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Abstract: The Jacobi method for performing singular value decomposition can compute all singular values and sin-
gular vectors with high accuracy. In addition, previously published studies have reported that it is more accurate than
the QR algorithm. However, the computation cost of the Jacobi method is higher than that of the computation method
that combines the QR method and bidiagonalization using the Householder transformation. Notably, the computation
cost is insignificant for considerably small matrices. Based on the Jacobi method, one- and two-sided Jacobi methods
are proposed. The one-sided method was implemented in LAPACK. However, many facets can still be improved in the
implementation of the two-sided Jacobi method. Therefore, in this paper, we improve the two-sided Jacobi method.
We experimentally confirmed that for small matrices, the two-sided Jacobi method had a shorter computation time and
a higher accuracy than those of the one-sided Jacobi method.

Keywords: singular value decomposition, one-sided Jacobi method, two-sided Jacobi method, False position method,
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1. Introduction

In production sites, we must detect the anomalies in factory
equipment. Notably, anomaly detection does not mean to de-
tect the anomaly occurred, but to capture the signs just before the
anomaly occurs. Therefore, the singular spectrum transformation
(SST) method [5], [7] that detects the changing points in the time-
series data of the target system should be adopted. This method
calculates the singular value decomposition of the data along the
time axis and determines the number of dimensions that are suf-
ficient for approximating the original time-series data. However,
it is difficult to apply the SST method in real time using limited
hardware such as an embedded computer because of the compu-
tational complexity involved. Therefore, in the current method, it
is predicted that an abnormality will occur after an abnormality
occurs. To perform computations in real time, singular value de-
compositions, which can be computed with high speed and high
accuracy, must be developed. In the SST method, the time-series
data can be treated by replacing it with a small matrix. Conse-
quently, during implementation, the developed singular value de-
composition should compute small matrices with high speed and
high accuracy.

James Demmel and Kresimir Veselic reported that the Jacobi
method was more accurate than QR [2]. Because the Jacobi
method is for singular value decomposition, one- and two-sided
Jacobi methods were proposed [1], [3], [4], [6], [9]. The one-
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sided Jacobi method was implemented in LAPACK [10]. How-
ever, no implementation of two-sided Jacobi method is provided
in LAPACK. Moreover, if we do not introduce our implemen-
tation technique described in Sections 4.7, 4.8, and 5, the perfor-
mance of the two-sided Jacobi method [8] is not better than that of
the one-sided Jacobi method implemented in LAPACK in terms
of computation time and accuracy. In addition, because the two-
sided Jacobi method actively converges the off-diagonal elements
to 0, the possibility of non-convergence on the computer need
not be considered. Therefore, in this paper, we improve the two-
sided Jacobi method. To compute the two-sided Jacobi method,
we propose three implementation methods that use the arctangent
function, implementation procedure by Rutishauser [11], and the
Givens rotation, respectively. The experimental results confirmed
that for small matrices, the two-sided Jacobi method had shorter
computation time and higher accuracy than those of the one-sided
Jacobi method.

In Section 2, we introduce the SST method. In Section 3, we
show target matrices in the two-sided Jacobi method. In Sec-
tion 4, we propose 3 implementation types for the two-sided Ja-
cobi method. In Section 5, we explain a correction method of
variables in the two-sided Jacobi method, which uses the imple-
mentation procedure by Rutishauser [11]. In Section 6, we per-
form experiments using 8 matrices. In order to improve the ac-
curacy of the computation, our implementation technique in Sec-
tion 4.7 and Section 5 are introduced. Our implementation tech-
nique in Section 4.8 is used to improve the computational speed.

2. Singular Spectrum Transformation

In the SST method, the singular value decomposition is per-
formed on time-series data (ξ1, ξ2, ξ3, · · · ) that are extracted as
follows:

c© 2021 Information Processing Society of Japan 12



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.14 No.1 12–20 (Jan. 2021)

x1 := (ξ1, ξ2, · · · , ξM)� ,x2 := (ξ2, ξ3, · · · , ξM+1)� , · · · , (1)

Xt :=
[

xt−n−M+1 xt−n−M+2 · · · xt−M−1 xt−M

]
= U(X)

t Σ
(X)
t

(
V (X)

t

)�
, (2)

Zt :=
[

xt−k−M+L+1 xt−k−M+L+2 · · · xt−M+L−1 xt−M+L

]
= U(Z)

t Σ
(Z)
t

(
V (Z)

t

)�
. (3)

where Σ(X)
t , U(X)

t , and V (X)
t denote the matrices whose elements

are singular values, left singular vectors, and right singular vec-
tors, respectively, in Xt. Furthermore, Σ(Z)

t , U(Z)
t , and V (Z)

t denote
the matrices whose elements are singular values, left singular vec-
tors, and right singular vectors, respectively, in Zt. In addition,
U(X,r)

t =
(
u(X)

1,t , · · · ,u(X)
r,t

)
and U(Z,m)

t =
(
u(Z)

1,t , · · · ,u(Z)
m,t

)
are deter-

mined using the r left singular vectors of U(X)
t =

(
u(X)

1,t , · · · ,u(X)
n,t

)
and the m left singular vectors of U(Z)

t =
(
u(Z)

1,t , · · · ,u(Z)
k,t

)
, respec-

tively. The degree of change in two different locations is defined
as a(t) = 1−

∥∥∥∥(U(X,r)
t

)�
U(Z,m)

t

∥∥∥∥
2
. The 2 norm of a matrix means the

largest singular value. Here, the arbitrarily selectable parameters
are M, L, n, k, r, and m. Generally, M, n, and k should be set
equal to or smaller than 100.

3. Target Matrices

The two-sided Jacobi method for eigenvalue decomposition
can be used to compute the eigenvalues and eigenvectors of a real
symmetric matrix. Precisely, it is also possible to extend the tar-
get matrix to a Hermitian matrix. Notably, the two-sided Jacobi
method for singular value decomposition can even be designed to
perform computations on complex matrices of any size. However,
in this paper, we have considered only real upper triangular ma-
trices. By preprocessing using the QR and LQ decompositions in
the case of rectangular matrices, the singular value decomposition
of rectangular matrices can be reduced to that of upper triangular
matrices. Moreover, because we can easily extend our method to
be used on an upper complex matrix, the singular value decompo-
sition using the two-sided Jacobi method is designed for enabling
computations on real upper triangular matrices.

4. Singular Value Decomposition Using the
Two-sided Jacobi Method

4.1 Outline
Let J(i), K(i), N(i), and M(i) be the products of rotation matri-

ces. Let R(i) and L(i) be real upper and lower triangular matrices,
respectively. In a singular value decomposition using the two-
sided Jacobi method, Eqs. (4) and (5) are repeatedly computed as
follows:

K(i)R(i)J(i) = L(i), (4)

N(i)L(i)M(i) = R(i+1), i = 0, 1, · · · (5)

By these iterative computations, R(i) and L(i) converge into a di-
agonal matrix. In the case of convergence, the left singular vector
U and right singular vector V can be computed as follows:

U =
(
K(0)

)� (
N(0)

)� (
K(1)

)� (
N(1)

)� · · · (K(m−1)
)� (

N(m−1)
)�
,

(6)

V = J(0)M(0)J(1)M(1) · · · J(m−1)M(m−1), (7)

Fig. 1 Space sharing of the upper triangular matrix.

where m denotes the iteration number in the case of convergence.
Here, the matrix multiplication in Eqs. (6) and (7) is accom-
plished using the Givens rotations. From Fig. 1, it is shown that
R(i) and L(i) are stored together in the upper triangular matrix. In
the case of Fig. 1, memory allocation is not required for R(i) and
L(i) as separate matrices. Therefore, R(i) and L(i) can be computed
using the same memory area.

As shown in Eq. (10), Rj,k is converted to 0 by using the rota-
tion matrices P and Q. Here, I denotes an identity matrix.

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 · · · · · · 0

0 c1 · · · s1

...
...

... I
...
...

... −s1 · · · c1 0
0 · · · · · · 0 I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 · · · · · · 0

0 c2 · · · −s2

...
...
... I

...
...

... s2 · · · c2 0
0 · · · · · · 0 I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

P ×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . · · · · · · · · · · · ·
... Rj, j · · · Rj,k

...
...

...
. . .

...
...

... 0 · · · Rk,k

...

· · · · · · · · · · · · . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× Q

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . · · · · · · · · · · · ·
... R̂ j, j · · · 0

...
...

...
. . .

...
...

... 0 · · · R̂k,k

...

· · · · · · · · · · · · . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Repeating Eq. (10), R(i) can be transformed to L(i). However,
Eq. (10) is not the computation of L(i) from R(i). Therefore,
Eq. (10) is not expressed using R(i)

j, j, R(i)
j,k, R(i)

k,k, L(i)
j, j, and L(i)

k,k. Be-
cause P and Q are rotation matrices, θ1 and θ2 satisfy c1 = cos θ1,
s1 = sin θ1, c2 = cos θ2, and s2 = sin θ2. Hereafter, we will
discuss only those element parts whose values change.
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⎛⎜⎜⎜⎜⎝ c1 s1

−s1 c1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ Rj, j R j,k

0 Rk,k

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ c2 −s2

s2 c2

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝ R̂ j, j 0

0 R̂k,k

⎞⎟⎟⎟⎟⎠ .
(11)

To compute L(i) from R(i), Eq. (11) must be repeated many times.
In iterative procedures, an ordering strategy for erasing the off-
diagonal elements, as explained in Section 4.2, is adopted. We
used the same procedure to obtain R(i+1) from L(i).

The computation of c1, s1, c2, s2, R̂ j, j, and R̂k,k from
Rj, j,Rj,k,Rk,k is explained in Sections 4.3, 4.4, and 4.5.

4.2 Ordering Strategy and Convergence Criterion
In the ordering strategy, the off-diagonal elements in an up-

per triangular matrix R(i) are reduced to 0. Because the non-
zero elements appear in the lower triangular part, that part is
set as the lower triangular matrix L(i). The details are as fol-
lows: If

∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣, we use the following strategy. The off-
diagonal elements are reduced to 0 in the following order of ele-
ments: (1, 2), (1, 3), · · · , (1, n), (2, 3), (2, 4), · · · , (n−2, n−1), (n−
2, n), (n − 1, n). Subsequently, the off-diagonal elements in the
lower triangular matrix L(i) are reduced to 0 in the following order
of elements: (2, 1), (3, 1), · · · , (n, 1), (3, 2), (4, 2), · · · , (n − 1, n −
2), (n, n − 2), (n, n − 1). If

∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣, we use the following
strategy. The off-diagonal elements are reduced to 0 in the fol-
lowing order of elements: (n−1, n), (n−2, n), · · · , (1, n), (n−2, n−
1), (n − 3, n − 1), · · · , (1, 3), (1, 2). Subsequently, the off-diagonal
elements in the lower triangular matrix L(i) are reduced to 0 in the
following order of elements: (n, n − 1), (n, n − 2), · · · , (n, 1), (n −
1, n−2), (n−1, n−3), · · · , (3, 1), (2, 1). Using the two-sided Jacobi
method, all the off-diagonal elements converge to 0. The con-
ditional instruction means that larger edge of diagonal element
and its subsidiary off-diagonal elements are processed at first in
order to help sorting of diagonal elements which introduced in
Section 4.8. Computationally, because the number of iterations is
finite, the off-diagonal elements may not be an exact 0. Therefore,
if Eq. (12) is satisfied, the element is set to Rj,k ← 0.

∣∣∣Rj,k

∣∣∣ ≤ ε
√∣∣∣Rj, j

∣∣∣ ×
√∣∣∣Rk,k

∣∣∣. (12)

Once all the off-diagonal elements converge to 0, the iteration
is terminated.

4.3 Implementation Method Using the Arctangent Function
Unlike in the one-sided Jacobi method, the singular value de-

composition using the two-sided Jacobi method requires many
operations to calculate c1, s1, c2, and s2.
4.3.1 Conventional Implementation

We introduce the Upper-triangular, Left transformation first
(UL) algorithm and the Upper-triangular, Right transformation
first (UR) algorithm for computing c1, s1, c2, and s2 as a con-
ventional method [8]. If

(
Rj, j − Rk,k

) (
Rj, j + Rk,k

)
is greater than

or equal to 0, the UL algorithm should be adopted as follows.

θ1 =
1
2

tan−1

⎛⎜⎜⎜⎜⎜⎜⎝ 2Rk,k(
Rj, j − Rk,k

) (
Rj, j + Rk,k

)
/Rj,k + Rj,k

⎞⎟⎟⎟⎟⎟⎟⎠ , (13)

θ2 = tan−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Rj,k + Rk,k tan (θ1)

Rj, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (14)

Here, − π4 ≤ θ1 ≤ π
4 and − π2 ≤ θ2 ≤ π

2 . Conversely, if(
Rj, j − Rk,k

) (
Rj, j + Rk,k

)
is negative, the UR algorithm should be

adopted as follows.

θ2 =
1
2

tan−1

⎛⎜⎜⎜⎜⎜⎜⎝ 2Rj, j(
Rj, j − Rk,k

) (
Rj, j + Rk,k

)
/Rj,k − Rj,k

⎞⎟⎟⎟⎟⎟⎟⎠ , (15)

θ1 = tan−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Rj, j tan (θ2) − Rj,k

Rk,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (16)

Here, − π2 ≤ θ1 ≤ π2 and − π4 ≤ θ2 ≤ π4 . Then, we compute c1, s1,
c2, and s2.

c1 = cos (θ1) , s1 = sin (θ1) , (17)

c2 = cos (θ2) , s2 = sin (θ2) . (18)

Then, the computed c1, s1, c2, and s2 are substituted in Eqs. (19)
and (20);

u = c1 + c2, (19)

R̂ j, j = Rj, j +
s2

u
× Rj,k, R̂k,k = Rk,k − s1

u
× Rj,k. (20)

The fused multiply-accumulate operation can be adopted in the
double underlined part of the equations. It reduces the error of
the final operation result by performing a product–sum operation
in one instruction without rounding up the integration in the mid-
dle and is important for the achievement of high accuracy.
4.3.2 Proposed Implementation

In numerical computations, performing such a large number
of operations introduces numerous errors into the variables under
computation. Therefore, we propose to implement a method us-
ing the arctangent function. In the proposed implementation, the
number of operations for computing c1, s1, c2, and s2 is decreased
by using α and β.

Here, c1, s1, c2, and s2 are computed using tan−1, θ1, and θ2 as
follows:

α = tan−1

(
Rj,k

R j, j − Rk,k

)
, (21)

β = tan−1

( −Rj,k

R j, j + Rk,k

)
, (22)

θ1 =
1
2

(α + β) , θ2 =
1
2

(α − β) , (23)

c1 = cos (θ1) , s1 = sin (θ1) , (24)

c2 = cos (θ2) , s2 = sin (θ2) . (25)

Here, − π2 ≤ θ1 ≤ π2 and − π2 ≤ θ2 ≤ π2 . Then, the computed c1, s1,
c2, and s2 are substituted in Eqs. (26) and (27);

u = c1 + c2, (26)

R̂ j, j = Rj, j +
s2

u
× Rj,k, R̂k,k = Rk,k − s1

u
× Rj,k. (27)

We define the upper computation method as the faster version
of the proposed implementation. The fused multiply-accumulate
operation can be adopted in the double underlined part of the
equations.

In order to reduce the error of the decomposition ||A−UΣV�||F ,
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we use the accurate version of the proposed implementation as
follows:

α = tan−1

(
Rj,k

R j, j − Rk,k

)
, (28)

β = tan−1

( −Rj,k

R j, j + Rk,k

)
, (29)

θ1 =
1
2

(α + β) , θ2 =
1
2

(α − β) , (30)

v1 = cos (θ1) , w1 = sin (θ1) , (31)

v2 = cos (θ2) , w2 = sin (θ2) . (32)

We compute c1 and s1 using the Givens rotation for x ← v1 and
y ← w1 and compute c2 and s2 using the Givens rotation for
x← v2 and y← w2 in Section 4.5. Finally, Eqs. (33) and (34) can
be computed using c1, s1, c2, and s2 as follows:

u = c1 + c2, (33)

R̂ j, j = Rj, j +
s2

u
× Rj,k, R̂k,k = Rk,k − s1

u
× Rj,k. (34)

The fused multiply-accumulate operation can be adopted in the
double underlined part of the equations.

4.4 Implementation Method by Rutishauser
Integrating the implementation method by Rutishauser [11]

with the two-sided Jacobi method for eigenvalue decomposition,
the fused multiply-accumulate, which can achieve high accuracy,
prevents the introduction of errors in c1, s1, c2, and s2.

In addition, t1 and t2 are decided as follows:

γ1 =
Rj, j − Rk,k

R j,k
, t1 =

1

γ1 + SIGN

⎛⎜⎜⎜⎜⎜⎝
√

1 + (γ1)2, γ1

⎞⎟⎟⎟⎟⎟⎠
, (35)

γ2 = −Rj, j + Rk,k

R j,k
, t2 =

1

γ2 + SIGN

⎛⎜⎜⎜⎜⎜⎝
√

1 + (γ2)2, γ2

⎞⎟⎟⎟⎟⎟⎠
, (36)

where the function SIGN(A, B) returns the value of A with the
sign of B. Subsequently, using t1 and t2,

v̂1 = 1 − t1 × t2, ŵ1 = t1 + t2, (37)

and

v̂2 = 1 + t1 × t2, ŵ2 = t1 − t2, (38)

are computed. We compute c1 and s1 using the Givens rotation
for x ← v̂1 and y ← ŵ1 and compute c2 and s2 using the Givens
rotation for x ← v̂2 and y ← ŵ2 in Section 4.5. Finally, Eqs. (39)
and (40) can be computed using c1, s1, c2, and s2 as follows:

u = c1 + c2, (39)

R̂ j, j = Rj, j +
s2

u
× Rj,k, R̂k,k = Rk,k − s1

u
× Rj,k. (40)

The fused multiply-accumulate can be adopted in the double un-
derlined part in the equations.

Algorithm 1 Implementation of the Givens rotation
1: if x = 0 and y = 0 then

2: cos (θ)← 1

3: sin (θ)← 0

4:
√

x2 + y2 ← 0

5: else

6: f ← |x|
7: g← |y|
8: if f ≥ g then

9: v← y/ f

10: r ←
√

1 + v2

11: cos (θ)← SIGN(1/r, x)

12: sin (θ)← v/r
13:

√
x2 + y2 ← r × f

14: else

15: u← x/g

16: r ←
√

1 + u2

17: cos (θ)← u/r

18: sin (θ)← SIGN(1/r, y)

19:
√

x2 + y2 ← r × g
20: end if

21: end if

4.5 Implementation Method Using the Givens Rotation
4.5.1 Implementation of the Givens Rotation

Consider the Givens rotation as follows:

cos (θ) =
x√

x2 + y2
, sin (θ) =

y√
x2 + y2

. (41)

Here, we executed Algorithm 1 to compute cos (θ), sin (θ), and√
x2 + y2. To avoid overflow and underflow, the Givens rotation

should be implemented as Algorithm 1. When
√

x2 + y2 is not
required,

√
x2 + y2 ← r × f and

√
x2 + y2 ← r × g are not

computed. The fused multiply-accumulate can be adopted in the
double-underlined part of lines 1 and 1 of Algorithm 1.
4.5.2 Implementation Details

Algorithm 2 was executed to compute c1, s1, c2, and s2. Here,
the function SIGN(A, B) returns the value of A with the sign of B.
Subsequently, Eqs. (42) and (43) are computed using c1, s1, c2,
and s2,

u← c1 + c2, (42)

R̂ j, j ← Rj, j +
s2

u
× Rj,k, R̂k,k ← Rk,k − s1

u
× Rj,k. (43)

The fused multiply-accumulate can be adopted in the double un-
derlined part in the equations.

4.6 Comparing the Number of Operations
We compare the number of operations for computing c1, s1, c2,

and s2 in Table 1.

4.7 Implementation Technique for a Summation
If |x0| is considerably greater than |xi|(i = 1, · · · , q), the method

based on Tq =
∑q

i=1 xi and S q = x0+Tq is appropriate to compute
S q =

∑q
i=0 xi. The computation process is adopted in Eqs. (20),

(27), (34), (40), and (43).
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Table 1 Comparing the number of operations.

conventional
(arctan)

proposed
(faster, arctan)

proposed
(accurate, arctan)

proposed
Rutishauser

proposed
Givens rotation

addition and subtraction 4 5 5 7 5
multiplication 3 2 2 0 2
division 5 4 10 12 11
The fused multiply-accumulate 3 2 4 8 10
Square root 0 0 2 4 4
tan−1 2 2 2 0 0
cos 2 2 2 0 0
sin 2 2 2 0 0

Algorithm 2 Implementation method using the Givens rotation
1: f1 ← Rj, j − Rk,k

2: f1 ← f1 + SIGN

(√
f 2
1 + R2

j,k, f1

)
The Givens rotation is adopted in the

underlined part

3: if f1 ≥ 0 then

4: g1 ← Rj,k

5: else

6: g1 ← −Rj,k

7: f1 ← − f1
8: end if

9: f2 ← Rj, j + Rk,k

10: f2 ← f2 + SIGN

(√
f 2
2 + R2

j,k, f2

)
The Givens rotation is adopted in the

underlined part

11: if f2 ≥ 0 then

12: g2 ← −Rj,k

13: else

14: g2 ← Rj,k

15: f2 ← − f2
16: end if

17: if f1 ≥ f2 then

18: t1 ← g1/ f1
19: ĉ1 ← −t1 × g2 + f2

20: ŝ1 ← t1 × f2 + g2

21: ĉ2 ← t1 × g2 + f2

22: ŝ2 ← t1 × f2 − g2

23: else

24: t2 ← g2/ f2
25: ĉ1 ← −g1 × t2 + f1

26: ŝ1 ← f1 × t2 + g1

27: ĉ2 ← g1 × t2 + f1

28: ŝ2 ← − f1 × t2 + g1

29: end if

30: Compute c1 and s1 using the Givens rotation for x← ĉ1 and y← ŝ1

31: Compute c2 and s2 using the Givens rotation for x← ĉ2 and y← ŝ2

4.8 Addition of Sorting Function to the Two-sided Jacobi
Method

From the Eq. (12), if both diagonal elements of the 2×2 matrix
are large, the non-diagonal elements are considered to be con-
verging even if they are somewhat large. Thus, when the large
diagonal elements are collected in the upper left corner, the sin-
gular values in the diagonal elements converge from the upper
left to the lower right. As a result, it is possible to separate the
locations that converge at the beginning from those that converge
later. Therefore, the convergence is improved. For these reasons,
in order to collect the large diagonal elements in the upper part
of the left and the smaller elements in the lower right, we add the

Table 2 Case list for function of sorting.

cases setting∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂ j, j

∣∣∣ < ∣∣∣R̂k,k

∣∣∣ s1 > 0 c1 ← s1 and s1 ← −c1∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂ j, j

∣∣∣ < ∣∣∣R̂k,k

∣∣∣ s1 ≤ 0 c1 ← −s1 and s1 ← c1∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂ j, j

∣∣∣ < ∣∣∣R̂k,k

∣∣∣ s2 > 0 c2 ← s2 and s2 ← −c2∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂ j, j

∣∣∣ < ∣∣∣R̂k,k

∣∣∣ s2 ≤ 0 c2 ← −s2 and s2 ← c2∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂ j, j

∣∣∣ ≥ ∣∣∣R̂k,k

∣∣∣ s1 > 0 c1 ← s1 and s1 ← −c1∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂ j, j

∣∣∣ ≥ ∣∣∣R̂k,k

∣∣∣ s1 ≤ 0 c1 ← −s1 and s1 ← c1∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂ j, j

∣∣∣ ≥ ∣∣∣R̂k,k

∣∣∣ s2 > 0 c2 ← s2 and s2 ← −c2∣∣∣R(0)
1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣ ∣∣∣R̂ j, j

∣∣∣ ≥ ∣∣∣R̂k,k

∣∣∣ s2 ≤ 0 c2 ← −s2 and s2 ← c2

function of sorting to the two-sided Jacobi method as Table 2.
In the case

∣∣∣R(0)
1,1

∣∣∣ ≥ ∣∣∣R(0)
n,n

∣∣∣, if
∣∣∣R̂ j, j

∣∣∣ < ∣∣∣R̂k,k

∣∣∣ and s1 > 0 are satis-
fied, we set c1 ← s1 and s1 ← −c1, which means θ1 ← θ1 − π2 ,
and, if

∣∣∣R̂ j, j

∣∣∣ < ∣∣∣R̂k,k

∣∣∣ and s1 ≤ 0 are satisfied, we set c1 ← −s1

and s1 ← c1, which means θ1 ← θ1 + π2 . If
∣∣∣R̂ j, j

∣∣∣ < ∣∣∣R̂k,k

∣∣∣ and
s2 > 0 are satisfied, we set c2 ← s2 and s2 ← −c2, which means
θ2 ← θ2 − π2 , and, if

∣∣∣R̂ j, j

∣∣∣ < ∣∣∣R̂k,k

∣∣∣ and s2 ≤ 0 are satisfied, we
set c2 ← −s2 and s2 ← c2, which means θ2 ← θ2 + π2 . If π2 is
subtracted from or added to both θ1 and θ2, we set R̂ j, j ← R̂k,k,
R̂k,k ← R̂ j, j. Otherwise, we set R̂ j, j ← −R̂k,k, R̂k,k ← −R̂ j, j.

In the case
∣∣∣R(0)

1,1

∣∣∣ < ∣∣∣R(0)
n,n

∣∣∣, if
∣∣∣R̂ j, j

∣∣∣ ≥ ∣∣∣R̂k,k

∣∣∣ and s1 > 0 are satis-
fied, we set c1 ← s1 and s1 ← −c1, which means θ1 ← θ1 − π2 ,
and, if

∣∣∣R̂ j, j

∣∣∣ ≥ ∣∣∣R̂k,k

∣∣∣ and s1 ≤ 0 are satisfied, we set c1 ← −s1

and s1 ← c1, which means θ1 ← θ1 + π2 . If
∣∣∣R̂ j, j

∣∣∣ ≥ ∣∣∣R̂k,k

∣∣∣ and
s2 > 0 are satisfied, we set c2 ← s2 and s2 ← −c2, which means
θ2 ← θ2 − π2 , and, if

∣∣∣R̂ j, j

∣∣∣ ≥ ∣∣∣R̂k,k

∣∣∣ and s2 ≤ 0 are satisfied, we
set c2 ← −s2 and s2 ← c2, which means θ2 ← θ2 + π2 . If π2 is
subtracted from or added to both θ1 and θ2, we set R̂ j, j ← R̂k,k,
R̂k,k ← R̂ j, j. Otherwise, we set R̂ j, j ← −R̂k,k, R̂k,k ← −R̂ j, j.

Furthermore, by performing the above operation, the two-sided
Jacobi method becomes a sorting function from larger singular
values to smaller singular values. Notably, after performing the
above operation, c1 and c2 are still nonnegative.

5. Correction of c1, s1, c2, or s2

Using the implementation method by Rutishauser [11], we can
correct c1, s1, c2, or s2. Let c̃, s̃, ĉ, and ŝ be four variables that
represent c1 and c2, s1 and s2, correction result for c1 and c2, and
correction result for s1 and s2, respectively.

5.1 False Position Method
The false position method is depicted in Fig. 2. In the initial

setting, x1 and x2 have different values. The sign of f (x1) is set
to be different from that of f (x2).

In the false position method, xM in Eq. (44) is set to a new posi-
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Fig. 2 False position method.

Fig. 3 Secant method.

tion to compute the real root x in f (x) = 0. One has the following:

xM =
x1 × f (x2) − x2 × f (x1)

f (x2) − f (x1)
. (44)

Here, if the sign of f (x1) is the same as that of f (xM), then
x1 ← xM . However, if the sign of f (x2) is the same as that of
f (xM), then x2 ← xM .

As depicted in Fig. 2, xM is set to a new x1.

5.2 Secant Method
The secant method is depicted in Fig. 3.
In the secant method, the following recurrence relation is

adopted to compute the real root x in f (x) = 0:

xn+1 = xn − f (xn) × xn − xn−1

f (xn) − f (xn−1)

=
xn−1 f (xn) − xn f (xn−1)

f (xn) − f (xn−1)
. (45)

From the initial setting x0 and x1, the sequence of x2, x3, · · · con-
verges to the real root x, as the point sequence is computed in
order. When n = 2 in Eq. (45), Eq. (44) is obtained.

5.3 Correction Method
Theoretically, the equation c̃2 + s̃2 = 1 is satisfied. However,

computationally, it is not satisfied because of a rounding error.
Therefore, we propose a correction method for c̃ and s̃.

Assuming that s̃ is correct, c̃ is calculated as follows:

x2 + s̃2 = 1. (46)

Assuming that c̃ is correct, s̃ is computed as follows:

c̃2 + x2 = 1. (47)

Equations (46) and (47) can be appropriately used by introduc-
ing c̃ = cos θ and s̃ = sin θ. For the case where − π4 ≤ θ ≤ π

4 ,

Eq. (46) is used, whereas Eq. (47) is adopted if π4 < θ ≤ π
2 or

− π2 ≤ θ < − π4 . For the singular value decomposition using the
two-sided Jacobi method, c̃ ≥ 0 is satisfied. Therefore, we can
assume that − π2 ≤ θ ≤ π2 .

When both the nonlinear single equation f (x) = 0 and initial
numbers x0 and x1 are given, then x2, which is the result of one
iteration of the secant method, is equal to xM achieved using the
false position method. One has the following relation:

x2 =
x0 f (x1) − x1 f (x0)

f (x1) − f (x0)
, (48)

In the case where − π4 ≤ θ ≤ π4 , c̃ is recomputed using eq.(46).
The case where − π4 ≤ θ ≤ π

4 can be considered equivalent to
c̃ ≥ |s̃|. To compute c̃, the initial numbers are set to x0 = 1 and
x1 = c̃. When f (x) = x2 + s̃2 − 1,

ĉ =
(c̃2 + s̃2 − 1) − c̃s̃2

(c̃2 + s̃2 − 1) − (s̃2)
= 1 − s̃ × s̃

1 + c̃
, (49)

is obtained, where ĉ is more appropriate for satisfying f (x) =
x2 + s̃2 − 1. The Givens rotation for vectors x and y is defined as
follows:

x ← c̃x + s̃y, y ← −s̃x + c̃y. (50)

When not using c̃ but ĉ,

z1 =
s̃

1 + c̃
, (51)

x ← (1 − s̃ × z1) x + s̃y = s̃

(
−z1x + y

)
+ x, (52)

y ← −s̃x + (1 − s̃ × z1) y = −s̃

(
z1y + x

)
+ y, (53)

is obtained.
The case wherein π4 < θ ≤ π2 can be regarded as equivalent to

c̃ < |s̃| and s̃ ≥ 0. To compute s̃, the initial numbers are set to
x0 = 1 and x1 = s̃. When f (x) = c̃2 + x2 − 1,

ŝ =
(c̃2 + s̃2 − 1) − s̃c̃2

(c̃2 + s̃2 − 1) − (c̃2)
= 1 − c̃ × c̃

1 + s̃
, (54)

is obtained, where ŝ is more appropriate for satisfying f (x) =
c̃2 + x2 − 1. When not using s̃ but ŝ, the Givens rotation for vec-
tors x and y is defined as follows:

z2 =
c̃

1 + s̃
, (55)

x ← c̃x + (1 − c̃ × z2) y = c̃

(
−z2y + x

)
+ y, (56)

y ← − (1 − c̃ × z2) x + c̃y = c̃

(
z2x + y

)
− x. (57)

The case where − π2 ≤ θ < − π4 can be regarded as equivalent
to c̃ < |s̃| and s̃ ≤ 0. To compute s̃, the initial numbers are set to
x0 = −1 and x1 = s̃. When f (x) = c̃2 + x2 − 1,

ŝ =
−(c̃2 + s̃2 − 1) − s̃c̃2

(c̃2 + s̃2 − 1) − (c̃2)
= −1 + c̃ × c̃

1 − s̃
, (58)

is obtained, where ŝ is more appropriate for satisfying f (x) =
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Table 4 Comparison of Jacobi SVD algorithms (without the incorporation of our implementation technique).

One-sided
Jacobi

Two-sided Jacobi
Conventional
(arctan)

Two-sided Jacobi
Proposed
(faster, arctan)

A1

||U�U − I||F 1.91 ∗ 10−4 1.11 ∗ 10−4 1.12 ∗ 10−4

||V�V − I||F 8.20 ∗ 10−5 1.03 ∗ 10−4 1.03 ∗ 10−4

||A − UΣV�||F 6.33 ∗ 10−4 5.72 ∗ 10−4 5.69 ∗ 10−4

Computation time [s] 1.140 0.882 0.741
A2

||U�U − I||F 5.51 ∗ 10−4 3.18 ∗ 10−4 3.21 ∗ 10−4

||V�V − I||F 1.78 ∗ 10−4 2.87 ∗ 10−4 2.95 ∗ 10−4

||A − UΣV�||F 2.54 ∗ 10−3 2.27 ∗ 10−3 2.53 ∗ 10−3

Computation time [s] 10.246 8.160 6.358
A3

||U�U − I||F 1.00 ∗ 10−3 6.25 ∗ 10−4 6.11 ∗ 10−4

||V�V − I||F 2.81 ∗ 10−4 5.62 ∗ 10−4 5.54 ∗ 10−4

||A − UΣV�||F 4.12 ∗ 10−3 4.34 ∗ 10−3 4.96 ∗ 10−3

Computation time [s] 38.645 35.668 28.868
A4

||U�U − I||F 1.50 ∗ 10−3 9.70 ∗ 10−4 9.64 ∗ 10−4

||V�V − I||F 3.91 ∗ 10−4 9.20 ∗ 10−4 9.11 ∗ 10−4

||A − UΣV�||F 6.77 ∗ 10−3 7.13 ∗ 10−3 7.15 ∗ 10−3

Computation time [s] 92.253 133.499 113.791
A5

||U�U − I||F 2.01 ∗ 10−4 1.47 ∗ 10−4 1.50 ∗ 10−4

||V�V − I||F 9.40 ∗ 10−5 1.66 ∗ 10−4 1.68 ∗ 10−4

||A − UΣV�||F 9.22 ∗ 10−4 7.34 ∗ 10−4 9.32 ∗ 10−4

Computation time [s] 0.989 0.993 0.922
A6

||U�U − I||F 5.29 ∗ 10−4 4.67 ∗ 10−4 4.71 ∗ 10−4

||V�V − I||F 2.18 ∗ 10−4 5.18 ∗ 10−4 5.25 ∗ 10−4

||A − UΣV�||F 2.03 ∗ 10−3 2.56 ∗ 10−3 2.80 ∗ 10−3

Computation time [s] 8.402 8.556 8.253
A7

||U�U − I||F 1.00 ∗ 10−3 9.38 ∗ 10−4 9.30 ∗ 10−4

||V�V − I||F 3.84 ∗ 10−4 1.05 ∗ 10−3 1.04 ∗ 10−3

||A − UΣV�||F 3.46 ∗ 10−3 4.31 ∗ 10−3 4.94 ∗ 10−3

Computation time [s] 30.260 39.966 39.056
A8

||U�U − I||F 1.59 ∗ 10−3 1.54 ∗ 10−3 1.54 ∗ 10−3

||V�V − I||F 5.20 ∗ 10−4 1.69 ∗ 10−3 1.70 ∗ 10−3

||A − UΣV�||F 5.95 ∗ 10−3 7.51 ∗ 10−3 7.15 ∗ 10−3

Computation time [s] 78.082 154.763 150.870

c̃2 + x2 − 1. When not using s̃ but ŝ, the Givens rotation for vec-
tors x and y is defined as follows:

z3 =
c̃

1 − s̃
, (59)

x ← c̃x + (−1 + c̃ × z3) y = c̃

(
z3y + x

)
− y, (60)

y ← − (−1 + c̃ × z3) x + c̃y = c̃

(
−z3x + y

)
+ x. (61)

Notably, the fused multiply-accumulate can be adopted in the
double underlined part.

6. Experiments

We checked whether the two-sided Jacobi method (arctan and
Rutishauser versions) had shorter computation time and higher
accuracy than those of the one-sided Jacobi method implemented
in LAPACK [10], for small matrices. The experimental environ-
ment is mentioned in Table 3. We used the following eight ma-
trices for the comparison:
• A1 (dimension size: 500 × 500, an upper triangular matrix)

Table 3 Experimental environment.

CPU Intel(R) Xeon(R) Silver 4116 @ 2.10 GHz
(2 CPUs)

RAM 192 GB
OS Ubuntu 20.04.1 LTS
Compiler gfortran 9.3.0
Options -O3 -mtune=native -march=native
Software Lapack 3.9.0
Precision single precision

• A2 (dimension size: 1000×1000, an upper triangular matrix)
• A3 (dimension size: 1500×1500, an upper triangular matrix)
• A4 (dimension size: 2000×2000, an upper triangular matrix)

and
• A5 (dimension size: 500 × 500, an upper triangular matrix)
• A6 (dimension size: 1000×1000, an upper triangular matrix)
• A7 (dimension size: 1500×1500, an upper triangular matrix)
• A8 (dimension size: 2000×2000, an upper triangular matrix)

In A1, A2, A3, and A4, all the elements are set to random num-
bers ∈ [0, 1] generated using a uniform random number generator.
However, in A5, A6, A7, and A8, all the elements are set to 1. Gen-
erally, the dimension size in the SST method is set to the small
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Table 5 Comparison of Jacobi SVD algorithms (with the incorporation of our implementation technique).

One-sided
Jacobi

Two-sided
Jacobi
Conventional
(arctan)

Two-sided
Jacobi
Proposed
(faster, arctan)

Two-sided
Jacobi
Proposed
(accurate, arctan)

Two-sided
Jacobi
Proposed
Rutishauser

Two-sided
Jacobi
Proposed
Givens rotation

A1

||U�U − I||F 1.91 ∗ 10−4 4.36 ∗ 10−5 4.30 ∗ 10−5 4.33 ∗ 10−5 4.32 ∗ 10−5 4.34 ∗ 10−5

||V�V − I||F 8.20 ∗ 10−5 4.32 ∗ 10−5 4.32 ∗ 10−5 4.31 ∗ 10−5 4.30 ∗ 10−5 4.33 ∗ 10−5

||A − UΣV�||F 6.33 ∗ 10−4 3.74 ∗ 10−4 3.69 ∗ 10−4 3.70 ∗ 10−4 3.77 ∗ 10−4 3.60 ∗ 10−4

Computation time [s] 1.140 0.819 0.712 0.698 0.683 0.694
A2

||U�U − I||F 5.51 ∗ 10−4 8.90 ∗ 10−5 8.87 ∗ 10−5 8.92 ∗ 10−5 8.93 ∗ 10−5 8.86 ∗ 10−5

||V�V − I||F 1.78 ∗ 10−4 8.65 ∗ 10−5 8.65 ∗ 10−5 8.65 ∗ 10−5 8.59 ∗ 10−5 8.61 ∗ 10−5

||A − UΣV�||F 2.54 ∗ 10−3 1.07 ∗ 10−3 1.06 ∗ 10−3 1.08 ∗ 10−3 1.07 ∗ 10−3 1.06 ∗ 10−3

Computation time [s] 10.246 6.325 6.191 6.030 6.032 6.265
A3

||U�U − I||F 1.00 ∗ 10−3 1.41 ∗ 10−4 1.40 ∗ 10−4 1.41 ∗ 10−4 1.39 ∗ 10−4 1.40 ∗ 10−4

||V�V − I||F 2.81 ∗ 10−4 1.30 ∗ 10−4 1.30 ∗ 10−4 1.30 ∗ 10−4 1.29 ∗ 10−4 1.29 ∗ 10−4

||A − UΣV�||F 4.12 ∗ 10−3 2.02 ∗ 10−3 2.04 ∗ 10−3 2.07 ∗ 10−3 2.01 ∗ 10−3 2.11 ∗ 10−3

Computation time [s] 38.645 28.324 27.150 26.822 27.387 28.528
A4

||U�U − I||F 1.50 ∗ 10−3 1.96 ∗ 10−4 1.96 ∗ 10−4 1.96 ∗ 10−4 1.95 ∗ 10−4 1.95 ∗ 10−4

||V�V − I||F 3.91 ∗ 10−4 1.73 ∗ 10−4 1.73 ∗ 10−4 1.74 ∗ 10−4 1.71 ∗ 10−4 1.72 ∗ 10−4

||A − UΣV�||F 6.77 ∗ 10−3 3.16 ∗ 10−3 3.18 ∗ 10−3 3.08 ∗ 10−3 3.17 ∗ 10−3 3.14 ∗ 10−3

Computation time [s] 92.253 104.210 102.440 99.877 104.007 104.847
A5

||U�U − I||F 2.01 ∗ 10−4 4.48 ∗ 10−5 4.45 ∗ 10−5 4.51 ∗ 10−5 4.52 ∗ 10−5 4.48 ∗ 10−5

||V�V − I||F 9.40 ∗ 10−5 4.51 ∗ 10−5 4.47 ∗ 10−5 4.48 ∗ 10−5 4.52 ∗ 10−5 4.51 ∗ 10−5

||A − UΣV�||F 9.22 ∗ 10−4 5.52 ∗ 10−4 5.87 ∗ 10−4 5.55 ∗ 10−4 5.71 ∗ 10−4 5.72 ∗ 10−4

Computation time [s] 0.989 0.789 0.757 0.737 0.721 0.747
A6

||U�U − I||F 5.29 ∗ 10−4 9.12 ∗ 10−5 9.11 ∗ 10−5 9.18 ∗ 10−5 9.16 ∗ 10−5 9.16 ∗ 10−5

||V�V − I||F 2.18 ∗ 10−4 9.13 ∗ 10−5 9.15 ∗ 10−5 9.16 ∗ 10−5 9.14 ∗ 10−5 9.13 ∗ 10−5

||A − UΣV�||F 2.03 ∗ 10−3 1.77 ∗ 10−3 1.74 ∗ 10−3 1.72 ∗ 10−3 1.77 ∗ 10−3 1.77 ∗ 10−3

Computation time [s] 8.402 6.533 6.469 6.224 6.250 6.226
A7

||U�U − I||F 1.00 ∗ 10−3 1.39 ∗ 10−4 1.39 ∗ 10−4 1.39 ∗ 10−4 1.39 ∗ 10−4 1.39 ∗ 10−4

||V�V − I||F 3.84 ∗ 10−4 1.38 ∗ 10−4 1.38 ∗ 10−4 1.38 ∗ 10−4 1.38 ∗ 10−4 1.38 ∗ 10−4

||A − UΣV�||F 3.46 ∗ 10−3 3.52 ∗ 10−3 3.93 ∗ 10−3 3.51 ∗ 10−3 3.52 ∗ 10−3 3.40 ∗ 10−3

Computation time [s] 30.260 29.807 29.257 28.888 28.822 28.928
A8

||U�U − I||F 1.59 ∗ 10−3 1.86 ∗ 10−4 1.85 ∗ 10−4 1.85 ∗ 10−4 1.85 ∗ 10−4 1.86 ∗ 10−4

||V�V − I||F 5.20 ∗ 10−4 1.84 ∗ 10−4 1.84 ∗ 10−4 1.84 ∗ 10−4 1.84 ∗ 10−4 1.84 ∗ 10−4

||A − UΣV�||F 5.95 ∗ 10−3 5.91 ∗ 10−3 5.88 ∗ 10−3 5.59 ∗ 10−3 5.06 ∗ 10−3 4.96 ∗ 10−3

Computation time [s] 78.082 111.501 110.080 108.564 108.220 109.734

size of 100 × 100 or less. The dimension size of each of these
test matrices is greater than that used in the SST method. How-
ever, if the dimension size is too small, it is difficult to perform
computation-time comparisons. Therefore, in the experiments,
the dimension size of each test matrix was selected as sufficiently
small and not too small.

The performance results are presented in Table 4. The com-
parison is made without the incorporation of our implementation
technique, which is described in Sections 4.7, 4.8, and 5, in Ta-
ble 4. In terms of the computation speed, the conventional method
is not better than the proposed method. If we do not incorporate
our implementation technique in Sections 4.7, 4.8, and 5, the per-
formance of the two-sided Jacobi method is not better than that
of the one-sided Jacobi method implemented in LAPACK [10] in
terms of computation time and accuracy.

The performance results are presented in Table 5. The com-
parison is made with the incorporation of our implementation
technique in Sections 4.7, 4.8, and 5 in Table 5. The two-sided
Jacobi method (Givens rotation) has shorter computation time

and higher accuracy than those of the one-sided Jacobi method
implemented in LAPACK for both the 500 × 500, 1000 × 1000,
and 1500 × 1500 upper triangular matrices whose elements are
generated using a uniform random number generator and also, for
the 500×500, 1000×1000, and the 1500×1500 upper triangular
matrix whose all elements are 1.

The accuracy of the implemented two-sided Jacobi method,
which is applied using the arctangent function, the implementa-
tion procedure by Rutishauser, or Givens rotation, is higher than
that of the one-sided Jacobi method, for small matrices. Par-
ticularly, the orthogonality in the implemented two-sided Jacobi
method is better than that of the one-sided Jacobi method. The
smaller is the matrix size, the higher is the accuracy of the imple-
mented two-sided Jacobi method.

In test matrices A4 and A8, each of whose dimension size is
2000×2000, the computation time of the implemented two-sided
Jacobi method is slightly longer than that of the one-sided Jacobi
method. In the other test matrices, the computation time of the
implemented two-sided Jacobi method is shorter than that of the
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one-sided Jacobi method.
The dimension size in the SST method is set to the small size

of 100 × 100 or less. Therefore, using the implemented two-
sided Jacobi method, the SST method can be performed with
high speed and high accuracy. Consequently, the implemented
two-sided Jacobi method is appropriate for the SST method.

7. Conclusion

To perform the singular value decomposition of small matri-
ces, we improved the two-sided Jacobi method. Particularly, we
proposed the three implementation methods that used the arct-
angent function, implementation procedure by Rutishauser, and
Givens rotation, respectively. We confirmed experimentally that
for small matrices, the implemented two-sided Jacobi method had
shorter computation time and higher accuracy than those of the
one-sided Jacobi method. The matrix size for the SST method
was smaller than that of the test matrices. Therefore, the imple-
mented two-sided Jacobi method is appropriate to apply the SST
method.

For future work, we plan to apply our two-sided Jacobi method
to implement the SST method for solving real problems.
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