
IPSJ SIG Technical Report

Parity-Game Reduction by Winning-Cycles

Ryota Tsukatani1 Remy Belmonte1 Hiro Ito1

Abstract: Parity games are games that are played on directed graphs, where each vertex is labeled
with a natural number. The vertices consist of two disjoint subset V0 and V1. Two players P0 and
P1 move the token along the edges of graph, starting from the given initial vertex. If the token is on
a vertex in V0, then P0 moves the token along one of the out-going edges from the vertex; otherwise,
P1 does. If a player cannot move the token, he/she loses. Otherwise, the winner is determined by
the maximum labeled number appearing infinitely often: if the number is even, P0 wins; otherwise
P1 does. Deciding the winner in parity games belongs to NP and coNP, and it is open if it can be
solved in polynomial-time. In this report, we introduce notions of forcing-cycles and winning-cycles,
and give a polynomial-time algorithm for finding them. Moreover we show an algorithm to reduce
a parity game by removing a winning-cycle if exists. By adapting this method, some parity games
can be solved, or reduced to proper subgames in polynomial-time.

1. Introduction
Parity games are games that are played on directed

graphs, where each vertex is labeled with a natural num-
ber, called priority. And the vertices consist of two disjoint
subsets V0 and V1. Two players P0 and P1 move the to-
ken along the edges of graph, starting from the given initial
vertex. If the token is on a vertex in V0, then P0 moves
the token along one of the out-going edges from the ver-
tex; otherwise, P1 does. If a player cannot move the token,
he/she loses. Otherwise, the winner is determined by the
maximum priority appearing infinitely in the rout that the
token follows: if the priority is even, P0 wins; otherwise P1

does.
Studying parity games has at least three important rea-

sons. Firstly, the algorithmic problem of finding the winner
in parity games is polynomial-time equivalent to the model
checking problem of modal µ-calculus [6], which is a ba-
sic problem on algorithms in automated software verifica-
tion. Secondly, parity games are polynomial-time reducible
to other infinite games, e.g., mean-payoff games, discounted
mean-payoff games, and simple stochastic games [4], [8]. Fi-
nally, its complexity status is intriguing: deciding the winner
of parity games belongs to NP ∩ coNP, more precisely UP ∩
coUP [8], as well as in QP (quasi-polynomial time) [3], [14],
yet no polynomial-time algorithm has not been given [12].

Algorithms for parity games started with McNaughton’s
algorithm, which was first given by McNaughton for muller
games [10], and adapted to parity games by Zielonka [15].
While the running time of this is exponential, it contains use-

1 Department of Computer and Network Engineering, Gradu-
ate School of Informatics and Engineering, the University of
Electro-Communications

Fig. 1 Parity Game

ful notations and its ideas have been applied to algorithms
which work in quasi-polynomial time [5], [9], [14]. Some
FPT (fixed-parameter tractable) algorithms are known for
parameters of tree-width [11], DAG-width [1], and clique-
width [13]. Recently, quasi-polynomial time algorithms are
designed [3], [14].

In this paper, we introduce notions of forcing-cycles and
winning-cycles, and give a polynomial-time algorithm for
finding them. These ideas are useful for reducing parity
games . By adapting this method, some parity games can
be solved, or reduced to smaller subgames in polynomial-
time.

2. Parity Game

A parity game G = (V, V0, V1, E, λ) is a game played by
two players on directed graph (V,E). Each vertex is labeled
with a natural number, called priority λ : V → N. And the
vertex set V consists of two disjoint subsets V0 and V1 (See
Fig. 1). Two players P0 and P1 move the token along the
edges of graph, starting from the given initial vertex v (we
often express a game with an initial vertex as (G, v)). If the
token is on a vertex in V0, then P0 moves the token along
one of the out-going edges from the vertex; otherwise, P1

does.

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-182 No.8
2021/3/17

IPSJ SIG Technical Report

If a player cannot move the token, he/she loses the game.
Otherwise, the winner depends on the maximum priority ap-
pearing infinitely in the rout that the token follows. If the
priority is even, P0 wins the game; otherwise, P1 does. For
each possible initial vertex, there is a unique player, either
P0 or P1, who has a winning strategy. We denote by W0(G)

(resp., W1(G)) ⊆ V the region such that if v ∈ W0(G)

(resp., v ∈ W1(G)) is the initial vertex, then P0 (resp.,
P1) has a winning strategy. W0(G) (resp., W1(G)) may be
denoted by W0 (resp., W1) if the game is clear from the
context. If W0 = V or W1 = V , then we call the game a
single-winner parity game. Now, we define a problem Par-
ity Game, whose object is to partition V into W0(G) and
W1(G).

Parity Game� �
Input: a parity game G = (V, V0, V1, E, λ).
Output: W0(G).*1� �

We also define the decision-problem version of this problem
as follows. Clearly if one of them has a polynomial-time
algorithm, then the other also does.

Parity Game (Decision Problem Version)� �
Instance: a parity game with an initial vertex (G, v) =

(V, V0, V1, E, λ, v).
Question: v ∈ W0(G)?� �

We will often use the constants n, m, and p to mean the
following values:
• n = |V |: the number of vertices in G.
• m = |E|: the number of edges in G.
• p: the maximum priority in G.
For a vertex u ∈ V , we denote by N+(u) (resp., N−(u))

the set of out-neighbors (resp., in-neighbors) of u. Simi-
larly, we define as N+(S) =

∪
v∈S N+(v) \S and N−(S) =∪

v∈S N−(v) \ S. We denote by G(S) the parity game on
the subgraph induced by S, i.e., G(S) = (S, V0 ∩ S, V1 ∩
S,E ∩ (S × S), λ↾S

*2). G(V \ S) may often be written as
G \ S. For a parity game G, we call a game G

′
a proper

subgame of G if G
′
= G(V (G

′
)) and G

′
̸= G. We call each

move of the token a turn.
For a vertex v ∈ V and S ⊆ V , regardless of the strategy

taken by P1, if there exists a strategy of P0 that can move
the token placed at v ∈ V to one of the vertices in S in i

turns, then we say that P0 can force the token move to S

from v (in i turns). If v ∈ S or P0 can force the token to
move to S from v, then we say that P0 can force the token
to reach S from v.

We first remind an important basic property of parity
games, namely that the winner of a game does not depend
on previous moves; i.e., the game always admits a memory-

*1 Since W1 = V \ W0, W1 is automatically obtained if W0 is
obtained.

*2 Let f : E → F be a function from a set E to a set F . If a
set A is a subset of E, then the restriction of f to A is the
function f↾A : A → F .

Fig. 2 0-attractor

less (or positional) winning strategy. This property is also
called memoryless determinacy. A memoryless strategy for
Pi is a map f : Vi → V such that f(v) is an out-neighbor
of v for all v such that v has an out-neighbor. When a play
comes to v ∈ Vi, Pi unconditionally selects the unique out-
neighbor determined by f , without the history of the play. A
memoryless strategy f is a memoryles winning strategy for
Pi from vertex v if every play starts from v and conforms
to f is winning for Pi. When considering a memoryless
strategy f of Pi, it is often useful to restrict to the graph
Gf obtained from G by removing all out-going edges from
vertices in Vi, except those used by f .

Memoryless determinacy of parity games was proved as
follows.
Corollary 1. [2] In every parity game G, there exists mem-
oryless strategies f0 of P0 and f1 of P1 such that Pi wins by
using fi whichever the initial vertex is in Wi(G), no matter
which strategy P1−i applies.

By using this corollary, the following theorem on the com-
plexity of Parity Game DP can be proved.
Theorem 1. [6] Parity Game DP belongs to NP ∩ coNP.

For the memoryless determinacy, we only consider mem-
oryless strategies in the following discussions.

For a parity game G = (V, V0, V1, E, λ), if either V0 = ϕ

or V1 = ϕ, then it is called a single-player parity game. Par-
ity Game on this game can be solved in cubic time with the
number of vertices [5].
Lemma 1. Any single-player parity game has an O(n3)-
time algorithm.

3. Attractor and Dominion
In this section, we describe notations used in Mc-

Naughton’s Algorithm, which was first given by Mc-
Naughton for muller games [10], and adapted to parity
games by Zielonka [15]. While the running time of this algo-
rithm is exponential, it contains useful notations: attractor,
closed, and dominion.
Definition 1. [7] (See Fig. 2) For i ∈ {0, 1}, a set of ver-
tices U is an i-attractor of a set of vertices S ⊆ V , denoted
by attri(S), is the smallest superset*3 of S that satisfies the
following:
• There are no arc from Vi \ U to U .
• Every vertex of V1−i \U has an out-neighbor outside of

U .
The i-attractor of set S is the region which Pi can force

*3 The fact that this is uniquely determined can be proved from
the fact that if there are two different minimal U1 and U2 that
satisfy the condition, then U1∩U2 also satisfies the condition

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-182 No.8
2021/3/17

IPSJ SIG Technical Report

Fig. 3 0-closed

Fig. 4 0-dominion

the token to reach S from any vertex in it. We may denote
attri(S;G) to specify G. An i-attractor can be calculated
in polynomial-time [5], [7].
Lemma 2. For i ∈ {0, 1} and S ⊆ V , attri(S) can be
calculated in O(m)-time.
Corollary 2. For i ∈ {0, 1} and S ⊆ V , any vertex
v ∈ attri(S) \ S satisfies the following:
• If v ∈ Vi, then there is an arc (v, w) ∈ E such that

w ∈ attri(S).
• If v ∈ V1−i, then for every (v, w) ∈ E, we have

w ∈ attri(S).
Definition 2. [5] (See Fig. 3) For i ∈ {0, 1}, C ⊆ V is
said to be i-closed if any v ∈ C satisfies the following:
(1) If v ∈ Vi, then there is some (v, w) ∈ E such that

w ∈ C.
(2) If v ∈ V1−i, then for every (v, w) ∈ E, we have w ∈ C.

The fact that C is i-closed implies P1−i cannot force the
token to move to any vertex outside C from any vertex in
C. From the definitions of i-attractors and i-closed sets, we
obtain the following lemmas [7].
Lemma 3. For i ∈ {0, 1} and S ⊆ V , V \ attri(S) is
(1− i)-closed.
Lemma 4. Let C ⊆ V be i-closed for i ∈ {0, 1}. Then
Wi(G(C)) ⊆ Wi(G), i.e., if Pi has a winning strategy from
v ∈ C in G(C), then he/she also has a winning strategy
from v ∈ V in G.
Definition 3. [7] (See Fig. 4) For i ∈ {0, 1}, D ⊆ V is
called an i-dominion if the following hold:
• D is i-closed.
• Wi(G(D)) = D.
As a clearly example, Wi is an i-dominion. But there

could be smaller dominions. Attractors are useful because
of making parity games more simple when we identify some
parts of the region in which the winner is the same whichever
the initial vertex is. The following two lemmas depicts useful
relations among attractorsm and dominions, and Wi [5], [7].
Lemma 5. Let i ∈ {0, 1} and S ⊆ V . If S ⊆ Wi(G), then
Wi = attri(S;G) ∪Wi(G \ attri(S;G)).
Lemma 6. For i ∈ {0, 1}, let D ⊆ V be an i-dominion
and S ⊆ V be a set of vertices such that S ∩ D = ϕ, then
attr1−i(S) ∩D = ϕ.

If D ⊆ Vi is i-dominion, then it can be found in
polynomial-time.

Fact 1. [7] If there exists an i-dominion D such that D ⊆ Vi

for some i ∈ {0, 1}, then it can be found in polynomial-time.
If there exists such a dominion, then it can be removed

from the graph from Lemma 5. Therefore, we assume that
no player can win without passing him/her opponent vertex.

From the rules of parity games, a vertex v ∈ V1−i which
has no out-going edge is clearly in Wi. Thus, the i-attractor
of such a vertex is the winning region for Pi and can be
removed from the original graph in polynomial-time from
Lemmas 2 and 5. Therefore, in the following discussion, we
assume that every vertex has at least one out-going edge.

4. Circulators, Winning-Cycles, and
Parity-Game Reduction

Parity games are played on finite graphs. Therefore, if
the token is moved infinitely many turns, then it contains
a cycle along which the token passes infinitely. In this sec-
tion, we introduce two types of cycles: forcing-cycles and
winning-cycles, and present an algorithm for finding them.
If we get a winning-cycle for Pi, then we find that all vertices
on the cycle are in Wi. Specifically, this section consists of
three subsections. Firstly, we introduce a circulator, which
is the extension of an attractor. By introducing this nota-
tion, we can formally represent a set of vertices from which
the player can force the token to move to certain subset of
vertices. Secondly, we introduce forcing-cycles and winning-
cycles, and construct a polynomial-time algorithm for find-
ing them. Finally, we show an algorithm to reduce a parity
game by removing a winning-cycle if exists. By adapting
this method, some parity games can be solved, or reduced
to proper subgames in polynomial-time.

4.1 Circulators
In this subsection, we introduce circulators.

Definition 4. An i-circulator of S ⊆ V , for some i ∈
{0, 1}, denoted by circi(S), is the vertex set that is defined
in the following:

circi(S) = attri(N
−(S) ∩ attri(S))

The i-circulator of S is the region such that Pi can force
the token to move to S from any vertex in it. We may denote
circi(S;G) to specify G.
Fact 2. attri(S) = circi(S) ∪ S.

By Lemma 3, the following holds.
Fact 3. For i ∈ {0, 1} and S ⊆ V , V \ circi(S) is (1 − i)-
closed.

A circulator can be calculated in polynomial-time.
Lemma 7. For i ∈ {0, 1} and S ⊆ V , circi(S) can be
calculated in O(m)-time.

Proof. The vertices of N−(S)∩ attri(S) can be founded in
O(m)-time by checking all edges to S. An attractor can be
calculated in O(m)-time from Lemma 2, so the total running
time is O(m)-time.

Specifically, if S ⊆ circi(S), then circi(S) = attri(S) and
we obtain the following lemma

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-182 No.8
2021/3/17

IPSJ SIG Technical Report

Fig. 5 Forcing-cycle

Lemma 8. For i ∈ {0, 1} and S ⊆ V , if S ⊆ circi(S), then
circi(S) is i-closed.

Proof. Without loss of generality, assume that i = 0.
To simplify, we denote A := N−(S) ∩ attr0(S). Then,

circ0(S) = attr0(A) from Definition 9. attr0(S) =

circ0(S) = attr0(A) from the assumption of S ⊆ circ0(S)

and Fact 5. Therefore, we denote by A = attr0(S) =

circ0(S) = attr0(A). We prove that any vertex v ∈ A satis-
fies the following:
• If v ∈ V0, then there is an arc (v, w) ∈ E such that

w ∈ A.
• If v ∈ V1, then for every (v, w) ∈ E, we have w ∈ A.

If either v ∈ A \ S or v ∈ A \ A, then from Corollary 2,
v satisfies the conditions. Since A ∩ S = ϕ, every vertex
in A satisfies the conditions. Therefore, A = circ0(S) is
0-closed.

4.2 Forcing-Cycles and Winning-Cycles
Especially, if v ∈ circi(v) for v ∈ V , then Pi can force

the token to move to v from v. We call the set of vertices u

satisfying the following condition a forcing-cycle from v of
Pi.
• Condition FC: There exists a strategy such that Pi can

force the token to move to v from v and a strategy for
P1−i such that u is in the path from v to v according
to these strategies.

The part “from v by Pi” is optional if it is clear from the
context. By the definition, v ∈ circi(v) if and only if Pi

has a forcing-cycle from v (See Fig. 5). When Pi wins by
a strategy that Pi can force the token to move to v from v,
which appears in condition FC above, the forcing-cycle cor-
responding to that strategy is called the winning-cycle from
v of Pi.

Now, we give an algorithm, Winning-Cycle, for finding
a winning-cycle from v of Pi, for any given vertex v ∈ V (See
Algorithm 1). In this algorithm, (G = (V, V0, V1, E, λ), v, i)

is the input, where i ∈ {0, 1}. And output 1 if Pi has a
winning cycle from v; otherwise 0. We show the operation
in the case of i = 0 in the following.

Firstly, we calculate A := circ0(v;G) and check if v ∈
circ0(v;G) or not to determine whether P0 has a forcing-
cycle from v. If P0 does not have it, then P0 does not have
a winning-cycle also. Thus, output 0 and stop. Therefore,
we consider the case of that P0 has a forcing-cycle from v.
A is 0-closed from Lemma 3. Therefore, P0 can win in the
same region by using the same strategy in G in as G(A).
And since V \ A is 1-closed from Fact 3, if P0 cannot force

the token to move to some vertex z ∈ V \A from some vertex
w ∈ A, then P0 cannot force to move in G as well (because
P0 cannot force the token to move to A from any vertex in
V \ A). These mean that P0’s forcing-cycle from a vertices
of A in G is identical to that in G(A). Therefore, to deter-
mine whether P0 has a winning-cycle from v, we need only
consider G(A). Let w is the vertex with maximum priority
in G(A).
(1) If λ(w) is even.

We calculate attr0(w;A) and check if v ∈ attr0(w;A)

or not. If v ∈ attr0(w;A), then P0 can force the token
to move to w from v. Therefore, P0 can force the token
to move to v from v via w. Since w is the vertex with
even maximum priority, P0 has a winning-cycle from v.
Thus, output 1 and stop.
Otherwise, if v /∈ attr0(w;A), then P0 cannot force the
token to move to w from v. In the following, we show
that to determine whether P0 has a winning-cycle from
v, we need only consider the game A \ attr0(w;A).

• If P0 has a winning-cycle from v in G(A\attr0(w;A)).
Consider the case of A \ attr0(w;A) is 0-closed.
Then, P0 can take same winning strategy in G(A \
attr0(w;A)) which can force the token to move to v

from v. This means P0 has a winning-cycle.
Next, we consider the case of A \ attr0(w;A) is not
0-closed. Then, P1 can force the token to move to
z ∈ attr0(w;A) from some vertex in A \ attr0(w;A).
Then P0 can force the token to move to w from z since
z ∈ attr0(w;A) and v from w, since w ∈ circ0(v;G).
Thus, if P1 can force the token to move to z, then P0

wins because of w is the vertex with even maximum
priority. Therefore, P0 has a winning strategy that
can force the token to move to v from v regardless of
strategy of P1. This means P0 has a winning-cycle.

• If P0 does not have a winning-cycle from v in G(A \
attr0(w;A)).
P0 cannot force the token to move to attr0(w;A) from
any vertex in A\attr0(w;A), because of A\attr0(w;A)

is 1-closed from Lemma 3. V \A is the set of vertices
of P0 cannot force the token to move to v. Therefore,
P0 also does not have a winning-cycle in G either.

Therefore, to determine whether P0 has a winning-cycle
from v is the same result on G(A \ attr0(w;A)). So, we
update A to A \ attr0(w;A) and find w again.

(2) If λ(w) is odd.
We calculate attr1(w;A) and check if v ∈ attr1(w;A).
If v ∈ attr1(w;A), then P1 can force the token to move
to w from v. Since w is the vertex with odd maxi-
mum priority, P0 does not have a winning-cycle from
v. Thus output 0 and stop algorithm. Otherwise, if
v /∈ attr1(w;A), then P1 cannot force the token to move
to w from v. We can show that only G(A\attr1(w;A))

should be considered to determine whether P0 has a
winning-cycle from v by the same argument as when
λ(w) is even. Therefore, we update A to A\attr1(w;A)

and find w again.

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-182 No.8
2021/3/17

IPSJ SIG Technical Report

Algorithm 1 Winning-Cycle(G, v, i)

Input: (G = (V, V0, V1, E, λ), v ∈ V , i ∈ {0, 1}).
Output: 0 or 1.

if G = ϕ then
return 0

end if
A := circi(v;G)

if v /∈ circi(v;G) then
return 0

else
while A ̸= ϕ do

w := the vertex with maximum priority in A.
j := λ(w) mod 2

B := attrj(w;A)

if v /∈ B then
A = A \ B

else
if i = j then

return 1

else
return ϕ

end if
end if

end while
return ϕ

end if

Fig. 6 Single-winner parity game without winning-cycles

Theorem 2. Winning-Cycle finds a winning-cycle from
v for Pi in polynomial-time.

Proof. The correctness of the algorithm is proved by above
description. Therefore, we only prove the running time of
the algorithm. The running time of calculating circulator is
O(m)-time from Lemma 7. And one step in While loop is
O(n2)-time, hence the running time of whole loop is O(nm)-
time because of at least one vertex is removed in each step.
Therefore, the running time of this algorithm is O(nm)-
time.

If Pi has a winning-cycle from v, then a larger (or equal)
winning region containing the winning-cycle can be calcu-
lated in O(m)-time by calculating the i-attractor of v.

Note that Winning-Cycle can only calculate the win-
ning region where Pi can force the token to move to v from
v. Therefore, for example, in the graph of Fig. 6, the win-
ning region cannot be calculated by using this algorithm. In
this graph, whole graph belong to W0, but P0 does not have
a winning-cycle from any vertex.

4.3 Parity-Game Reduction by Winning-Cycles
Now we give an algorithm Winning-Cycle-Reduction,

algorithm for reducing a parity game that has winning-cycles
to a proper subgame (See Algorithm 2). In this algorithm,
G = (V, V0, V1, E, λ) is the input. (L0 ⊆ W0, L1 ⊆ W1,
G

′
= G \ (L0 ∪ L1)) or G is the output. We show the

operation in the following.
We can check if there exists a winning-cycles in G by

adapting Winning-Cycle for each vertex and for each
player. We prepare empty sets L0 and L1, and if Pi has a
winning-cycle from v, then we add attri(v;G) to Li. As a re-
sult, if L0 ̸= ϕ∨L1 ̸= ϕ, then we can calculate sets L0 ⊆ W0,
L1 ⊆ W1, and a proper subgame G

′
= G \ (L0 ∪L1). Thus

output them and stop. Otherwise, if L0 = ϕ∧L1 = ϕ, then
G does not contain a winning-cycle. Thus, output G itself
and stop.
Theorem 3. Winning-Cycle-Reduction reduces a par-
ity game that has winning-cycles to a proper subgame in
polynomial-time.

Proof. The correctness of the algorithm is proved by above
description. Therefore, we only prove the running time of
the algorithm. This algorithm applies Winning-Cycle to
each vertex and for each i. The running time of Winning-
Cycle is O(nm)-time from Theorem 4. Thus, the running
time of this algorithm is O(2n · nm) = O(n2m)-time.

Specifically, if L0∪L1 = V , then it means G can be solved
in polynomial-time.

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-182 No.8
2021/3/17

IPSJ SIG Technical Report

Algorithm 2 Winning-Cycle-Reduction(G)

Input: G = (V, V0, V1, E, λ).
Output: (L0 ⊆ W0, L1 ⊆ W1, G

′
= G \ (L0 ∪ L1)) or G.

L0 := ϕ

L1 := ϕ

for i ∈ {0, 1} do
for v ∈ V do

if Winning-Cycle(G, v, i) = 1 then
Li = Li ∪ attri(v;G)

end if
end for

end for
if L0 ̸= ϕ ∨ L1 ̸= ϕ then

return L0, L1, and G \ (L0 ∪ L1)

else
return G

end if

5. Conclusion
In this paper, we introduced notions of forcing-cycles and

winning-cycles. They are the vertex sets such that a player
can force the token to return to the same vertex after mov-
ing the token from one vertex to another. Moreover we
constructed a polynomial-time algorithm for finding them.
Finally, we constructed an algorithm to reduce a parity game
by removing a winning-cycle if exists. By adapting this
method, some parity games can be solved, or reduced to
smaller subgames in polynomial-time.

As a future task, finding the characterization of a par-
ity game that has a winning-cycle can be mentioned. It
is also important to develop an algorithm that calculates
the winning region in polynomial-time even if it contains no
winning-cycle.

References
[1] Berwanger, D., Dawar, A., Hunter, P. and Kreutzer, S.:

DAG-width and parity games, Annual Symposium on The-
oretical Aspects of Computer Science, Springer, pp. 524–
536 (2006).

[2] Björklund, H., Sandberg, S. and Vorobyov, S.: Memoryless
determinacy of parity and mean payoff games: a simple
proof, Theoretical Computer Science, Vol. 310, No. 1-3, pp.
365–378 (2004).

[3] Calude, C. S., Jain, S., Khoussainov, B., Li, W. and
Stephan, F.: Deciding parity games in quasi-polynomial
time, SIAM Journal on Computing, No. 0, pp. STOC17–
152 (2020).

[4] Chatterjee, K. and Fijalkow, N.: A reduction from par-
ity games to simple stochastic games, arXiv preprint
arXiv:1106.1232 (2011).

[5] Dittmann, C., Kreutzer, S. and Tomescu, A. I.: Graph op-
erations on parity games and polynomial-time algorithms,
arXiv preprint arXiv:1208.1640 (2012).

[6] Emerson, E. A., Jutla, C. S. and Sistla, A. P.: On model-
checking for fragments of µ-calculus, International Confer-
ence on Computer Aided Verification, Springer, pp. 385–
396 (1993).

[7] Gajarskỳ, J., Lampis, M., Makino, K., Mitsou, V. and
Ordyniak, S.: Parameterized algorithms for parity games,
International Symposium on Mathematical Foundations of
Computer Science, Springer, pp. 336–347 (2015).

[8] Jurdziński, M.: Deciding the winner in parity games is in
UP ∩ co-UP, Information Processing Letters, Vol. 68, No. 3,
pp. 119–124 (1998).

[9] Jurdziński, M., Paterson, M. and Zwick, U.: A determin-
istic subexponential algorithm for solving parity games,
SIAM Journal on Computing, Vol. 38, No. 4, pp. 1519–
1532 (2008).

[10] McNaughton, R.: Infinite games played on finite graphs,
Annals of Pure and Applied Logic, Vol. 65, No. 2, pp. 149–
184 (1993).

[11] Obdržálek, J.: Fast mu-calculus model checking when tree-
width is bounded, International Conference on Computer
Aided Verification, Springe, pp. 80–92 (2003).

[12] Obdrzalek, J.: Algorithmic analysis of parity games, PhD
Thesis, Citeseer (2006).

[13] Obdržálek, J.: Clique-width and parity games, Interna-
tional Workshop on Computer Science Logic, Springer, pp.
54–68 (2007).

[14] Parys, P.: Parity Games: Zielonka’s Algorithm in Quasi-
Polynomial Time, arXiv preprint arXiv:1904.12446 (2019).

[15] Zielonka, W.: Infinite games on finitely coloured graphs
with applications to automata on infinite trees, Theoretical
Computer Science, Vol. 200, No. 1-2, pp. 135–183 (1998).

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-182 No.8
2021/3/17

