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緩和最適輸送問題のためのFrank-Wolfeアルゴリズム
高速化手法と色転写問題への応用

福永拓海1,a) 笠井裕之2,3,b)

Abstract: 確率分布同士の距離を表現可能な最適輸送問題は幅広い分野に応用されている．最適輸送問題では，
厳密な質量保存を表す制約条件を有する線形計画問題を解く必要があるが，線形計画問題を高速に解くことが
困難であることが一般に知られている．当該問題を解決するため，制約条件の質量保存を緩めた緩和最適輸送
問題が提案されており，解法の高速化の実現だけでなく，緩和した制約がより有効に働くいくつかの問題例（色
転写問題等）が報告されている．本稿では，そのような緩和問題の中でも凸緩和最適輸送問題に注目し，新た
な高速解法を提案し，理論的解析を行う．具体的には，Frank-Wolfeアルゴリズムに基づいた高速最適化手法を
提案し，提案した手法の最悪収束反復数の上限値を示す．最後に，色転写問題における数値実験から提案手法
の有効性について議論する．

1. Introduction
The Optimal Transport (OT) problem seeks an optimal trans-

port plan or transport matrix by solving the total minimum trans-
port cost from sources to destinations. This calculation requires
source mass conversation from one source to targets, and versa,
which are represented in transport polytope in formulation. The
OT problem can express the distance between two probability
distributions, which is known as Wasserstein distance [1], Thus,
this has been applied to to a wide variety of machine learning
problems such as adversarial risk [2], inference with aggregate
data [3], graph optimal transport [4] and domain adaptation [5].
Among the OT problem formulations, the Monge-Kantrovich for-
mulation [1] is represented as a convex linear programming, thus,
many dedicated solvers such as an interior-point method and a
network-flow method can obtain the solutions.It is, however, still
challenging to solve large-scale problems efficiently because its
computational cost increases cubically in terms of the data size.

To alleviate this issue, the Sinkhorn algorithm [6], an entropy-
regularized approach, works effectively on the OT problem,
which is faster and enables a parallel implementation. This com-
putation includes a differentiable and unconstrained convex op-
timization, thus, it is relatively easier to solve. In addition, the
resultant OT distances can be applied in many machine learn-
ing problems thanks to its differentiability. Besides, addressing
its numerical unsuitability and non-robustness against for small
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values of the regularizer, a stabler variant has been also devel-
oped, but it suffers from slow convergence [7]. In order to
reduce the runtime, a greedy algorithm of the Sinkhorn algo-
rithm, the Greenkhorn algorithm [8], and its accelerated vari-
ant [9] have been proposed. It should noted that these ap-
proach produce a dense transport matrix because the entropy
term is always positive. In another line of directions, a smooth-
regularized approach exploits strong convexity and Lipschitz
continuity [10], where adding smooth terms onto the objective
function enables to harness gradient-based approaches and dual
formulations. One distinguished feature is that the regularization
with the squared Euclidean norm obtain sparser solutions than the
entropy-regularized approaches.

Most of the aforementioned work attempt to add regularizers
onto the objective function, some works address the fact that
the tight mass-conversation constraint in the OT problem does
not work well in some applications where weights and mass
need not be necessarily preserved. For this particular problem, a
constraint-relaxed approach has been recently proposed by loos-
ing such strict constraints. This approach has gained a great suc-
cess on applications such as color transfer [11] and multi-label
learning [12]. However, it still exhibits a slow convergence prop-
erty.

Envisioning to develop a faster solver producing sparser so-
lutions in the OT problem, and particularly addressing its con-
vex semi-relaxed formulation, this paper proposes a novel, and to
the best of our knowledge, the first block-coordinate Frank-Wolfe
(BCFW) algorithm with theoretical analysis. The FW algorithm
(a.k.a the conditional gradient method) is a class of linear con-
vex programming methods by calling a linear optimization oracle
[13]. The key advantage of this algorithm is that its projection-
free property is more efficient than the projected gradient method
when the dimension of the data is relatively large. The output so-
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lutions of the FW algorithm have the desirable sparsity property.
However, because this algorithm needs to call linear oracle for all
columns of the transport matrix every iteration, it is prohibited
when the matrix size is extremely large. Therefore, we further
combine the coordinate descent method, which randomly selects
one column every iteration, resulting in much smaller computa-
tion cost, and also in achieving a faster convergence [14]. Al-
though this architecture has already been discussed in the litera-
ture in various problems [10], [15], its concrete convergence for
the relaxed OT problem is still not clear. Hence, this paper has
theoretical important contributions:
• Our convergence analysis gives an upper-bound of the cur-

vature constantan without relying on the oracle as in [15].
Then, we exploit directly a variable block on the semi-
relaxed domain and gives the iteration complexities for ϵ-
optimality with the FW and BCFW algorithms for the semi-
relaxed OT problem. Moreover, their worst iteration only
depends on the dimension n, parameter λ and the constant ϵ.

• Our analysis of the duality gap reveals that the linearization
duality gap, a special case of the Fenchel dual gap, is equiva-
lent to the Lagrangian duality gap. We derive the Lagrangian
dual for the semi-relaxed OT problem, and proved this equiv-
alence. This linearization duality gap gives a certificate of
the quantity of the current approximation for monitoring the
convergence. This can be exploited for the stopping criterion
in our proposed algorithms.

2. Preliminary and related work
Rn is denoted as n-dimensional Euclidean space and Rn

+ is
denoted as the set of vectors in which all elements are non-
negative. Rm×n is denoted as the set of m × n matrices and Rm×n

+

is denoted as the set of m × n matrices in which all elements
are non-negative. We denote vectors as bold lower-case letters
a, b, c, . . . and matrices as bold-face letters A,B,C, . . . . The i-
th element of a and the element at the (i, j) position of A are
represented as ai and Ai, j respectively. When a matrix A is de-
noted as (a1, . . . , an), ai represents the i-th column vector of A.
ei is the canonical standard unit vector, of which the i-th element
is 1, and others are zero. The probability simplex is denoted as
∆m = {a ∈ Rm :

∑
i ai = 1}. δa is the delta function at the vector

a. ⟨·, ·⟩ and ⟨·, ·⟩F represent the inner product and the Frobenius
norm. Given two matrices A,B, the Frobenius norm is denoted
as ⟨A,B⟩F :=

∑n
i=1⟨ai, bi⟩ =

∑m
i=1
∑n

j=1 Ai, jBi, j.

2.1 Optimal transport (OT)
The OT problem comes from Monge problem, which seeks the

optimal mapping between two empirical probability distributions
ν =
∑m

i=1 aiδxi , µ =
∑n

i=1 biδyi given by

min
T

m∑
i=1

d(xi,T (xi)), s.t. b j =
∑

i:T (xi)=y j

ai,∀ j ∈ [m],

where d(·, ·) is the cost function between two points. Because
both mapping and the constraints are discrete, Monge problem
is difficult to solve directly. Therefore, Kantorovich proposed the
formulation where the constraints are continuous, which is known
as the OT problem. Given the cost matrix C, the problem between

distributions is defined as:

min
T∈U(a,b)

⟨T,C⟩F , (1)

where the domainU(a, b) is defined as

U(a, b) = {T ∈ Rm×n
+ : T1n = a,TT 1m = b}. (2)

This domain U(a, b) requires the mass conversation constraints
between two probabilities a and b. The resultant transport matrix
T∗ brings a powerful distances between distributions defined as

Wp(ν,µ) = ⟨T∗,C⟩
1
p ,

which is call the p-order Wasserstein distance [16]. Especially,
when p is equal to 1, the distance is equivalent to the earth mover
distance, what is called, geodesic [17]. Many problems appear-
ing in machine learning and statistical learning can be defined in
the OT problem. We refer the interested readers to [1] for more
comprehensive survey .

2.2 Relaxed optimal transport
As discussed in Section 1, solving large-scale linear program-

ming problems is challenging in terms of the computational costs
to obtain solutions[18]. Furthermore, the strict mass conversa-
tion constraints may cause dreadful degradation of performances
in some application. For example, Ferradans et al. reported that
the the tight mass conversation do not reflect the color difference
between images in color transfer problem [19]. This subsection
introduces two categories of relaxed formulations of the OT prob-
lems.

Domain constraint relaxation. One approach is to relax the
constraint domain [19]. Ferradans et al. propose to allow each
point of X to be transported to multiple points of Y and versa.
The formula is defined as

min
T∈Sκ
⟨T,C⟩,

where a relaxed domain Sκ is defined as

Sκ = {T ∈ Rn×n
+ : kX1n ≤ T1n ≤ KX1n, ky1n ≤ TT 1n ≤ KY 1n,

1T
n T1n = M},

where constants (kX ,KX , kY ,KY ,M) are hyper-parameters. This
method enables the transport matrix to increase or decrease the
mass between two points which are low distances. The notewor-
thy point is that the relaxed domain keeps the linear constraints
as the original, thus, existing solvers of linear programming can
be used. Rabin et al. extend it to propose the Relaxed Weighted
OT, which looses the column constraints [11]. We also have other
relaxed formulations considering only T1n = a or TT 1m = b as

min
T1n = a

⟨T,C⟩ or min
TT 1m=b

⟨T,C⟩.

Because these optimal solutions are summation of minimum
costs of each row or column vector, they can be solved faster
than linear programming. In practice, this method is useful for
document classification [20], and its extended formulation have
recently been developed in context of style transfer [21], [22].
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They attempt to define the relaxed earth mover distance (REMD)
as the maximum of above formulations, and combine it with neu-
ral networks.

Regularized constraint relaxation. In another line of at-
tempts, the penalty of the domains defined in (2) is added into the
objective function [10]. Relaxing both marginal constraints in (2)
yields the following relaxed formulation:

min
T≥0
⟨T,C⟩ + 1

2
Φ(T1n, a) +

1
2
Φ(TT 1m, b),

where Φ(x, y) is a smooth divergence measure.
We also have an alternative formulation, which relaxes one of

the two constraints in (2). This is called a semi-relaxed problem
and is defined as the following:

min
T≥0,TT 1m=b

⟨T,C⟩ + Φ(T1n, a). (3)

Benamou proposes a similar formulation, and is solved by use
of augmented Lagrangian[23]. Ferradans et al. propose a regu-
larized and relaxed problem specifically focusing on both color
transfer and barycenter [19]. They use the proximal splitting
method and the coordinate descent method. Rabin et al. also
propose the weighted regularization term ∥ κ − 1n ∥1 as well as
Relaxed Weighted OT so that the ratio of the source image be-
comes close to that of the target image [11]. Moreover, using the
Kullback-Leibler (KL) divergence as Φ(x, y), a multi-label pre-
diction problem is solved by use of Sinkhorn-like algorithm be-
cause the entropy regularization is added to the objective function
[12]. However, the KL divergence and is not unstable because of
diverging at zero [7]. Furthermore, there are some relaxed meth-
ods which address cardinality penalized problems. Because they
are in NP-hard and difficult to solve, most methods loose the reg-
ularization term. In instead of cardinality of solutions, Carli et al.
approximate them by exploiting the rank regularization, sum-of-
norm relaxation and maximum norm relaxation for an effective
clustering [24].

2.3 Frank-Wolfe and block-coordinate algorithms
The Frank-Wolfe (FW) algorithm is one of the constraint con-

vex optimization methods, and is known to be a linear approxima-
tion algorithm that uses conditional gradient [25]. Although FW
is known to converge to optimal solutions in a sublinear rate, its
projection-free property is preferable in the case where the con-
vex constraint is simple and the feasible point can be found eas-
ily. More specifically, at every iteration, the feasible point s is
first found by minimizing the linearization of f over the convex
feasible setM. To find the feasible point s, we have to solve the
following subproblem :

s = arg min
s′∈M

⟨s′,∇ f (x(k))⟩ (4)

where x(k) represents the k-th current point. Since the domain
M is the convex set and the objective is linear for s, it is pos-
sible to solve (4) by linear programming. Finally, the next iter-
ate x(k+1) can be obtained by a convex combination as x(k+1) =

(1− γ)x(k) + γs where γ is a stepsize. Thus, the generated iterates
can be maintained inside the feasible setM if the initial point x(0)

is inM.
One of disadvantages of the FW algorithm is that solving the

minimization problem needs to be performed in each iteration.
For this issue, if the variableM can be block-separable as a carte-
sian productM =M(1) ×M(2) × · · · ×M(n) ⊂ Rm over n ≥ 1, we
can perform a single cheaper update on onlyM(i) instead of on
an entire of M. In this line of algorithms, the block-coordinate
Frank-Wolfe (BCFW) algorithm has been proposed, for example,
in the structural SVM problem in [15] and in the MAP inference
[26]. This algorithm can be applied to the constrained convex
problem of the form

min
x∈M(1)×M(2)×···×M(n)

f (x).

We assume that each factorM(i) is convex, with m =
∑n

i=1 mi. We
solve the subproblem on the factor which is selected randomly.
As a result, the BCFW algorithm can be implemented in cheaper
iteration. When n = 1, this algorithm is reduced to the FW algo-
rithm.

3. Block-coordinate Frank-Wolfe algorithm
for semi-relaxed optimal transport

This paper particularly addresses the semi-relaxed problem of
(3) with Φ(x, y) = 1

2λ ∥ x − y ∥22 because it is not only smooth but
also convex. The problem of interest is formally defined as

min
T ≥ 0,
TT 1m=b

{
f (T) := ⟨T,C⟩ + 1

2λ
∥ T1n − a ∥22

}
, (5)

where λ is a relax parameter. The domain is transformed into

M = b1∆m × b2∆m × · · · × bn∆m,

where bi∆m represents the simplex of the summation bi.
We first consider the FW algorithm for this problem, and then

propose a faster block-coordinate Frank-Wolfe algorithm.

3.1 Frank-Wolfe algorithm (FW) for semi-relaxed OT prob-
lem

The gradient ∇ f (T) ∈ Rmn is given as

∇ f (T) =



c1
...

ci
...

cn


+

1
λ



T1n − a
...

T1n − a
...

T1n − a


,

where ∇ fi(T) := ci + 1/λ · (T1n − a) ∈ Rm represents the gradi-
ent on the i-th variable block bi∆m. The subproblem (4) is equiv-
alent to

bie j = bi arg min
ek∈∆m ,k∈[m]

⟨ek,∇i f (Tk)⟩. (6)

where j is in [m] and e j is the extreme point on probability sim-
plex [27]. In other words, we should find the index of the minimal
elements of the gradient of the variable blocks. The computa-
tional cost of the subproblem (6) is greatly improved..

After finding the points S, we search the optimal stepsize γ.
One general way to calculate the stepsizes in the FW algorithm
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is a diminishing stepsize, where γ = k/(k + 2). In another ap-
proach, we solve arg min

γ∈[0,1]
f ((1 − γ)x + γs) directly if the objective

is quadratic. Fortunately, the objective of semi-relaxed problem
is quadratic, which makes it solvable. Hence, the optimal stepsize
γ is calculated as

γ =
λ⟨T,C⟩F + ⟨T1n − S1n,T1n − a⟩

λ ∥ T1n − S1n ∥2
.

As for the stopping criterion, we monitor the duality g(T), and
stop the algorithm when g(T) < ϵ, where ϵ is an approximation
parameter.

3.2 Block-Coordinate Frank-Wolfe (BCFW) for semi-
relaxed OT problem

We now consider the application of the block-coordinate
Frank-Wolfe algorithm to semi-relaxed problem because the fea-
sible setM can be separable as the cartesian product. The proce-
dure of the algorithm is most similar to that of the FW algorithm,
but they are a little different. It is necessary to solve the subprob-
lem on the variable block selected randomly at every iteration.
The problem is re-formulated as

si = arg min
s′ ∈ bi∆m

⟨s′i , ci +
1
λ

(T(k)1n − a)⟩, (7)

where the index i is selected randomly. As for the stepsize cal-
culation we can use the formula γ = 2n/(k + 2n), which is
also required for the convergence guarantee. We can also solve
arg min
γ∈[0,1]

f ((1 − γ)x + γs) and calculate γ directly like the FW al-

gorithm since the objective of semi-relaxed problem is quadratic.
Nevertheless, the optimal stepsize in the BCFW algorithm is dif-
ferent from that of the FW algorithm because the BCFW algo-
rithm requires the update of the column vector on the variable
block which are selected randomly. Concretely, all the elements
of T is equal to those of S except for the elements on the variable
factor selected. The Frobenius product ⟨T−S,C⟩F is transformed
into the inner product ⟨ti − si, ci⟩ and the vector T1n − S1n into
ti − si. Hence, the optimal stepsize γ is calculated as

γ =
λ⟨t(k)

i − si, ci⟩ + ⟨t(k)
i − si,T(k)1n − a⟩

λ ∥ t(k)
i − si ∥22

,

where si is the solution of the subproblem on the selected fac-
tor.

4. Theoretical analysis
We prove the convergence analysis of the FW and BCFW al-

gorithms proposed in the previous section. We then discuss the
relationship between the linearization duality gap, as a special
case of the Fenchel duality gap, and Lagrange duality gap. This
provides the equivalence between them in this semi-relaxed OT
problem. Finally, we also investigate the computational complex-
ity of them. In the presentation, we will present them.

5. Numerical evaluations in color transfer
problem

We have proposed in this paper a faster Frank-Wolfe algorithm

and its block-coordinate variant for a convex semi-relaxed opti-
mal transport problem. In the presentation, we will present some
numerical evaluation results in color transfer problem.
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