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Abstract: A rep-cube is a polyomino that is a net of a cube, and it can be divided into some polyominoes such that
each of them can be folded into a cube. This notion was invented in 2017, which is inspired by the notions of poly-
omino and rep-tile, which were introduced by Solomon W. Golomb. A rep-cube is called regular if it can be divided
into the nets of the same area. A regular rep-cube is of order k if it is divided into k nets. Moreover, it is called uniform
if it can be divided into the congruent nets. In this paper, we focus on these special rep-cubes and solve several open
problems.
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1. Introduction
A polyomino is a “simply connected” set of unit squares intro-

duced by Solomon W. Golomb in 1954 [7]. Since then, sets of

polyomino pieces have been playing an important role in recre-

ational mathematics (see, e.g., [5]). In 1962, Golomb also pro-

posed an interesting notion called rep-tile: a polygon is a rep-tile

of order k if it can be divided into k replicas congruent to one an-

other and similar to the original (see [6], Chap 19). From these

notions, Abel et al. introduced a new notion [1]; a polyomino is

said to be a rep-cube of order k if it is a net of a cube (or, it can

fold into a cube), and it can be divided into k polyominoes of

which each can fold into a cube. If all k polyominoes have the

same size, we call the original polyomino a regular rep-cube of

order k. Moreover, a regular rep-cube is a uniform rep-cube of or-

der k when all k polyominoes are congruent. Simple examples of

a regular rep-cube and a uniform rep-cube are shown in Fig. 1(a)

and (b), respectively. We note that crease lines are not necessarily

along the edges of the polyomino as shown in the figure.

In [1], Abel et al. showed concrete regular rep-cubes of order

k for k = 2, 4, 5, 8, 9, 36, 50, 64. Later, in [16], Xu et al. also gave

regular rep-cubes of order k = 16, 18, 25. In both papers, they

showed some ways of construction of regular rep-cubes of order

k for infinitely many integers k. In these papers, the following

two sets play important roles;

S = {k | a2 + b2 = k for two integers a, b}
S̄ = Z \ S

namely, S = {1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, . . .}
and S̄ = {3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, . . .}.
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Fig. 1 (a) A regular rep-cube of order 5 and (b) a uniform rep-cube of order

2.

We can observe that all the integers where there exists a regular

rep-cube of order k are in S . We note that both of S and S̄ are

infinite sets by Dirichlet’s theorem on arithmetic progressions.
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Fig. 2 Eleven nets obtained by cutting along edges of a cube and their min-

imum number of copies to cover a cube.

On the other hand, in [16], they showed that there are no regu-

lar rep-cube of order 3. They proved that if k ∈ S̄ , there does not

exist a regular rep-cube of area 6k of order k. Intuitively speak-

ing, they showed that k copies of one net in Fig. 2 cannot cover a

cube of area 6k if k is in S̄ . However, they could not prove that

it holds for general regular rep-cubes of order k in S̄ . We first

solve this open problem. That is, we prove that there does not
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exist a regular rep-cube of order k if k is in S̄ . In other words,

any set of k (refined) polyominoes of the same area cannot cover

a cube of area 6k if k is in S̄ . (In [16], this claim was proved only

for k = 3.) Oppositely, we conjecture that there exists a regular

rep-cube of order k if k ∈ S ; however, we have to construct one

by one so far. In this paper, we give regular rep-cubes of order

k = 10, 13, 17, 20, which did not appear in [1], [16].

Next we focus on uniform rep-cubes of order k, which consist

of k copies of congruent nets. As a net of a cube, the eleven nets

shown in Fig. 2 are quite popular since they are obtained by cut-

ting along edges of a cube. (In the context of unfolding, they are

sometimes called edge-unfolding of a cube.) Moreover, through

the enumeration of regular rep-cubes of order k = 2 and k = 4 in

[16], we can observe that nine of eleven nets form uniform rep-

cubes. That is, for example, two copies of a net of T shape shown

in Fig. 1(b) cover a cube. In this context, it is natural to ask how

many copies we need to cover a cube by each of eleven nets. Es-

pecially, can the last remaining two nets, indicated (a) and (b) in

Fig. 2, form uniform rep-cubes? Our second results state that for

both of two nets, we can cover a cube by eight copies of them,

and we cannot cover by five copies as shown in Fig. 2.

Lastly, we consider a new notion of a universal rep-cube that

contains all of eleven nets in Fig. 2. This notion itself first pro-

posed in [1] as an example of a regular rep-cube of order k = 50

with no special name. In [16], the authors showed another one

with k = 25. Trivially, k is greater than or equal to eleven, and

k should be in S . Thus the minimum number of the universal

rep-cube of order k is k = 13, 16, 17, 18, 20, or 25. In this paper,

we prove that k = 13, which solves the open problem shown in

[16]. In this context, Maekawa proposed an interesting puzzle

for this problem [9]: We consider two polygons are different if

they are mirror images with each other. The set of eleven nets of

a unit cube contains two mirror symmetric shapes (T-shape and

+-shape, which appear in the right most two in Fig. 2). Let S be

the set of nets of a unit cube, where mirror images are different

with each other. Then S consists of 20 nets, and hence the nets

in S are of area 120 in total. The puzzle asks if you can make a

rep-cube of area 120, or a cube of size 2
√

5 × 2
√

5 × 2
√

5 from

this set S without flipping each net. We give an affirmative an-

swer to this problem. That is, there is a universal rep-cube that

uses 20 different nets exactly once for each. In order to find these

large rep-cubes, we use SCIP [17], which is one of the fastest

non-commercial solvers for mixed integer programming.

2. Nonexistence of regular rep-cubes
The main theorem in this section is as follows.

Theorem 1 There does not exist a regular rep-cube of order

k for each k ∈ S̄ .

In order to show it, we use the following theorem, which is a

folklore in puzzle society (see [16]):

Theorem 2 (1) Let p be a prime. Then p can be represented

by p = a2 + b2 for some two nonnegative integers a and b if and

only if either p = 2 (with a = b = 1) or p ≡ 1 (mod 4). (2)

Let x be a composite number. Let pd1

1
pd2

2
· · · pdm

m be the prime fac-

torization of x. Then x is can be represented by x = a2 + b2 for

some two nonnegative integers a and b if and only if di is even

for every prime pi with pi ≡ 3 (mod 4).

Theorem 2(1) is known as “Fermat’s theorem on sums of two

squares,” which was proposed by Fermat, and first proof was

found by Euler.

Now we give the proof of Theorem 1:

Proof. We prove the claim by a contradiction. We assume that P̂
is a regular rep-cube of order k. Then P̂ can be divided into k nets

P1, . . . , Pk. Let Q̂ be a cube folded from P̂ and Q a cube folded

from Pi for each i = 1, . . . , k. Let � be the length of an edge of

Q. Then Pi is a 6�2-omino and P̂ is a 6k�2-omino. Here, we note

that while 6�2 is an integer, � is not necessarily an integer.

Now, using the same argument in [16], we can put Pi on a

square lattice of size � so that every vertex of Q is on a grid point.

In other words, there are some positive integers a, b such that

a2 + b2 = �2. Using the same argument for P̂ and Q̂, we obtain

â2 + b̂2 = k�2 for some positive integers â, b̂. Therefore, k�2 is an

element in S , and we have

â2 + b̂2 = k�2 = k(a2 + b2).

That is, a composite number k(a2+b2) is in S . On the other hand,

k is in S̄ by assumption. Thus, when k is a prime, we have k ≡ 3

(mod 4). When k is a composite number, its prime factorization

contains a prime pi such that pi ≡ 3 (mod 4) and its degree di

is an odd number. We can regard the first case (k is a prime) as

the special case of the second case with p1 = k and d1 = 1 with

no other factors. Thus we focus on the second case.

Now, a composite number k(a2 + b2) = â2 + b̂2 is in S . There-

fore, the factor (a2 + b2) should contain pi odd times as factors,

which contradicts the fact that (a2 + b2) is an element in S .

Therefore, there exists no such k, and hence there exists no

regular rep-cube of order k.

3. Minimum uniform rep-cubes
In the previous work, there exists uniform rep-cubes of order

k for each k = 2, 4, 9 in [1]. In [16], it is shown that how to

construct infinitely many uniform rep-cubes recursively. Sum-

marizing known uniform rep-cubes in Fig. 2, it is natural to ask if

remaining two of eleven nets can form uniform rep-cubes or not.

Let name the nets Fig. 2(a) and Fig. 2(b) Pw and Pz (from their

shapes), respectively. For these two nets, we show the following

theorem.

Theorem 3 Using Pw and Pz, we can construct uniform rep-

cubes of order k for k = 8. Moreover, we cannot construct uni-

form rep-cubes of order k with k = 2, 4, 5.

We have the following corollary.

Corollary 4 For each one of eleven nets in Fig. 2, k copies of

one can cover a cube for some k = 2, 4, 5, or 8.

By enumerations in [16] for k = 2, 4, Thoerem 3 and Corollary

4 hold except Pw and Pz. Thus we focus on Pw and Pz.

Lemma 5 There exist uniform rep-cubes of order 8 by Pw
and Pz.

Proof. We prove the claim by construction. See Fig. 3.

Next we show the following lemma.

Lemma 6 There does not exist a uniform rep-cube of order 5

by Pw or Pz.

Proof. The proof is done by case analysis. We first focus on Pw.
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Fig. 3 Minimum uniform rep-cubes by Pw and Pz.

Fig. 4 A cube Q of size
√

5 × √5 × √5.

(a) (b) (c) (d) (e)

Fig. 5 Five possible ways for Pw.

If five copies of Pw form a uniform rep-cube of order 5, the re-

sulting cube Q is depicted in Fig. 4 (or its mirror image). The

cube Q has six central squares at each of six faces as shown in

gray in Fig. 4. Then it is not difficult to see that Pw can put on Q
with respect to the central squares in 5 different ways as shown in

Fig. 5. To derive contradictions, we assume that five copies of Pw
can cover on Q without any overlapping and any hole. Then we

have two cases. The first case is that one copy of Pw is in the case

Fig. 5(b) and the other four copies are in the cases Fig. 5(a)(c)(d),

and the second case is that one copy of Pw is in the case Fig. 5(e)

and the others are in the cases Fig. 5(a)(c)(d).

We first consider the first case; that is, a copy P1 of Pw is in

the case Fig. 5(b). Then, beside P1, we have two central squares

to be covered. We pick up one of them and consider how we can

cover it by a copy P2 of Pw. Then P2 is in the case Fig. 5(a)(c)

or (d). For each of them, we have four ways of orientation of P2.

Then, in most cases, (1) P1 and P2 surround a unit square or a

small rectangle of two unit squares, or (2) P2 overlaps with P1.

The only exception occurs one orientation in the case Fig. 5(a).

Thus we have only one way of attaching P2 beside P1. Now we

consider the next copy P3 of Pw which covers the other neighbor

central square of ones covered by P1. Then we can use the same

argument, and we have one way of attaching P3 on Q. Then, we

can find that P3 overlaps P2. Thus, in this case, we have no way

to cover Q by five copies of Pw.

Next, we consider the second case; that is, a copy P1 of Pw is in

the case Fig. 5(e). Then, beside P1, we have two central squares

to be covered again. Then we can use the same argument of the

first case. We consider all ways of attaching of two neighbor cen-

tral squares of P1, and we have the same conclusion; we have an

overlap or a hole when we attach P1, P2, and P3.

Thus, there does not exist a uniform rep-cube of order 5 by Pw.

For the Pz, we can have the similar case analysis, and confirm

that there does not exist a uniform rep-cube of order 5 by Pz. (We

note that the number of cases increases because Pz can attach on

Q without covering any central square, however, the arguments

are essentially the same, and hence omitted here.)

By Lemmas 5 and 6 with known enumeration in [16], Theorem

3 immediately follows.

4. Universal rep-cubes
We say that a regular rep-cube of order k is universal if it can be

divided into k polyominoes in Fig. 2 such that the set contains all

of eleven nets. This notion was introduced in [1] without name,

and it was shown for k = 50. Later, it was improved to k = 25

as shown in [16]. It is a natural question for finding the minimum

k such that a universal rep-cube exists. In this section, we prove

that k = 13 by construction.

Theorem 7 The minimum number k such that there exists a

universal rep-cube is k = 13.

Proof. By Theorem 1 and known result in [16], we can observe

that k = 13, 16, 17, 18, 20, or 25. Since there is a universal rep-

cube of order 13 as shown in Fig. 6, we have the claim.

In this context, Maekawa proposed an interesting puzzle for

this problem [9]: We consider two polygons are different if they

are mirror images with each other. The set of eleven nets of a

unit cube contains two mirror symmetric shapes (T-shape and +-

shape, which are rightmost in Fig. 2). Here, let S be the set of the

nets of a unit cube, where mirror images are regarded as different

with each other. Then S consists of 20 nets, and hence the nets in

S are of area 120 in total. The Maekawa’s puzzle asks if you can

make a rep-cube of area 120, or a cube of size 2
√

5× 2
√

5× 2
√

5

from this set S without flipping each net. We give an affirmative

answer to this problem by constuction.

Theorem 8 There exists a universal rep-cube of order k = 20

such that every different net (with respect to flip) appears exactly

once.

Proof. A solution is shown in Fig. 7.

The reader may wonder how we can find them. In fact, one

of the authors found the pattern of a universal rep-cube of order

k = 25 in [16] by his hand and it was a really puzzle. We found

the patterns in Fig. 6 and Fig. 7 by using SCIP [17], which is

one of the fastest non-commercial solvers for mixed integer pro-

gramming. We give the formulation of our problem for solving

by SCIP.

4.1 Integer Programming Formulation
We formulate the problem in terms of a 0-1 integer program-

ming problem. Although we found the patterns in Fig. 3 by our

hands and prove Lemma 6 by case analysis, we use the case k = 5
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Fig. 6 A minimum universal rep-cube of order k = 13.

Fig. 7 A soluton of Maekawa’s puzzle.

for explanation.
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Fig. 8 Numbering the unit squares on a cube.

We first number all unit squares on the target cube Q (see

Fig. 8 for a cube of size
√

5 × √5 × √5; the ordering is arbi-

trary). We name each square i for each i = 1, 2, . . . , 30 for refer-

ence. Then, for each placement of Pw, we use a 0-1 integer vari-

able. In Fig. 8, a placement of Pw is indicated in gray. For this

position, we define a 0-1 integer variable Pw(3, 5, 8, 13, 17, 21).

For each possible placement, we prepare one 0-1 integer vari-

able Pw(i1, i2, i3, i4, i5, i6), where i j indicates the name of the cor-

responding unit square. For each unit square i, there are four

copies of Pw that contain i at the end of Pw. We have to con-

sider the mirror image of Pw in this case. We denote it by

Pr
w(i1, i2, i3, i4, i5, i6). Therefore, we have eight variables for each

unit square i that consist of four Pw(i1, i2, i3, i4, i5, i6)s and four

Pr
w(i1, i2, i3, i4, i5, i6)s such that each of them contains the square i

at the end. However, we have duplicates; for example, two vari-

ables Pw(3, 5, 8, 13, 17, 21) and Pw(21, 17, 13, 8, 5, 3) are essen-

tially the same. Thus we define the standard form that i1 < i6 for

Pw(i1, i2, i3, i4, i5, i6) and we only use the variables of the standard

form. Therefore, we have 30×4×2/2 = 120 0-1 integer variables

for this case.

Now we consider the constraints. For each square

i, it should be covered by exactly once by a copy of
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Pw. In order to represent it, we have the following con-

straint for each i:
∑

i∈Pw(i1 ,i2 ,i3 ,i4 ,i5 ,i6) Pw(i1, i2, i3, i4, i5, i6) +
∑

i∈Pr
w(i1 ,i2 ,i3 ,i4 ,i5 ,i6) Pr

w(i1, i2, i3, i4, i5, i6) = 1. In total, we have 30

constraints.

The objective function is simply given by minimize
∑

(Pw(i1, i2, i3, i4, i5, i6) + Pr
w(i1, i2, i3, i4, i5, i6)). The solu-

tion should be 5 in this case since we use five copies of Pw or Pr
w

to cover the cube Q.

In fact, the proof of Lemma 6 was double-checked by SCIP,

and it confirmed that there is no solution for this case in 0.00 sec-

ond. (We use SCIP version 7.0.0 on a laptop PC (AMD Ryzen 7,

2.30GHz, 16GB RAM, 64bit Windows).)

For finding the pattern in Fig. 6, we prepare 4960 variables for

representing positions and 78 constraints for unit squares. We add

eleven constraints so that each of eleven net appears at least once.

In this case, the pattern in Fig. 6 was found in 17.00 seconds.

For finding the pattern in Fig. 7, we prepare 7680 variables

and 140 constraints. Among them, 120 constraints are for unit

squares and additional 20 constraints represent that each of 20

nets appears exactly once. SCIP found the pattern in Fig. 7 in

982.00 seconds.

5. Concluding Remarks
In this paper, we investigated uniform rep-cubes and universal

rep-cubes. In general, we characterized the numbers that a

regular rep-cube of order k can exist if k is in S , where S =
{1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, . . .} and S̄ =

{3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, . . .}.
Precisely, we can say that if k is in S̄ , we cannot find a

regular rep-cube of order k. Even if k is in S , we have no

idea whether it exists or not without explicit construction. In

[1], [16], they explicitly gave a regular rep-cube of order k for

k = (1), 2, 4, 5, 8, 9, 16, 18, 25, 36, 50, 64. In this paper, we gave

k = 13 (Fig. 6) and k = 20 (Fig. 7).

Fig. 9 A regular rep-cube of order k = 10.

For k = 10, we found by hand as shown in Fig. 9. On the other

hand, for k = 17, we use the same way for finding a universal

rep-cube of order 13 in Fig. 6. In this case, we have 6528 0-1 in-

teger variables with 124 constraints, and SCIP found the solution

shown in Fig. 10 in 11.00 seconds. In summary, we found regular

rep-cubes of order k with all possible k ∈ S with k ≤ 25. It seems

that there exists a regular rep-cube of order k for any k ∈ S . That

is an open question.

Acknowledgement
A part of this research is supported by JSPS KAKENHI Grant

Number 20K11673, 20H05964, 18H04091, and 17H06287.

References
[1] Z. Abel, B. Ballinger, E. D. Demaine, M. L. Demaine, J. Erickson,

A. Hesterberg, H. Ito, I. Kostitsyna, J. Lynch, and R. Uehara. Unfold-
ing and Dissection of Multiple Cubes, Tetrahedra, and Doubly Cov-
ered Squares. Journal of Information Processing, Vol.25, pp. 610–615,
August 2017. (A preliminary version was presented at 19th Japan Con-
ference on Discrete and Computational Geometry, Graphs, and Games
(JCDCG3), 2016.)

[2] J. Akiyama. Tile-Makers and Semi-Tile-Makers. American Mathemat-
ical Monthly, Vol. 114, pp. 602–609, 2007.

[3] Y. Araki, T. Horiyama, and R. Uehara. Common Unfolding of Regular
Tetrahedron and Johnson-Zalgaller Solid. J. of Graph Algorithms and
Applications, Vol. 20, No. 1, pp. 101–114, 2016.

[4] E. D. Demaine and J. O’Rourke. Geometric Folding Algorithms: Link-
ages, Origami, Polyhedra. Cambridge, 2007.

[5] M. Gardner. Hexaflexagons, Probalitity Paradoxes, and the Tower of
Hanoi. Cambridge, 2008.

[6] M. Gardner. Knots and Borromean Rings, Rep-Tiles, and Eight
Queens. Cambridge, 2014.

[7] S. W. Golomb. Polyominoes: Puzzles, Patterns, Problems, and Pack-
ings. Princeton Univ., 1996.

[8] T. Horiyama and K. Mizunashi. Folding Orthogonal Polygons into
Rectangular Boxes. 19th Korea-Japan Joint Workshop on Algorithms
and Computation, 2016.

[9] J. Maekawa. Personal Communications, June 2017.

[10] J. Mitani and R. Uehara. Polygons Folding to Plural Incongruent Or-
thogonal Boxes, 20th Canadian Conference on Computational Geom-
etry (CCCG), pp. 39-42, 2008.

[11] K. Miura. Personal Communications, September 2017.

[12] R. Séroul. “2.2. Prime Number and Sum of Two Squares” in Program-
ming for Mathematicians, pp. 18–19, Springer-Verlag, 2000.

[13] D. Xu. Research on Developments of Polycubes. Japan Advanced In-
stitute of Science and Technology, 2017, Ph. D thesis.

[14] D. Xu, T. Horiyama, T. Shirakawa, and R. Uehara. Common Devel-
opments of Three Incongruent Boxes of Area 30. COMPUTATIONAL
GEOMETRY: Theory and Applications, Vol. 64, pp. 1–17, 2017.

[15] D. Xu, T. Horiyama, and R. Uehara. Rep-cubes: Unfolding and Dis-
section of Cubes. 29th Canadian Conference on Computational Ge-
ometry (CCCG), pp. 62-67, 2017.

[16] D. Xu, J. Huang, Y. Nakane, T. Yokoyama, T. Horiyama, and R. Ue-
hara. Rep-cubes: Dissection of a Cube into Nets. IEICE Trans. on Inf.
and Sys., Vol. E101-A, No. 9, pp. 1420–1430, Sep. 2018.

[17] SCIP: Solving Constraint Integer Programs. scipopt.org. (last ac-
cessed February 18, 2021).

5ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2021-AL-182 No.2

2021/3/17



Fig. 10 A universal rep-cube of order k = 17.
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