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Abstract: Nowadays traffic congestion has increasingly been a significant problem, which results in a longer travel
time and aggravates air pollution. Available works showed that back-pressure based traffic control algorithms can ef-
fectively reduce traffic congestion. However, those works control traffic based on either inaccurate traffic information
or local traffic information, which causes inefficient traffic scheduling. In this paper, we propose an adaptive traffic
control algorithm based on back-pressure and Q-learning, which can efficiently reduce congestion. Our algorithm
controls traffic based on accurate real-time traffic information and global traffic information learned by Q-learning. As
verified by simulation, our algorithm significantly decreases average vehicle traveling time from 17% to 38% when
compared with a state-of-the-art algorithm under tested scenarios.

Keywords: back-pressure, Q-learning, vehicle routing

1. Introduction

1.1 Background
Currently, traffic congestion and increase of vehicle travel time

occur because most traffic light control systems use fixed time
cycle scheduling [1]. This is led by the algorithms in the control
systems not considering real-time or real-situation traffic infor-
mation. Congestion can be reduced by smartly controlling traf-
fic signals [2]. With the development of technology of intelli-
gent transportation system (ITS) and Internet of Things (IoT) [3],
many researchers have adopted such technology to improve the
efficiency of transportation. ITS is a traffic management system
which uses an intelligent algorithm to reduce vehicle travel time
and improve traffic safety.

As an implementation of the intelligent traffic control systems,
SCOOT [4] and SCATS [5], [6] were studied. However, these
adaptive traffic signals still cannot guarantee a specific perfor-
mance. In addition, decentralized algorithms are required to real-
ize intelligent traffic control in a practical large scale urban road
network. Currently, decentralized traffic control algorithms have
been proposed based on back-pressure [7], [8], [9], [10], [11].
Moreover, some back-pressure based algorithms have also been
proposed to coordinate different vehicles [12]. In a road network,
however, vehicles need time to travel from one road to another
road which depends on the vehicle speed and road length. Di-
rectly applying a back-pressure algorithm is not appropriate to
control traffic as in Ref. [12].

1.2 Contributions
In this paper, we propose an adaptive traffic control algo-
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rithm which uses a back-pressure algorithm by considering vehi-
cle traveling time on a road. Specifically, our algorithm controls
traffic signals and vehicle routes based on real-time traffic infor-
mation such as vehicle speed and vehicle position. As a result,
our algorithm significantly reduces traffic congestion. In addi-
tion, not only based on local traffic information, i.e., every control
agent considers information of vehicles around its own junction,
we also propose another adaptive traffic control algorithm which
uses global traffic information and coordination between different
junctions. The latter algorithm controls traffic based on accurate
real-time traffic information and local traffic information to global
traffic information, where neighboring junction agents exchange
traffic information to learn global traffic information.

The proposed algorithms were previously presented in
Refs. [13] and [14], respectively. This paper consists of the ex-
planation of the proposed algorithms and experiment results with
additional results. Section 2 introduces a road network system
assumed in this paper. Section 3 explains our proposed methods,
and experiment results are shown in Section 4. Section 5 presents
a brief of related works and position of this paper. Finally, this
paper is concluded in Section 6.

2. Road Network System

A road system consists of Roads (R) and Junctions (J), where
R = {R1,R2,R3, . . . ,Rmax} denotes roads, J = {J1, J2, J3, . . . ,

Jmax} denotes junctions. It is assumed that each Ri consists of
3 lanes Li j, an example is given in Fig. 1. Vehicles of a traffic
flow ( f ) have the same starting road (o) and destination road (d).
We define F as the set of all flows, O = {o( f ), f ∈ F} as the set
of all starting roads, D = {d( f ), f ∈ F} as the set of all destina-
tions and λ f (t) as the number of vehicles of flow f that enter road
network at time slot t.

We define a traffic movement (Ri,Rj) at a junction to be the
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Fig. 1 An example of a junction with roads of three lanes.

Fig. 2 All possible phases at a junction.

process of a vehicle moving from Ri to Rj. We define a traffic
phase to include all traffic movements that can happen simulta-
neously. Figure 2 shows all possible phases at a junction. For
a junction Ja, we define Ma as the set of all possible movements
and Pa as the set of all possible traffic phases. Traffic signals at
junction Ja are controlled by activating a traffic phase pa

i from Pa.

3. Adaptive Traffic Signal Control Based on
Back-pressure with Global Information

In this section, we describe our proposed algorithms based on
back-pressure with global information.

3.1 Overview
We have proposed adaptive traffic signal control methods based

on back-pressure with global traffic information [13], [14]. Ref-
erence [13] describes an adaptive traffic signal control method
using real-time traffic information with global traffic informa-
tion in a road network. We assume all vehicles are self-driving
vehicles which are amounted with accurate speed sensors and
GPS devices, and can communicate in a timely way with con-
trol agents via networks, like vehicle-to-vehicle (V2V), vehicle-
to-Road Side Unit (V2R), etc. The control agents are the com-
puter programs placed at each junction to collect information of
vehicle speed and vehicle position at every time slot for traffic

control. A vehicle is also able to provide travelling time to con-
trol agents. The travelling time includes not only moving time
but also waiting time to turn in junctions. At each time slot, every
control agent performs the following three tasks sequentially. In
addition, the communication loads are greatly increased by con-
trol agents if each agent widely exchanges information. There-
fore, Ref. [14] employs the approach in which control agents are
placed to static equipment on each junction and exchange infor-
mation only with their neighboring agents. Q-learning is used
to estimate global congestion information from limited informa-
tion. The procedures in our proposed method using the estimated
information is as follows;
( 1 ) Task 1. Learning Global Congestion Information:

Control agents exchange congestion level information with
their neighboring agents to maintain a table of values Rd

i j(t)
because the table of values are usually different among
neighboring agents. Congestion level information of a road
is an index of congestion and defined by the number of
shadow vehicles at a shadow queue associated with the road.
Based on the exchanged congestion information, the agents
update their own congestion estimates based on Q-learning.
Through exchanging and updating congestion information,
all agents finally obtain global congestion information from
recursive definition ( 1 ) in Section 3.3. From recursive def-
inition ( 1 ), we can see that Rd

i j(t) involves all other Rd
i j(t)

values, thus called global congestion information. Although
each road is assigned to two different agents on its junctions,
this paper assumes that global congestion information for a
specific road obtained by the two assigned agents is not so
different because used information is periodically synchro-
nized among neighboring agents. Global congestion infor-
mation is used in the following two tasks.

( 2 ) Task 2. Traffic Phase Selection:
The agent selects a traffic phase based on the back-pressure
algorithm.

( 3 ) Task 3. Vehicle Routing:
After a vehicle passes through the junction and enters the
next road under the traffic phase selected in Task 2, the agent
determines which lane of that road the vehicle should join.
Since each lane determines the vehicle turning direction, i.e.,
going straight, turning left or turning right, the process of
determining lanes for a vehicle to join forms the routing pro-
cess of that vehicle. The following shadow network is con-
structed to perform these three tasks.

3.2 Shadow Network
An example of a shadow network is given in Fig. 3, where a

virtual shadow vehicle in a shadow network corresponds to an ac-
tual vehicle in road network, a shadow buffer B̄d

i (t) corresponds to
the beginning part of one real road (a vehicle just passing through
a junction will enter this part of the road) and a shadow queue
Q̄d

i (t) corresponds to the end part of one real road (a vehicle run-
ning close to the next junction will enter this part of the road).

In the shadow network, whenever a real vehicle enters the road
network, a shadow vehicle is generated and enters the shadow
network. Furthermore, one more shadow vehicle is generated
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Fig. 3 An example of a shadow network.

Fig. 4 A vehicle needs time to travel across a road.

with probability ε, 0 < ε < 1 and also enters the shadow network.
This operation makes sure that the algorithm is stable, i.e., queue
size will not go to infinite (proper value and detail and Simulation
Result and Analysis section of α show in Fig. 12) [12], [15].

When an actual vehicle goes into a road network from starting
road Ri at t and wants to go to destination d ∈ D, a shadow vehicle
will also go into B̄d

i (t). When that vehicle approaches the end part
of road Ri, the shadow vehicle first leaves B̄d

i (t) and then enters
Q̄d

i (t). We say a vehicle approaches the end part of one road if its
speed is less than 5 km/h or it is within the range of 100 meters to
the next junction.

Similarly, after an actual vehicle destined for destination d ∈ D
leaves road Ri and goes into the adjacent road Rj at t, a shadow
vehicle will leave Q̄d

i (t) and goes into B̄d
j (t). Figure 4 shows ve-

hicles need time to travel from one road to another road which
depends on the vehicle speed and road length. Directly applying
a back-pressure algorithm without traveling time may decrease
the algorithm performance. Movement of virtual shadow vehi-
cles in the shadow network can be seen as control information
exchange, based on which an agent performs its three tasks (de-
tails are given in the following section).

3.3 Adaptive Traffic Control Algorithm Based on Back-
pressure and Q-Learning

Our adaptive traffic control algorithm based on back-pressure
and Q-Learning (ARD-BP-Q) is decentralized and the agent at
each junction runs the following algorithm independently. At
each time slot t, an agent performs the following three steps se-
quentially.
Step 1. Learning Global Congestion Information

The agent at a junction is responsible for estimating the route

congestion level Rd
i j(t) for all routes to destination d from road i

and by the way of the neighbor road j. Each agent maintains a
table R to store the value of Rd

i j(t). At the beginning of each time
slot, the agent exchanges information of the number of vehicles
Q̄d

j (t) at upstream roads around that junction and the table R with
neighboring agents. After exchanging that information, the agent
updates its route congestion estimate Rd

i j(t) as follows:

Rd
i j(t)← (1 − α)Rd

i j(t − 1) + α[Q̄d
j (t) + γmin

k
Rd

jk(t)] (1)

where α is learning rate and γ is discount factor of Q-learning
parameters, 0 < α, γ <= 1. If Rd

i j > Cmax, set Rd
i j = Cmax where

Cmax is a positive constant. Bias quantity is a minimum value of
estimating the route congestion level that starts from the origin to
the destination, each agent then calculates a bias quantity Cd

i (t) as
follows:

Cd
i (t) = min

j
Rd

i j(t) (2)

Finally, the bias quantity Cd
i (t) will be used in Traffic Phase

Selection.
Step 2. Traffic Phase Selection

The agents at each junction compute traffic pressure wd
i j(t) for

all destinations and traffic movement, traffic pressure is the dif-
ference of queue length and bias quantity from the first road to
the second road. Traffic pressure in our algorithm ARD-BP-Q
(Algorithm 1) is defined as follows:

wd
i j(t) = max{(Q̄d

i (t) +Cd
i (t)) − (Q̄d

j (t) +Cd
j (t)), 0} (3)

Then the agent selects the destination d∗i j that in return maxi-
mizes traffic pressure wd

i j(t) defined as follows:

d∗i j(t) = arg max
d
wd

i j(t) (4)

From the above equation, agents define w
d∗i j(t)

i j (t) as the weight
of traffic movement which corresponds to one d∗i j(t) at time slot t.

Finally, the agent selects and activates the phase pa∗(t) ∈ Pa

that releases the most traffic pressure defined as follows:

pa∗(t) = arg max
pa

l ∈Pa

Σ(Ri ,R j)∈pa
l
w

d∗i j(t)

i j (t)si j(t) (5)

where si j is the number of vehicles that can move from road Ri to
road Rj at time slot t.
Step 3. Vehicle Routing

A vehicle will follow the routing probabilities Pd
i j(t) based on

σ̂d
i j(t) defined as follows:

Pd
i j(t) =

σ̂d
i j(t)

Σk : (R j ,Rk)∈Ma σ̂
d
ik(t)

(6)

where σ̂d
i j(t) is the estimated value of the expected number of

shadow vehicles of destination d that moves from shadow queue
Q̄d

i (t) to shadow buffer B̄d
j (t) which corresponds to road Ri and

Rj. σ̂d
i j(t) is updated by the agent of junction Ja for all destination

d ∈ D and traffic movement (Ri,Rj) ∈ Ma as follows :

σ̂d
i j(t) = (1 − β)σ̂d

i j(t − 1) + βσd
i j(t) (7)

where 0 < β < 1. After a vehicle enters road Ri at time slot t, it
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will join lane Li j with routing probability Pd
i j(t).

Since our goal is to reduce vehicle traveling time, a heuris-
tic is that we should let vehicles with a longer traveling time
pass through a junction first. Thus, we also propose the follow-
ing Adaptive Traffic Control Algorithm Based on Back-Pressure
and Q-Learning with Vehicle traveling time (ARD-BP-QV Al-
gorithm 2), which is the same as Algorithm 1 except that traffic
pressure is defined as follows:

wd
i j(t) = max{(V̄d

i (t) +Cd
i (t)) − (V̄d

j (t) +Cd
j (t)), 0} (8)

where V̄d
i (t) is the normalized value of the sum of the traveling

time of vehicles in shadow queue Q̄d
i (t), the normalized value is

within range from 50–100. We need to normalize the vehicle trav-
eling time to make it comparable to the quantity of bias Cd

i (t) and
Cd

j (t).

4. Evaluation

In this section, we compare the performance of our algorithms
with other algorithms below in an open-source simulator SUMO
(Simulation of Urban MObility) [16]. Table 1 shows the com-
pared algorithms in simulation. Our algorithms are ARD-BP-Q
and ARD-BP-QV.

4.1 Simulation Setup
We implement a road network that mimics from a simple grid

road network and a real Stockholm road network under no round-
about or U-turns situations. The Stockholm road network was
given by OpenStreetMap which can export the topology of a road
network [17], [18].
4.1.1 Grid Road Network Scenario

The road map we used is given in Fig. 5. All roads have dif-
ferent lengths (250–950 meters) and speed limits (60–140 km/h).
There are 8 origin and destination pairs {(o1, d1), (o2, d2),
(o3, d3), . . . , (o8, d8)}. All vehicles arrive at the starting roads with
the same rates (360–2,520 vehicles/hour) Duration of a slot is
configured to be 15 seconds. Shadow vehicle generating proba-
bility ε is configured to be 0.02 and vehicle routing parameter β
is configured to be 0.02.
4.1.2 Stockholm Road Network Scenario

The road network consists of three and four way junctions as
shown in Fig. 6. All roads have different lengths (400–1,600
meters) and speed limits (60–140 km/h). Roads in this network
are bi-directional. There are 6 pairs of origins and destinations
{(o1, d1), (o2, d2), (o3, d3), . . . , (o6, d6)}. All vehicles arrive at the
starting roads with the same rates (360–2,520 vehicles/hour). The
duration of a slot is configured to be 15 seconds. Shadow vehi-
cle generating probability ε is configured to be 0.02 and vehicle
routing parameter β is configured to be 0.02.

Table 1 Compared algorithms in simulation.

Name Detail
FC Traffic signal control with fixed-cycles
SP-BP Back-pressure and shortest path based traffic control algorithm [8]
AR-BP Back-pressure based adaptive traffic signal control and vehicle routing without real-time control information update [12].
ARD-BP Back-pressure based adaptive traffic signal control and vehicle routing with real-time control information update
ARD-BP-Q Adaptive Traffic Control Algorithm Based on Back-Pressure and Global traffic information
ARD-BP-QV Adaptive Traffic Control Algorithm Based on Back-Pressure and Global traffic information with Vehicle traveling time

4.2 Configuration
We define vehicle traveling time to be the time it takes a ve-

hicle to travel from its starting road to its destination. For algo-
rithms AR-BP, ARD-BP, ARD-BP-Q and ARD-BP-QV, parame-
ter α = 2.5 (Optimal value of α show in Fig. 14).

During simulations we collect the following data: vehicle
speed, number of vehicles in the road network, number of ar-
riving vehicles at destinations and vehicle traveling time. Vehicle
traveling time is the time it takes a vehicle to travel from its origin
to its destination.

For algorithms FC and SP-BP, we run the simulation for 12,200
seconds. We collect simulation data of vehicles that enter the road
network before 7,200 seconds only, because vehicles entering the
road network after 7,200 seconds may not arrive at their destina-
tions.

Fig. 5 Grid road network structure that uses in SUMO with 8 pairs of ori-
gins and destinations.

Fig. 6 Road network structure of Stockholm city that uses in SUMO with 6
pairs of origins and destinations.
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Fig. 7 Average vehicle traveling time under different vehicle arrival rates.

Fig. 8 Average number of vehicles in the road network under different ve-
hicle arrival rates.

For algorithms AR-BP, ARD-BP, ARD-BP-Q and ARD-BP-
QV, we run the simulation for 18,200 seconds. We collect sim-
ulation data of vehicles that enter the road network from 6,000–
13,200 seconds only, because these algorithms need time to learn
vehicle routing probabilities and reach a stable routing policy.

4.3 Results in Grid Road Network Scenario
In Fig. 7, our algorithm ARD-BP-QV achieves almost the low-

est average traveling time under different vehicle arrival rates.
Compared to ARD-BP, our algorithm ARD-BP-QV decreases the
average vehicle traveling time around 36%. Compared to ARD-
BP-Q, algorithm ARD-BP-QV decreases average vehicle travel-
ing time around 12%. This indicates that the heuristic of letting
vehicles with longer traveling time pass through the junction first
is indeed an effective way to reduce vehicle traveling time.

Figure 8 shows simulation results of the average number of ve-
hicles in road network. This figure shows that the number of vehi-
cles in the road network under ARD-BP-QV algorithm is smaller
than other algorithms, meaning less traffic congestion.

Figure 9 shows that more vehicles can arrive at destinations
under our algorithm ARD-BP-QV, meaning that more vehicles
under other algorithms get stuck in the road network.

4.4 Results in Stockholm Road Network Scenario
Also in Fig. 10, our algorithm ARD-BP-QV achieves almost

the lowest average traveling time under different vehicle arrival
rates. Compared to ARD-BP, our algorithm ARD-BP-QV de-

Fig. 9 Number of vehicles arriving at destinations.

Fig. 10 Average vehicle traveling time under different vehicle arrival rates.

Fig. 11 Average number of vehicles in the road network under different ve-
hicle arrival rates.

creases the average vehicle traveling time by 17% to 37%. Com-
pared to ARD-BP-Q, algorithm ARD-BP-QV decreases the aver-
age vehicle traveling time by 7% to 18%.

Figure 11 shows the simulation results of the average number
of vehicles in the road network. This figure shows that the number
of vehicles in the road network under the ARD-BP-QV algorithm
is smaller than the other algorithms and also in the Stockholm
road network scenario.

Figure 12 shows that more vehicles can arrive at destinations
under our algorithm ARD-BP-QV. Also in Fig. 12, more vehicles
under other algorithms get stuck in the road network.

In the Stockholm road network scenario, we also evaluate the
fairness of our algorithm. From Fig. 13, we see that most of the
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Fig. 12 Number of vehicles arriving at destinations.

Fig. 13 Histogram of the number of vehicles of different travelling times.
Vehicle arrival rate is set to be 1,080 vehicles/hour and the average
traveling time is 385 seconds.

Fig. 14 Performance under parameter α with rate of 450 vehicles/hour.

vehicles arrive at their destinations within 700 seconds, which is
less than twice the average traveling time (385 seconds). So, our
algorithm is fair for most vehicles.

We also run simulations to check the impact of parameter α
to ARD-BP-QV performance. As shown in Fig. 14. we need
to properly set α in our algorithm to achieve the optimal perfor-
mance.

Finally, we run a simulation to check our algorithm under the
Stockholm road network scenario with both self-driving or hu-
man driving vehicles, where all human-driving vehicles follow
the shortest path route and the percentage of human-driving ve-
hicles ranges from 10% to 60%. The simulation results are sum-

Fig. 15 Vehicle traveling time of ARD-BP-QV under scenarios with both
self-driving or human driving vehicles.

marized in Fig. 15.

5. Related Work

Currently, the intelligent traffic control systems have been im-
plemented in an urban road network such as SCOOT [4] and
SCATS [5], [6]. These systems use adaptive traffic signals which
consider real-time traffic information [19] to become more effec-
tive than a fixed cycle signal control. However, these adaptive
traffic signals still cannot guarantee global optimality. Genetic
Algorithm [20] and Fuzzy Logic Control [21], [22] are also con-
sidered as the solution to smartly controlling traffic signals. How-
ever, these algorithms are centralized and do not suit a large urban
road network which has many entities and requires decentralized
algorithms.

Dynamic vehicle routing problems have also been widely stud-
ied [23]. The earlier literature only allows vehicles with some
minor adjustments of the prior routes [24], [25]. With the de-
velopment of technology, researchers started using Markov De-
cision Process to route vehicles dynamically without any prior
route [26], [27]. Unfortunately, this method failed being applied
in the relatively large scale road networks which exist most in the
real-world. To tackle this limitation, an approach based on Ap-
proximate Dynamic Programming has been proposed [28], yet all
of the solutions above do not integrate with adaptive signal con-
trol. Recent researches considered adaptive signal control and
dynamic vehicles routing [29], [30]. However, they only focused
on providing adaptive route guidance for individual vehicles, not
coordinating different vehicles. With the development of self-
driving technology, it will be more efficient to coordinate differ-
ent vehicles to reduce overall traffic congestion.

Recently, decentralized traffic control algorithms have been
proposed based on back-pressure [7], [8], [9], [10], [11], as the
back-pressure based traffic signal control algorithm shows supe-
rior performances to the signal control of fixed time cycles. These
back-pressure based traffic control algorithms do not consider the
adaptive control of vehicle routes, e.g., a shortest path algorithm
easily results in traffic congestion especially during rush hours.
Some researches consider jointly controlling traffic signals and
vehicle routing [8], [30]. However, these works only focus on
giving individual vehicles adaptive route guidance. Coordination
between different vehicles will further reduce traffic congestion.

Some back-pressure based algorithms have also been proposed
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to coordinate different vehicles [12]. In a road network, however,
vehicles need time to travel from one road to another road which
depends on the vehicle speed and road length. Directly applying
a back-pressure algorithm is not appropriate to control traffic as
in Ref. [12].

Compared to the existing back-pressure based algorithms men-
tioned above, this paper is positioned to an adaptive traffic con-
trol algorithm which uses a back-pressure algorithm by consider-
ing vehicle traveling time on a road. Specifically, our algorithms
control traffic signal and vehicle routes based on real-time traffic
information such as the vehicle speed and vehicle position. As a
result, our algorithm significantly reduces traffic congestion. In
addition, not only based on local traffic information, i.e., every
control agent considers information of vehicles around its own
junction, this paper covers more efficient traffic control which
uses global traffic information and coordination between differ-
ent junctions.

6. Conclusions

In this paper, we proposed an adaptive traffic control algorithm
based on back-pressure with Global traffic information. Our al-
gorithm controls traffic based on accurate real-time traffic infor-
mation (achieved by using a shadow network) and global traffic
information (achieved by using Q-learning). Our algorithm can
greatly decrease traffic congestion and is superior to other state-
of-the-art algorithms.

Our algorithm is suitable for self-driving vehicles because all
vehicles need to completely follow our algorithm. For scenar-
ios with both self-driving vehicles and human-driving vehicles,
simulation results show that vehicle traveling time increases as
the percentage of human-driving vehicles increase. How to im-
prove algorithm efficiency under these scenarios will be our fu-
ture work.
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