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Threshold ECDSA for securing digital assets in
combination with blockchain
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Abstract: Because of the explosion of cryptocurrencies and blockchain technology, decentralized security technol-
ogy also brings many new challenges. One of the big challenges is to construct a decentralized protocol that is secure
and usable. For this challenge, Threshold ECDSA signatures have received much attention in recent years due to the
widespread use of ECDSA in cryptocurrencies. Threshold ECDSA signature enhances the decentralization property
and can be used to protect digital assets. Although many threshold signature protocols have been proposed, they are
unsuitable for deployment scenarios. This is because their protocols are largely lacking in robustness and are struc-
turally unable to integrate into existing blockchains. We propose a threshold ECDSA signature scheme with basic
robustness in the signature phase based on the ElGamal commitments. In addition to that, the scheme can be integrated
in other blockchains to improve better usability.
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1. Introduction
With the development of blockchain technology, digital sig-

natures have also received enough attention as the core of
many blockchain application authentication mechanism such as
Bitcoin[13]. In cryptocurrencies, digital signatures are used to
authenticate transactions, and the ability to generate a signature
is equivalent to the ability to spend one’s money. The common-
ality between all of these applications is that the theft or loss of
the signing key can be catastrophic, and a key difficulty is how
to store signing keys in a manner that is both easy to use and re-
silient to theft and loss.

Threshold cryptography, and threshold signature in particular,
has greatly reduced the risk of losing a single signature. In a
threshold signature scheme, signing keys are distributed among
several parties which need to jointly generate a digital signature.
More specifically, a (t, n) threshold signature scheme means that
a key is split into n shares and a parameter t is defined such that
an adversary which compromises t or fewer parties is unable to
generate a valid signature and learn no information about others
secrets. On the other hand, a set of t+1 parties can directly jointly
generate a signature without reconstructing signing key. This is
very effective against the risk of the signing key being controlled
by an adversary, and even if the adversary controls a small num-
ber of parties, the remaining parties can still issue a vaild signa-
ture.

The most popular signature algorithm in deployment is the El-
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liptic Curve Digital Signature Algorithm (ECDSA)[11], which
has been used in many applications especially Bitcoin. More
specifically, each Bitcoin account is associated with an ECDSA
public key, and each transaction sent from such an account is
confirmed by an appropriate ECDSA signature. Build threshold
ECDSA is a very challenging task for over two decades[10], in
recent years, this research has been picking up again in order to
more effectively protect the assets of cryptocurrencies. The early
threshold ECDSA is not able to achieve threshold optimality (i.e.
a protocol that for a prespecified threshold 1 ≤ t ≤ N allows
any t + 1 parties to sign, at the same time being resistant to an
adversary controlling t parties), it requires at least 2n/3 out of n
parties to sign a message. There has been a significant achieve-
ment in 2016, threshold optimal were obtain for the general case
[9]. This work was followed by Gennaro and Lindell[7, 12] in
2018 to reach a more general threshold optimum using different
methods. Thus, the study of threshold signatures has again started
to be studied in many different ways.

Another interesting idea is to create bridges between the var-
ious blockchains. For example, it is more safe and convenient
to allow to deposit BTC on a Ethereum and move it there freely,
Technically, the problem with building such a bridge from limita-
tions on the Bitcoin side, for there is not enough scripting support
in the Bitcoin mechanism. One particular approach to build such
a bridge between Bitcoin and Ethereum is wBTC[16] which uses
a trusted central authority to hold custody over the corresponding
Bitcoin account. However, such a solution is not quite satisfac-
tory though, as Bitcoin and Ethereum were built to avoid cen-
tral authorities in the first place, and thus having a decentralized
bridge would be preferred. For Bitcoin, threshold ECDSA is a
good method of decentralizing assets, but the existing threshold
ECDSA protocols[7, 9, 12, 4] are not quite suitable for this pur-
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pose. For it needs to firstly elect a committee of t honest parties, if
any party of them crushes or compromised by an adversary, then
the protocol fails and need to restart.

In this work, we present a new threshold ECDSA protocol that
is designed to doesn’t require a choice of an ”honest committee”.
Additionally, we have split the threshold ECDSA into two parts,
online and offline to reduce the online computation resources, in
particular, the online part of our protocol can be combined with
Ethereum’s smart contracts for better robustness and usability.

The paper is structured as follows. Section 2. describes the
basic definitions and knowledge required. Section 3. describes
some of the prior research relevant to our study. Section 4. de-
scribes the ours work in this paper. Section 5. provides a sum-
mary.

2. Preliminary
The protocol is described with respect to a a cyclic group G of

prime order q, a fixed generator g, a hash Function F : G→ Zq.

2.1 The Digital Signature Standard
The Digital Signature Algorithm (DSA) was proposed by

Kravitz in 1991, and adopted by NIST in 1994 as the Digital
Signature Standard (DSS). ECDSA[11], the elliptic curve variant
of DSA, has become quite popular in recent years, especially
in cryptocurruencies. Our results can be applied to DSA or
ECDSA, where we briefly describe a generic DSA scheme as
follows.

• Key-Gen On input the security parameter λ, randomly uni-
formly selects a private key x ∈ Zq, and compute public key
y = gx in G.

• Sig On input an message m
- select k ∈ Zq randomly uniformly
- compute R = gk−1

in G and r = H(R) in Zq

- compute s = k−1(m + xr) mod q - output signature (r, s)
• Ver On input m, (r, s), y

- check that r, s ∈ Zq

- compute R′ = gms−1 mod qyrs−1 mod q ∈ G

- Accept iff H(R′) = r

2.2 Threshold Signature scheme (TSS)
Definition 2.1. A (t, n)-threshold secret sharing of a secret x con-
sists of n shares x1, · · · , xn such that an efficient algorithm exists
that takes as input t + 1 of these shares and outputs the secret, but
t or fewer shares do not reveal any information about the secret.

TSS likes a common signature scheme, a (t, n)-TSS enables the
signing among a group of n players such as any group of at least
t + 1 of these players can jointly generate a signature, whereas
groups of size t or fewer cannot. More formally, TSS mainly
consist of two protocols:
• Thresh-KeyGen

Thresh-KeyGen is a distributed key generation(DKG) pro-
tocol, with no previously shared key material, but only the
parties public identities. Parties can share keys through this
protocol and when the protocol successfully completes, each
party Pi will get their private shares ki of the secret key sk.

This protocol will also output a public key pk corresponding
to the secret key sk and all parties will be aware of the public
key.

• Thresh-Sig
Thresh-Sig is the distributed signing protocol which takes as
public input a message m to be signed as well as a private
input ski from each player. It outputs a valid signature.

In addition, there are two sub-protocols Thresh-Presig and
Thresh-Reshare, which are not necessarily included in TSS, but
used to calculate the required values for Thresh-Sig in advance
and to redistribute keys respectively.

2.3 Shamir Secret Sharing
Shamir Secret Sharing scheme is a key part of the composi-

tion of TSS. In Shamir Secret Sharing scheme, to share a secret
σ ∈ Zq, the dealer generates a polynomial p(·) of degree t over Zq

such that p(0) = σ and the coefficients a1 to at are random values
that are not zero.

p(x) = σ + a1x + a2x2 + · · · + at xt mod q (1)

Each party Pi receive a share σi = p(i) mod q.

2.4 Ethereum
Ethereum is a decentralized, open-source blockchain featur-

ing smart contract functionality. Ether (ETH) is the native cryp-
tocurrency of the platform. More specifically, Ethereum is a
permissionless, non-hierarchical network of computers (nodes)
which build and come to consensus on an ever-growing series
of ”blocks”, or batches of transactions, known as the blockchain.
Each block contains an identifier of the block that it must immedi-
ately follow in the chain if it is to be considered valid. Whenever a
node adds a block to its chain, it executes the transactions therein
in their order, thereby altering the ETH balances and other storage
values of Ethereum accounts. These balances and values, collec-
tively known as the state, are maintained on the node’s computer
separately from the blockchain, in a Merkle Patricia tree.
Definition 2.2. A smart contract is a computer program or a
transaction protocol which is intended to automatically execute,
control or document legally relevant events and actions accord-
ing to the terms of a contract or an agreement.

Ethereum implements a Turing-complete language on its
blockchain, a prominent smart contract framework.
2.4.1 Ethereum as a Broadcast Channel

In our paper, each party of the online sign protocol actively
monitors the Ethereum blockchain. In particular, the client can
watch all transactions to the address of the pre-deployed online
sign contracts. A message is broadcast by issuing an Ethereum
transaction, which effectively executes a function within the on-
line sign smart contract when the transaction is mined within a
block in the Ethereum network.

2.5 Zero Knowledge Proof
TSS protocols use zero-knowledge proof (ZKP) to ensure that

parties do not deviate from the protocol. ZKP appear most com-
monly in the following type of situation: a party holds some se-
cret piece of data x that along with a public part d is to be applied
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in a function F(·, ·) that used both the secret and the correspond-
ing public part. In order to make sure the value y gotten F(w, d) is
indeed the result of this computation, this party should publish a
”certification” π along with y that proves the party holds a secret
w such that F(w, d) = y. The method of zero-knowledge proofs
used in this paper is mainly derived from [6, 15], and which is
discussed in further in Lindell’s work[12].

2.6 Additively Homomorphic Encryption
Additively homomorphic encryption does the important trans-

formation of the product form of share to the additive form in
TSS. An additively homomorphic encryption scheme consists of
three algorithms KeyGen, Enc, Dec, such that:
• (pk, sk)← KGen(λ), λ are security parameters.
• Enc(pk,m) = c is a probabilistic algorithm, where m ∈ M is

a message in the message space M and c ∈ C is the corre-
sponding ciphertext in the ciphertext space mathcalC.

• Dec(sk, c) = m is a deterministic algorithm.
• There exist two operations ⊕ : C×C → C and ⊗ : Z×C → C

such that:

m1 + m2 = Dec(sk, (Enc(sk,m1) ⊕ Enc(pk,m2))) (2)

k · m = Dec(sk, k ⊗ Enc(pk,m)) (3)

2.7 ElGamal Commitments
ElGamal Commitments is also an important components of the

whole protocol, they are also called ”ElGamal in-the-Exponent”.
Given a private key d ∈ Zq, the public key for ElGamal com-

mitments h is gd. With the respect to this public key, we define
an ElGamal commitment to x ∈ Zq as

E(x) = (gr, hrgx) ∈ G2 (4)

r ∈ Zq is uniformly randomness.
A important property of ElGamal commitments is that they are

addtively homomorphic, more precisely, for x1, x2, r1, r2 ∈ Zq

we have

E(x1, r1) · E(x2, x2) = (x1 + x2, r1 + r2) ∈ G2 (5)

where · denotes the coordinate-wise multiplication in G2. This
property can be used to update the commitments and can also be
used to calculate values on the exponent.

2.8 Multiplicative-to-additive share conversion protocol
(MtA)

Multiplicative-to-additive share conversion protocol (MtA)
aims to convert the multiplicative form of secrets to the additive
form of secrets. In the threshold ECDSA, this protocol is gener-
ally used to convert the secret form of the product sharing k, x to
a, b such that kx = a + b in Zq. We briefly describe this protocol
as follows:

Algorithm 1 MtA [7]
Input: secret a, b; additive homomorphic encryption algorithm Epki

Output: secret α, β, s.t. α + β = ab
Parties: Pi, P j

1: Pi initiates the protocol
- sends cA = Epki (a) to P j

- does ZKP with a
2: P j chooses β′ ← ZN

- computes cB = b × cA + Epki (β
′)

- does ZKP with b
- sends cB to Pi

- sets β = −β′

3: Pi decrypts cB to obtain α′

- sets α = α mod q
4: return α for Pi, β for P j

3. Related Work
In this section, we focus on some of the important components

of our protocol, which come from [12, 8]. We will also give a
brief introduction to the protocols in [12], as this protocol the in-
spired our work.

3.1 Lindell’s scheme in 2018 [12]
In 2018, Lindell presented another ECDSA TSS that has prac-

tical distributed key generation and fast signing. The difference
with Gennaro’s work[7] is that they replace the Paillier additively
homomorphic encryption with ElGamal in-the-exponent that also
supports additive homomorphism. This makes that it can com-
pute an encrypted signature in a similar way to that of [7], except
that upon decryption the parties are only able to receive s · G
(where G is the generator point of the Elliptic curve group) and
not s itself, where s is the desired portion of the signature. This
is due to the fact that we use ElGamal in-the-exponent and so it
only obtain the result “in the exponent”.

According to ElGamal in-the-exponent, we can use the prop-
erty of additive homomorphism to compute two ciphertext in
ElGamal. If there are two ciphertexts (A, B), (C,D) are en-
crypted from E(m) and E(m′) respectively by ElGamal encryp-
tion. More specifically, If (A, B) = (r · G, r · P + m · G) and
(C,D) = (s ·G, s · P + m′ ·G), we can calculate (A + C, B + D) =

((r + s) ·G, (r + s) · P + (m + m′) ·G) = E(m + m′) In addition, the
scalar multiplication (c ·A, c ·B) = (cr ·G, cr ·P+cm ·G) = E(cm)
also can be calculated by homomorphic property.

On the basis of this property, Lindell constructs a threshold
ecdsa available that achieves threshold optimality. This work is
based on universal composability (UC) model[3], In order not to
lose the original meaning, we follow the rules of the UC model
to describe this scheme in detail.
3.1.1 Fmult functionality

The most important point of Lindell’s work is that it defined
a secure multiplicative subprotocol Fmult which private the func-
tionality that each party Pi provide ai and bi for input, and then
returing ci to Pi where c1, · · · , cn are random under the constraint
that
∑

ci =
∑

ai
∑

bi mod q. Now we give the details of the Fmult

functionality as follows:
1. Fmult works with parties P1, · · · , Pn, and we defines the set
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of indices of corrupted parties C ∈ [1, · · · , n], (G,G, q) for a
group G of order q with generator G, and sid is for private
session id of parties.

2. upon receiving (init, (G,G, q)) from all parties, Fmult stores
(G,G, q)) and ignores some (G,G, q)) has already been
stored.

3. upon receiving (input, sid, ai) from a party Pi ∈ C, if no
value (sid, i, ·) is stored, then Fmult stores (sid, i, ai) else ig-
nores the message.

4. upon receiving (input, sid, ·) from a party Pi < C, if no value
(sid, i, ·) is stored, then Fmult chooses a random ai ← Zq and
stores (sid, i, ai) and returns (input, sid, ai) to Pi otherwise
ignores the message.

5. if some (sid, i, ·) has beed stored for all i ∈ [1, · · · , n] then
Fmult computes a =

∑
ai mod q and stores the value a, then

sends (input, sid) to all parties.
6. upon receiving (mult, sid1, sid2) from the all parties, Fmult

checks (sid1, a) and (sid2, b) values have been stored. If yes,
then Fmult sets c = ab mod q and sends (mult, sid1, sid2, c)
to all parties.

7. upon receiving (affine, sid1, sid2, x, y) from the honest party
Pi with x, y ∈ Zq, Fmult checks (sid1, a) has been stored. If
yes, Fmult computes b = a · x + y mod q, stores (sid2, b) and
sends (affine, sid1, sid2, x, y) to Pi.

8. upon receiving (element-out, sid) from all parties, Fmult

checks that some (sid, a) has been stored. If yes, Fmult com-
putes A = A ·G and sends (element-out, sid, A) to all parties.

With the definition of Fmult subprotocol, we can continue to
Thresh-KeyGen and Thresh-Sig in Lindell’s work.

Algorithm 2 Thresh-KeyGen [12]
Input: (G,G, q);
Output: P;
Parties: P1, · · · , Pn

1: each Pi sends (init, (G,G, q)) to Fmult to run the initialization phase.
2: each Pi sends (input, sidgen) to Fmult and receives back (input, sidgen, xi).

Denote x =
∑

xi and P = x ·G.
3: Pi waits to receives (input, 0). Note that identifier 0 is associated with

the private key x.
4: Pi sends (element-out, 0) to Fmult .
5: Pi receives (element-out, 0, P) from Fmult .
6: return Pi saves P locally for public key.

Algorithm 3 Thresh-Sig [12]
Input: sid,m, P;
Output: (r, s);
Parties: P1, · · · , Pn

1: Pi sends (input, sid1) and (input, sid2) to Fmult , and receives back
(input, sid1), ki and (input, sid2), pi. Denote

∑
ki = k and

∑
pi = p.

2: after receiving (input, sid1) and (input, sid2) from Fmult .Pi sends
(mult, sid1, sid2) and (element-out, sid1) to Fmult .

3: Pi receives (mult, sid1, sid2, τ) and (mult, sid1,R) from Fmult . Note that
τ = kp and R = k ·G.

4: Pi computes r = R mod q.
5: Pi sends (affine, 0, sid3, r,m) to Fmult . (recall that identifier 0 is as-

sociated with the private key x, and thus sid3 will be associated with
m + x · r mod q).

6: Pi sends (mult, sid2, sid3) to Fmult .
7: Pi receives (mult, sid2, sid3, β) from Fmult . (note that β = p · (m′ + x · r)).
8: Pi computes s = τ−1 · β mod q
9: return Pi outputs (r, s).

Lindell’s work looks complicated, but we can simply verify it’s
correctness. In the Fmult subprotocol, we can observe that τ is the
product of k =

∑
ki

and p =
∑

pi
, and that β is the product of the

same p with (m′ + xr). According to the Fmult subprotocol, each
party Pi will have an secret share αi = m′

n + rxi, and α =
∑
αi =

(m + xr). Hence s = τ−1 · β = k−1 p−1 pα−1 = k−1(m + xr), thus
(r, s) is a valid ECDSA signature with secret key x.

4. Proposal
In this section, we would modify Lindell’s work[12] to adding

some new functionality . Like previous works, our proto-
col consists 3 subprotocol Thresh-KeyGen,Thresh-PreSig and
Thresh-Sig, which we will descibe in detail below. In the proto-
col, we also use commitment scheme and MtA(Algorhitm 1) to
ensure secure key distribution. Our protocols have the following
three properties:
• Identifiable and attributable aborts.

- TSS can effectively identity the identity of potential attack-
ers and abort current protocols.

• Off/Online Processing.
- In the offline phase, TSS processes and saves the results
that are not related to message m
- In the online phase, tss loads the previously saved results
and uses them to sign message m, which has the advantage
of significantly reducing the online processing time.

• Integration into Ethernet.
- The online processing can be done using Ethernet’s smart
contracts.

4.1 Subprotocols
We proceed to formulate and discuss some auxiliary subpro-

tocols that are used in our scheme. These includes 3 auxiliary
subprotocols MtA, ElGamal-KeyGen and Thresh-Reshare. we
omit MtA and ElGamal-KeyGen (Algorhitm 1) for clarity from
previous section and start a brief description of Thresh-Reshare
in this section. Thresh-Reshare is a very important sub-protocol
in our proposed TSS, whose main purpose is to convert additive

© 2021 Information Processing Society of Japan 4

Vol.2021-DPS-186 No.34
Vol.2021-CSEC-92 No.34

2021/3/15



IPSJ SIG Technical Report

secret sharing into Shamir’s secret sharing. To ensure the security
of this subprotocol, it is necessary to use ElGamal commitments
in the protocol, the specific steps of this subprotocol are as fol-
lows:

Algorithm 4 Thresh-Reshare
Input: g,secret a1, · · · , an, randomness r1, · · · , rn, public ElGamal commit-

ments (c1, · · · , cn) and ci = E(ai, ri);
Output: secret share â1, · · · , ân and commitments string ca1 , · · · , ca2

Parties: P1, · · · , Pn

1: Each Pi publish a ZKP of ai, ri such that E(ai, ri) = ci.
2: Each Pi pick a random degree t + 1 polynomial fi(·) and set fi(0) = ai.
3: Each Pi make the ElGamal commitment of coefficients of fi(·) : c fi =

E( fi j, ri j) ( fi j is coefficients of fi(·), j ∈ [t] and ri j is randomness) and
broadcasts c fi .

4: After receiving commitments from all other parties, all parties do ZKP of
fi j and c f0.

5: Each Pi decommits other’s commitments string and checks correntness.
6: Each Pi computes E( fi( j), ri→ j) =

∏
Ek∈[t]( fik , rik) jk for j ∈ [N].

7: Each Pi recommits to fi( j) by sampling a fresh randomizing element r′i→ j

and publishs previous value E( fi( j), ri→ j) and makes ZKP to check fi( j)
from E( fi( j), ri→ j) and E( fi( j), r′i→ j).

8: Each Pi sends ( fi( j), r′i→ j) privately to P j.
9: After receiving the shares from other parties, Pi check consistency from

previous commitments string.
10: If all the proof are corrent, Pi computes âi =

∑
j∈[N] f j(i), r′i =∑

j∈[N] r′j→i.
- Pi also computes E(âi, r′i ) =

∏
j∈[N] E( f j(i), r′j→i).

11: Each Pi recommits to si by sampling a fresh randomizing element
r′′k ∈ Zq and does ZKP to check consistency with previous commitments.

12: return âi as Shamir’s secret share and E(âi, r′′i ) as the public commit-
ment of Pi.

The main idea behind the subprotocol is that Each Pi gener-
ates a random polynomial fi(·) of degree t such that fi(0) = ai.
This idea comes from Feldman’s VSS[5] and we would like to
use the linear property of polynomial to generate a hidden poly-
nomial f (·) = f1(·) + · · · + fN(·) to share secret a. Moreover, the
adversary cannot generate its polynomials based on the ones by
honest parties, and f (·) and a is also uniformly random subject to
this condition. In order for each party Pi to learn its âi = f (i),
after generating fi(·), Pi will send fi( j) to another party P j. Con-
sequently, Pi receives N − 1 values f j(k) for each j ∈ [N] and can
compute f (k) =

∑
j∈[N] f j(i).

4.2 Protocol Description
This section is devoted to presenting our mail protocol of our

work. Before we dive into that, we refer to the definition of
some notation here again, G represents an elliptic curve group
with order q and a generator g. E(·, ·) stands for ElGamal en-
cryption algorithm. In the offline part of our protocol(Thresh-
KeyGen,Thresh-PreSig), we assume that there is a reliable pub-
lic broadcast channel and a point-to-point private channel during
the communication.
4.2.1 Thresh-KeyGen

In Thresh-KeyGen, it can be divided into three main parts, they
are generating keys for ECDSA, the keys for ElGamal and the se-
cret parameters for Paillier encryption scheme. we now present

the details of the protocol.

Algorithm 5 Thresh-KeyGen
Input: generator g;
Output: public key shares (gx1 , · · · , gxn ); secret key shares (x1, · · · , xn); El-

Gamal encryption algorithms (Ep1, · · · , Epi); ElGamal public key h;
public key y

Parties: P1, · · · , Pn

1: Each Pi randomly selects xi ∈ Zq and make commitment of gxi and
broadcasts the commitment string.
- Each Pi does the ZKP of xi and decommit the commitment string to gxi .
- If all the proof are corrent, then parties set gxi as public share and form
the public key y =

∏
gxi for public key.

2: Parties call the ElGamal-KeyGen subprotocol (Algorhitm ??) and re-
ceive h and the corresponding public information.

3: Pi randomly selects two prime number pi, qi and let Ni = piqi be the
RSA modulus associated with public key Epi, and does ZKP of pi, hi.

4: return y is public key for ECDSA, h is public key for ECDSA, Epi

is public key for Paillier encryption[14], gxi is public share for Pi, xi is
secret share for Pi.

4.2.2 Thresh-PreSig
We have divided the signature phase into two parts, the presig-

nature phase is the part that does not contain the required signa-
ture information m. Therefore, this part can be executed ”offline”,
which means that parties can save the information they need in
advance and load it up when they need it, the protocol is as fol-
lows:
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Algorithm 6 Thresh-PreSig
Input: generator g; public key shares (gx1 , · · · , gxn ); secret key shares

(x1, · · · , xn), ElGamal encryption algorithms (Ep1, · · · , Epi); ElGamal
public key h; public key y;

Output: private secret shares (δ̂i, γ̂i, σ̂i) and corresponding commitments.
Parties: P1, · · · , Pn

1: Each Pi randomly selects γi ∈ Zq and ki ∈ Zq. we note that
∑

i∈[N] ki = k
and
∑

i∈[N] γi = γ.
- Each Pi commits γi and gets E(γi) and broadcasts it.
- Each Pi computes E(γ) =

∏
i∈N E(γi).

2: Every Pair parties Pi, P j engages in MtA as follows:
- Pi, P j run MtA with shares ki, γ j respectively. Let ai j(resp. bi j) be the
share received by Pi(resp. P j) at the end of protocol, i.e. kiγ j = ai j + bi j.
- Pi, P j run MtA with shares xi, γ j respectively. Let ui j(resp. vi j) be the
share received by Pi(resp. P j) at the end of protocol, i.e. xiγ j = ui j + vi j.

3: Pi sets δi = kiγi + ai j + bi j. Note that
∑

i∈[N] δi = kγ.
- Pi commits δi and does ZKP of it and broadcasts it.
- Pi chooses a random ri and publish E(γ · ki) = E(γi)(ki) · E(0; ri) and
does ZKP of it.
- If all the proof are corrent, each Pi computes E(γ · k) and E(δ) =∏

i∈[N] E(δi), then Pi checks consistency between E(δ) and E(γ · k)(detail
in Appendix). Accept if result is correct, otherwise abort.

4: Pi sets σi = xiγi + ui j + vi j. Note that
∑

i∈[N] σi = xγ.
- Pi commits σi and does ZKP of it and broadcasts it.
- Pi chooses a random r′i and publish E(γ · xi) = E(γi)(xi) · E(0; r′i ) and
does ZKP of it.
- If all the proof are corrent, each Pi computes E(γ · x) and E(σ) =∏

i∈[N] E(σi), then Pi checks consistency between E(σ) and E(γ·x)(detail
in Appendix). Accept if result is correct, otherwise abort.

5: Pi commits δi with ElGamal commitment and get cδi = E(δi, r1i).
- commits σi with ElGamal commitment and get cσi = E(σi, r2i).
- commits γi with ElGamal commitment and get cγi = E(γi, r3i).

6: Pi runs Thresh-Reshare with input (cδi , δi, r1i) and get output (δ̂i, cδ̂i
).

- Pi runs Thresh-Reshare with input (cγi , γi, r2i) and get output (γ̂i, cγ̂i ).
- Pi runs Thresh-Reshare with input (cσi , σi, r3i) and get output (σ̂i, cσ̂i ).

7: return Pi saves all shares and commitments (δ̂i, γ̂i, σ̂i) and correspond-
ing commitments com(δ̂i), com(gγ̂i ).com(gσ̂i ) under presig[p].

After the parties execute the Thresh-PreSig protocol, each of
them stores private shares of the protocol and corresponding com-
mitments, which will be used later in the online signing phase.
4.2.3 Thresh-Sig

Before the online signature protocol is executed, parties hold
the Shamir’s secret sharing (δ̂i, γ̂i, σ̂i) and the corresponding
ElGamal commitments com(δ̂i), com(gγ̂i ).com(gσ̂i ) in presig[p].
We note that in Ether’s smart contracts, all values are public and
there are no one-to-one private channels. So, in the online signa-
ture protocol, we will use the discrete logarithm problem to hide
that certain values are exposed, and we need to ensure that all op-
erations do not pass through a private channel. we describe the
protocol in detall:

Algorithm 7 Thresh-Sig
Input: security parameter g, h, y; Shamir’s secret shares (δ̂i, γ̂i, σ̂i), ElGamal

commitments com(δ̂i), com(gγ̂i ), com(gσ̂i ).
Output: signature (r, s)
Parties: P1, · · · , Pn

1: Set the set of all potential attackers to S . If |S | > N − t abort.
2: Wait for t + 1 parties and then loading all information from presig[p].
3: Each Pi recommits δ̂i and does ZKP with com(δ̂i).

- If all the proofs are correct, Pi publishs λi,δδ̂i(λi,δ is appropriate La-
grangian coefficient) and computes

∑
i∈T λi,δδi = kγ.

4: Each Pi recommits gγ̂i and does ZKP with com(gγ̂i ).
- If all the proofs are correct, Pi publishs gλi,γ γ̂i (λi,γ is appropriate La-
grangian coefficient) and computes

∏
i∈T g

λi,γi γ̂i = gγ.
5: Each Pi computes r = gγ

−δ = g−k .
6: Each Pi recommits σ̂i and does ZKP of it with com(gσ̂i ).

- If all the proofs are correct, Pi computes si = δ−1(λi,γγ̂iH(m) + λi,σσ̂ir)
and broadcasts it.

7: Each Pi commits si and does ZKP of it.
- If all the proofs are correct, computing s =

∑
i∈T si = (kγ)−1(γH(m) +

rγx) = k−1(H(m) + rx).
8: return if (r, s) is a valid signature then return (r, s), otherwise abort.

4.2.4 Thresh-Sig in Ethereum
According to the Thresh-Sig protocol, it is simple to see that

the values that participants need to publish are δ̂i, g
γ̂i , gσ̂i and

commitments com(δ̂i), com(gγ̂i ), com(gσ̂i ). In fact, only δ̂i will be
directly exposed to the parties, The remaining values are publicly
available based on the discrete logarithm or ZKP. For ZKP, we
can use a common non-interactive ZKP (NIZK) technique[1, 2]
to show the correctness of each secret value.

The utilization of a smart contract platform such as Ethereum
also enables us to readily implement dynamic participation strate-
gies. If the choice is made to employ this protocol feature, the set
of parties N which run the sign protocol is not defined a priori, but
rather obtained in an additional registration phase, executed at the
beginning of the sign protocol. For this purpose, the creator of the
corresponding smart contract specifies a set of participation rules
at the time of contract creation. A participation rule specifies un-
der which condition a particular Ethereum account is allowed to
”join” the set N. Briefly, this means that we do not have to define
a committee in advance. Within the limitations of the Ethereum
platform, arbitrary smart contract code can be used to define some
participation rules. In the following, we provide basic examples
for participation rules as follows:
• First come, First serve: Only the first t+1 parties to register

are allowed to join the Thresh-Sig protocol.
• Security deposit: Only parties, which provide a security de-

posit of at least X Ether are allowed to join the protocol.
• Highest bidding: The N parties, which provided the highest

amount of security deposit are allowed to join the protocol.
For conditions 1 and 2 the participation rules are checked as soon
as a registration transaction is included in an Ethereum block.
Only upon success is the issuer of the transaction added to the set
N, tracked within the smart contract. The implementation of con-
dition 3 is rendered slightly more complex, It is not a necessary
mechanism and conflicts with condition 1, but it can increase the
cost of attacks. In this case, the smart contract keeps track of the
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set N consisting of up to t + 1 parites and their provided security
deposits. And we accept only the t + 1 parites with the most de-
posits for the online Thresh-Sig protocol during the registration
phase.

5. Related Work
We propose a new threshold ECDSA protocol with the more

features. From a general point of view, our results can be sum-
marized as follows. First, we added an offline processing subpro-
tocol based on Lindell’s work[12], the intermediate values calcu-
lated by offline pre-processing can effectively reduce the time of
online computation. Second, The architecture of our protocol can
be signed without having to generate a committee in advance, this
will enhance the flexibility of the protocol. Finally and most im-
portantly is the online phase of our protocol can be implemented
in a smart contract with Turing completeness (e.g. Ethereum),
This allows the protocol to achieve more functionality for pro-
tecting digital assets through smart contracts.
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