ and V1(T
′) = V \ {v3}.

Assume that S is not a tour, i.e., it contains at least two

cycles, since otherwise, is optimal, and hence ensures 3/4-

differential approximability if some optimal tour contains P .

We note that (S, T ) and (S, T ′) are both valid pairs of span-

ning 2-matchings. We apply Procedure FourPathCovers

to them, but not arbitrarily. Let us specify two cycles C∗

and C∗∗ in S such that P ⊆ C∗ and P ∩ C∗∗ = ∅. We

define two vertices v0 and v5 in V (C∗) such that v0 ̸= v2,

v5 ̸= v3, and (v0, v1), (v4, v5) ∈ C∗. By definition v0 = v4

and v5 = v1 hold if |C∗| = 4. Furthermore, we define two

edges f and f ′ in C∗∗ that satisfy the properties in the next
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Algorithm TourEven

Input: A complete graph G = (V,E) with even |V |, and an edge length function ℓ : E → R+.

Output: A tour Tapx in G.

Compute minimum weighted 2-factor S and 1-factor T of (G, ℓ).

if S is a tour then

Tapx := S.

else

S1, T1, S2, T2 := FourPathCovers(S, T ).

Compute edge sets A1, A2, B1, B2 defined in (14), (15), (16), (17), and (18).

T := {S1 ∪A1, S2 ∪A2, T1 ∪B1, T2 ∪B2}.
Tapx := argmin

T∈T
ℓ(T ).

end if

Outputs Tapx and halt.

lemma.

Lemma 8. Let C∗∗, T and T ′ be defined as above. Then

there exist two edges f ∈ C∗∗ \ T and f ′ ∈ C∗∗ \ T ′ such

that

(i) they have a common endpoint q, and

(ii) T ∪ {f} and T ′ ∪ {f ′} are path covers.

We note that f and f ′ in Lemma 8 might be identical, and

(ii) in Lemma 8 implies that two pairs (S \ {f}, T ∪ {f})
and (S \ {f ′}, T ′ ∪ {f ′}) are valid.

Our algorithm uses Procedure FourPathCovers for

(S, T ) defined as above in such a way that edge e1 = f

is chosen in the first round and two edges e1 = (v3, v4) and

e2 = (v0, v1) are chosen in the last round. Similarly, our

algorithm uses Procedure FourPathCovers for (S, T ′) de-

fined as above in such a way that edge e1 = f ′ is chosen in

the first round and two edges e1 = (v1, v2) and e2 = (v4, v5)

are chosen in the last round. Let S1, T1, S2, and T2 be four

path covers obtained by Procedure FourPathCover(S, T ),

and let S′
1, T

′
1, S

′
2, and T ′

2 be four path covers returned by

Procedure FourPathCover(S, T ′).

Lemma 9. Let S, T , Si, and Ti (i = 1, 2) be defined as

above. Then S1, S2, T1, and T2 are path covers such that

Si ∪ Ti = S ∪ T and Si ∩ Ti = S ∩ T for i = 1, 2, (19)

V1(Si) ∪ V1(Ti) = V \ {v2} and

V1(Si) ∩ V1(Ti) = ∅ for i = 1, 2,
(20)

T1 \ T2 = {(v3, v4)}, T2 \ T1 = {(v0, v1)}, and

{(v1, v2), (v2, v3)} ∈ P(T1 ∩ T2), and
(21)

q ∈ V1(S1) ∩ V1(S2), (22)

where vi ∈ V (C∗) (i = 0, . . . , 4) are defined as above and q

is a common endpoint of f and f ′ in Lemma 8.

Similarly, we have the following lemma.

Lemma 10. Let S, T ′, S′
i, and T ′

i (i = 1, 2) be defined as

above. Then S′
1, S

′
2, T

′
1, and T ′

2 are path covers such that

S′
i ∪ T ′

i = S ∪ T ′ and S′
i ∩ T ′

i = S ∩ T ′ for i = 1, 2, (23)

V1(S
′
i) ∪ V1(T

′
i ) = V \ {v3} and

V1(S
′
i) ∩ V1(T

′
i ) = ∅ for i = 1, 2,

(24)

T ′
1 \ T ′

2 = {(v1, v2)}, T ′
2 \ T ′

1 = {(v4, v5)}, and

{(v2, v3), (v3, v4)} ∈ P(T ′
1 ∩ T ′

2), and
(25)

q ∈ V1(S
′
1) ∩ V1(S

′
2), (26)

where vi ∈ V (C∗) (i = 1, . . . , 5) are defined as above and q

is a common endpoint of f and f ′ in Lemma 8.

We can construct edge sets A
(′)
i and B

(′)
i (for i = 1, 2),

such that

Si ∪Ai is tour (for i = 1, 2), (27)

Ti ∪Bi is tour (for i = 1, 2), (28)

S′
i ∪A′

i is tour (for i = 1, 2), (29)

T ′
i ∪B′

i is tour (for i = 1, 2), and (30)

ℓ(A1) + ℓ(A2) + ℓ(B1) + ℓ(B2) + ℓ(A′
1) + ℓ(A′

2)

+ ℓ(B′
1) + ℓ(B′

2) ≤ 2wor(G, ℓ)− 2ℓ(v2, v3),
(31)

where wor(G, ℓ) denotes the length of a longest tour of

(G, ℓ).

We are now ready to describe our approximation algo-

rithm, called TourOdd.

Before analyzing Algorithm TourOdd, let us evaluate

ℓ(S), ℓ(T ) and ℓ(T ′).

Lemma 11. For a path P = {(v1, v2), (v2, v3), (v3, v4)},
let S, T and T ′ be defined as above. If there exists an

optimal tour that contains P , then

2ℓ(S) + ℓ(T ) + ℓ(T ′) ≤ 3 opt(G, ℓ) + ℓ(v2, v3). (32)

Theorem 12. For a complete graph G = (V,E) with an

odd number of vertices and an edge length function ℓ : E →
R+, Algorithm TourOdd computes a 3/4-differential ap-

proximate tour of (G, ℓ) in polynomial time.
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