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Abstract: In this report, we propose a self-supervised Deep Learning (DL) method for reading analysis to cope the
lack of labeled data issue in this domain and evaluate it on two classification tasks, reading detection using elec-
trooculography glasses datasets and confidence estimation on answers of multiple-choice questions using eye-tracking
datasets. Fully-supervised DL and support vector machines are used as comparative methods. The results show that
the proposed method is always superior, especially when training data is scarce. This result indicates that the proposed
self-supervised DL method is the superior choice for reading analysis tasks. The results of this study are important for
informing the design and implementation of automatic reading analysis platforms.

1. Introduction
Reading analysis is essential for understanding and advanc-

ing human learning strategies because it is possible to obtain a
wide variety of information from reading activities [1]. There are
many different types of aspects of reading that can be analyzed
and classified [2], [3]. For example, one basic classification task
is reading detection, where the objective is to detect whether the
user is reading or not reading [4], [5]. Other research has tack-
led problems like identifying the type of text the user is reading,
such as reading English text or Japanese text [6]. Finally, another
reading activity classification task would be a problem-solving
task such as confidence estimation in answering multiple-choice
questions (MCQs) [7]. In this report, we use the term reading ac-
tivity to cover not only the activity of reading plain text but also
problem-solving tasks completed via reading.

There are multiple ways in which to approach this endeavor.
Traditional machine learning methods have achieved satisfactory
results in laboratory settings where features are manually se-
lected. This requires additional feature engineering expertise. In
addition, for the outside laboratory settings (in-the-wild) studies,
these methods may not produce similar results [8] due to vari-
ous reasons, such as noise which obfuscates important features
that need to be extracted. Deep Learning (DL) has been success-
fully used to solve a broad set of difficult problems in various
fields [9], [10]. The key to successful DL is to prepare enough
labeled samples. In most fields, the difficulty of having enough
amount of labeled samples is a serious issue [11].

Lack of labeled data is also a problem for reading activity
classification. Obtaining large and well-curated reading activity
datasets is problematic because the annotation costs, time takes to
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generate a satisfactory dataset, diversity of devices, types of em-
bedded sensors, and variations in specifications regarding sam-
pling rates make dataset construction a challenge. For these rea-
sons, it is very difficult to apply a fully-supervised DL method in
this domain directly.

The self-supervised DL presents a potential solution to these
problems. This method employs a “pretext” task to pre-train the
network, before training for the task of interest (target task). Be-
cause labeled samples for the pretext task is generated without
manual labeling, the network can be trained with a much larger
amount of data. In general, this helps to improve classification
accuracy.

In the field of human activity recognition, some researchers
have attempted to employ self-supervised DL to solve the issue
of the lack of labeled data and found it effective [12], [13]. For
example, the method proposed by Saeed et al. [12] employs sim-
ple signal transformations such as flipping to produce the pretext
task for sensor data. However, we do not know whether similar
approaches can be applied to cognitive activities requiring fewer
bodily movements such as the reading, which is typically cap-
tured by sensors like an eye-tracker.

This research aims to clarify how effective the self-supervised
DL is at solving the lack of labeled data issue in reading activ-
ity classification. As a step toward this goal, we propose a self-
supervised DL method and evaluate it for two different but re-
lated reading activity classification tasks placed at two extreme
points on the reading activity spectrum. The first one is read-
ing detection, a physical-level reading activity. The second one
is confidence estimation in answering MCQs, which is an inten-
sive cognitive level reading activity. This allows us to obtain a
full picture of the effectiveness of the proposed self-supervised
DL method across the reading activity spectrum. In the evalua-
tion process, we recorded eye-movement using electrooculogra-
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phy (EOG) glasses for reading detection and measured eye gaze
using an eye-tracker for confidence estimation. We compared the
effectiveness of the proposed self-supervised DL method by train-
ing and evaluating the network for a different number of training
samples per class, starting from the availability of all samples per
class to 10 samples per class. We used the fully-supervised DL
approach as a comparative method along with support vector ma-
chines (SVMs) as a baseline.

The results show that the proposed self-supervised DL method
is superior compared to other methods at both tasks. Specifically,
the proposed self-supervised DL method demonstrates better per-
formance than the fully-supervised DL except at the largest num-
ber of training samples, where the proposed self-supervised DL
method performs equally well. Although the fully-supervised DL
sometimes performs worse than SVM with a smaller number of
training samples, due to the impact of insufficient training sam-
ples, the proposed self-supervised DL method does not face this
problem; it is always superior to SVM as well. The statistical
analysis supports the above statements.

From the results, we conclude that the proposed self-
supervised DL method is superior to other methods over a wide
range of training samples on both tasks, and is comparable with
the fully-supervised DL when the number of training samples
available is high. This indicates that we can recommend the self-
supervised DL method for any size of available training samples.
This insight can help system designers and researchers more effi-
ciently pursue reading activity classification.

2. Related Work
Our work relates to several active research areas, including

reading detection, confidence estimation, and self-supervised DL.
In this section, we describe how our work builds on these fields.

2.1 Reading Detection
Reading detection strategy varies depending on its purpose,

and over the past years, researchers have proposed many meth-
ods for different kinds of automatic reading detection. For exam-
ple, they have proposed methods for reading detection as a part of
other human activities such as reading in transit [14], in office set-
tings [15], and with talking [16] by exploring eye movements in
controlled settings using traditional machine learning approaches.
In another eye-based activity recognition study [17], authors de-
tected reading with desktop activities such as search and writing
by using traditional machine learning methods. Researchers used
traditional machine learning methods to detect whether the user is
reading or skimming [18], [19], reading or searching [4] and read-
ing or not reading [5], [8] in laboratory settings. Recently, Ishi-
maru et al. [6] proposed a traditional machine learning method to
classify the language of text segments, English or Japanese, read
by the user by analyzing eye movement data obtained through an
in-the-wild study.

However, most of the existing methods occurred in labora-
tory settings use traditional machine learning approaches except
for some preliminary work that applies DL methods [8], [20].
Although some methods using traditional machine learning ap-
proaches produce satisfactory results in laboratory settings, they

may not do so in-the-wild [6].

2.2 Confidence Estimation in Answering Multiple-choice
Questions

MCQs are fundamental forms of assessing knowledge, ability,
and user performance [21] and are the most popular since they are
easy, quick, and offer more objective scoring. However, in this as-
sessment, one critically common question arises: has the user an-
swered correctly by chance or with confidence in their knowledge
of the correct answer. Therefore, an assessment system must pro-
vide accurate information and give feedback. So there is a need
to develop a way to estimate confidence automatically.

As a step toward this automatic confidence estimation, re-
searchers propose some methods. Tsai et al. [22] analyzed user’s
visual attention spans when solving MCQs by using eye-tracking
under laboratory settings and with the application of a traditional
machine learning method. Yamada et al. [7] proposed a method
to classify whether the user is confident or not when answering
MCQs through manually selected features from the eye gaze data.
All these methods occurred in laboratory settings and employed
traditional machine learning approaches. This means that a sig-
nificant challenge remains for in-the-wild datasets.

2.3 Self-supervised Deep Learning
In the past decade, the development and application of DL

has successfully solved many problems in the field of ubiqui-
tous computing [23], pervasive intelligence [24], health [25], and
many more. Most of the methods use fully-supervised DL ap-
proaches that need large and carefully labeled data that is feasible
for use in domains such as computer vision [26] but unfeasible in
others.

To overcome the innate limitations of the fully-supervised DL
approaches, researchers introduced several unsupervised meth-
ods. Recently, researchers proposed a DL technique called self-
supervised DL [27], [28], [29]. Self-supervised DL is now an
active research approach in various domains such as computer
vision and robotics [30], [31] and its achievements show that it
is effective. When it comes to human activity recognition tasks,
the same issue of the lack of labeled data occurs. Researchers
attempted applying self-supervised DL by utilizing some sim-
ple signal transformations such as flipping and adding noise [12].
Their findings show that a self-supervised DL approach is effec-
tive in this domain.

Inspired by the recent success of applying self-supervised
DL to address the issue of insufficient labeled data, we set out
a research agenda to explore the generalize efficacy of self-
supervised DL for eye movement sensory data for physical and
cognitive intensive reading tasks.

3. Proposed Method
We propose a self-supervised DL method for reading activity

classification using sensor data, as shown in Fig. 1 that consists of
two stages. The first stage shown in the upper parts of Fig. 1(a)
and Fig. 1(b) is self-supervised pre-training consisting of solv-
ing the pretext task, automatically applied to a large collection
of unlabeled sensor data. The second stage shown in the lower
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Fig. 1: Proposed self-supervised DL method for reading activity
classification.

parts of Fig. 1(a) and Fig. 1(b) is target task training, i.e., train-
ing of a reading activity classification network by fine-tuning the
pre-trained base network using labeled sensor data. To evaluate
our method, we implemented the proposed self-supervised DL
method on two very different reading activity tasks: reading de-
tection and confidence estimation in answering MCQs. The rea-
sons for this is that reading activities are distributed on a wide
spectrum. For example, some activities are merely related to
quantity of reading, such as reading periods or the number of read
words. On the other hand, other activities involve the quality of
reading such as understanding and confidence. To show the appli-
cability of the proposed self-supervised DL method, we apply it
to tasks which belong to these respective categories. We selected
reading detection that segments reading periods from all activities
and confidence estimation in answering MCQs. Another reason
for selecting these two activities is that they are recorded by using
two different devices: EOG glasses for reading detection, and an
eye-tracker for confidence estimation. We consider that the pro-
posed self-supervised DL method is general and effective enough
if it works for both tasks using different devices. In the following,
we explain details of the proposed self-supervised DL method for
each task.

3.1 Reading Detection
Reading detection aims to identify periods of reading from all

other activities. This is implemented as a classification task; the
user activities are divided into short segments and then classified
into different segments of activity.

The devices employed to measure reading detection are EOG
glasses that generate EOG data of eye movements, and ac-

celerometer (ACC) and gyroscope (GYRO) data from the move-
ment of the EOG glasses themselves. From the EOG sig-
nals, we obtained data of horizontal and vertical eye movements
(EOG H and EOG V). ACC and GYRO data consist of x, y and z
components (ACC X, ACC Y, ACC Z, GYRO X, GYRO Y and
GYRO Z).
3.1.1 Self-supervised Pre-training

Self-supervised pre-training involves learning the representa-
tion of signal data by using a pretext task. For the pretext task, we
employed the task proposed by Saeed et al. [12]; noised, scaled,
rotated, negated, horizontally flipped, permuted, time-warped,
and channel-shuffled. The pretext task is to recognize the trans-
formation applied to an input signal. For ACC and GYRO data,
we employ eight transformations. Because rotation is meaning-
less for EOG data, seven transformations excluding rotation are
applied instead.

The red-dashed rectangle in the upper part of Fig. 1(a) illus-
trates the base network trained by the pretext task. It consists
of three Convolutional Neural Network (CNN) blocks for EOG,
ACC and GYRO data, a CNN block that concatenates three CNN
layers, and a global max-pooling layer. Each CNN block con-
sists of three 1D CNN layers. The numbers of units in the CNN
layers are 32, 64, and 96, respectively, and the kernel sizes are
24, 16, and 8, respectively. We applied batch normalization after
each CNN layer, and a dropout layer after the global max-pooling
layer. We added three classifiers at the end of the base network for
EOG, ACC, and GYRO data, respectively. Each classifier con-
sists of two fully connected (FC) layers, and the numbers of units
in the FC layers are 256 and 512, respectively. We use ReLU as
the activation function, the softmax function as the output layer,
and Adam as the optimizer.
3.1.2 Target Task Training

The final step is the target task training. For the reading detec-
tion, we have four target classes: not reading (NR), reading En-
glish text (EN), reading Japanese horizontal text (JH), and reading
Japanese vertical text (JV). Japanese scripts can be written hori-
zontally or vertically. Japanese horizontal writing is similar to
English writing except there are no spaces between words, which
causing different eye movements when reading the text. In the
vertical writing system, characters are read from top to bottom,
going right to left [32].

We use the pre-trained base network to create a reading detec-
tion network by fine-tuning the pre-trained base network using
labeled sensor data with a supervised approach, as shown in the
lower part of Fig. 1(a). The FC layer in the target task training
has 1024 units. We use the same activation function, optimizer,
and output layer as used in the self-supervised pre-training.

3.2 Confidence Estimation
Confidence estimation in answering MCQs involves classify-

ing whether the answer is produced with confidence or not. The
format for how we handled MCQs in this report is shown in
Fig. 2. We employed an eye-tracker to describe the user’s be-
haviors. Unlike the classification of fixed length segments in the
reading detection activity, the amount of sensor data varies in this
task. To cope with such an issue, researchers of human activ-
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The university is  nearer to them than ________. 

we our self 

ourselves us 

Fig. 2: MCQ format used for confidence estimation. The user is
asked to select one choice to fill in the blank.

(a) No transformation (b) Rotation

(c) Reflection about y-axis (d) Reflection about x-axis

Fig. 3: Examples of transformed eye gaze image data in confi-
dence estimation.

ity recognition transformed time-series data into images to solve
the classification task using CNN [33], [34]. We also convert the
eye-tracking data by plotting eye gaze graphically as shown in
Fig. 3(a).
3.2.1 Self-supervised Pre-training

In the pretext task for confidence estimation, we consider three
image transformations as shown in Fig. 3(b) to Fig. 3(d). The
rotation is to apply 45◦ anti-clockwise rotation to the original im-
age. Reflection about x and y axes means the transformation of
each pixel at (x, y) to (x,−y) and (−x, y), respectively.

The red-dashed box in the upper part of Fig. 1(b) shows the
base network that consists of two CNN blocks and a max-pooling
layer after each CNN block. Besides, we add a dropout layer af-
ter the second max-pooling layer followed by a flatten layer. Each
CNN block consists of two 2D CNN layers. The numbers of units
of CNN layers are 8 for the first CNN block and 16 for the second
CNN block, respectively. The kernel size is 3×3 for all four CNN
layers. We added a batch normalization after each CNN layer. Fi-
nally, we add a classifier consisting of two FC layers to identify
the type of transformations applied, and the number of units of
both FC layers is 36. We use ReLU as the activation function for
all CNN and FC layers, the softmax function as the output layer,
and the SGD as the optimizer. The input image size is 64×64×3.
3.2.2 Target Task Training

After the pre-training, the target task training is performed by
replacing the FC layers of the pre-trained network and fine-tuning
the pre-trained base network using labeled eye gaze image data.
We designed the confidence estimation target task as a binary
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Fig. 4: Data recording for reading detection; (a) JINS MEME
EOG glasses, and (b) and (c) a user reading text documents wear-
ing narrative clip and JINS MEME EOG glasses.

classification: confident or unconfident. For the target task train-
ing, the number of units in the FC layer is 64. We used the same
input image size, activation function, optimizer, and output layer
used in the self-supervised pre-training task.

4. Data Collection
4.1 Reading Detection Datasets

We used two datasets for reading detection: a labeled dataset
and an unlabeled dataset. We recorded data for both datasets
using JINS MEME EOG glasses. This is an eye-wear device
developed by JINS, as shown in Fig. 4(a), which equips EOG,
ACC, and GYRO sensors. EOG is a technique that measures the
corneo-retinal standing potential between the front and the back
of the human eye. The sampling rate of EOG, ACC, and GYRO
sensors is 100 Hz. We describe labeled and unlabeled datasets for
reading detection in detail in the following two subsections.
4.1.1 Labeled Dataset for Reading Detection

For the labeled dataset, we employed OPU RD dataset, which
was introduced by Ishimaru et al. [6]. Ten participants were
recruited for data collection. Each participant wore the JINS
MEME glasses as shown in Fig. 4(b) for about 12 hours a day
for two days and was asked to read English documents, vertically
written Japanese documents, and horizontally written Japanese
documents for about 1 hour for each in a day. Participants
also had a small camera called narrative clip on their clothing
as shown in Fig. 4(b) to take frontal images every 30 seconds,
used to label recorded data. The narrative clip was allowed to
be removed in places where recording was inappropriate. Except
for the above-mentioned conditions, no restrictions were imposed
during data recording. Thus, the dataset can be regarded as “in-
the-wild.”

After recording, the EOG, ACC, and GYRO data were split
into segments by using a window of size 30 seconds slid by 15
seconds. Thus segments overlap with each other. Fig. 5 shows
examples of segments. After that, each segment is labeled. EOG
data sometimes suffers from bursts of noise of about several sec-
onds due to poor contact of the EOG electrodes to the skin. We
found such EOG segments and discarded.
4.1.2 Unlabeled Dataset for Reading Detection

We recruited 13 Japanese university students. Each partici-
pant wore a JINS MEME device for three to eight days and read
English document, horizontally written Japanese documents, and
vertically written Japanese documents, or did not read anything at
all. The measurement time is about 20 to 60 hours per person, and
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Fig. 5: Data samples of 30 seconds segment recorded with the
JINS MEME EOG glasses in reading detection.

(a) Tobii 4C eye-tracker (b) User answering MCQs

Fig. 6: Data collection environment for confidence estimation.

the total recorded time from all participants is 676 hours. In addi-
tion, we employed an unlabeled dataset that recorded EOG, ACC,
and GYRO data when 39 participants attended presentations at a
conference. These unlabeled datasets are also “in-the-wild.” The
unlabeled data totals about 1,359 hours. We also prepared un-
labeled data in the same way described for labeled data except
labeling. The total number of samples in the unlabeled dataset is
177,921.

4.2 Confidence Estimation Datasets
We also use a labeled dataset and an unlabeled dataset for con-

fidence estimation. We used the Tobii 4C pro-upgraded eye-
tracker, as shown in Fig. 6(a), a stationary eye-tracker whose
sampling rate is 90 Hz.
4.2.1 Labeled Dataset for Confidence Estimation

We recruited 20 Japanese university students to generate the
labeled dataset for confidence estimation. The data collection
environment is shown in Fig. 6(b). Each participant read and
answered four-choice English grammatical questions on a com-
puter screen. Right after answering each MCQ, participants were
requested to assess the confidence behind their answer, which
then became a label for the data. However, the labeled dataset
includes a serious skew in the number of confident and unconfi-
dent answers. This is because of the differences in English abil-
ity among the participants. We did not impose any restrictions
during the data collection, so that this dataset is also considered
“in-the-wild.”
4.2.2 Unlabeled Dataset for Confidence Estimation

We recorded the unlabeled data for confidence estimation as
described above except there was no inquiry about the confidence.
We recruited 80 Japanese high school students, with each par-
ticipant reading and answering four-choice English vocabulary
questions. The total number of samples in the unlabeled dataset
is 57,460. Note that the age range of the participants and the con-
tents of the four-choice questions are both different from that of
the labeled dataset.
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Fig. 7: Dependency of test accuracy to the number of labeled
training samples per class for reading detection.

5. Experimental Results and Discussion
5.1 Reading Detection
5.1.1 Experimental Conditions

The purpose of the experiment is to evaluate the effectiveness
of the proposed self-supervised DL method as compared to con-
ventional methods; fully-supervised DL and SVM. For the fully-
supervised DL, we simply use the proposed self-supervised DL
method for the target task without the pre-training. For SVM, the
method described in [6] is used. We used a total of ten features
for SVM, the mean and variance of vertical and horizontal com-
ponents of EOG data and the mean and variance of three axes
components of ACC and GYRO data.

For the proposed self-supervised DL method, we first applied
the pre-training by using the transformed sensor data. We applied
each transformation equally so that the chance rates for the EOG
data, ACC data, and GYRO data are 12.5%, 11.1%, and 11.1%,
respectively. After this, the target task training was applied. The
number of available labeled samples is different for each class.
We simply took all 5,340 samples (the smallest number) of “read-
ing English” and down sampled other classes to have them match
in size. Thus the chance rate for the target task is 25%. The same
data were also employed for training the fully-supervised DL and
SVM. We changed the number of labeled training samples per
class in the order of 10, 50, 100, 500, 1,000, and 5,340. All of the
above methods were evaluated with the user independent Leave-
One-Participant-Out cross-validation (LOOCV) approach.
5.1.2 Results of the Target Task

Fig. 7 shows the reading detection result. It describes the
change of average test accuracy for the number of labeled train-
ing samples per class. From this graph, we can observe the fol-
lowing. First, the proposed self-supervised DL method performs
best for all cases regardless of the number of training samples.
The proposed self-supervised DL method is more advantageous
than the fully-supervised DL when the number of labeled train-
ing samples is smaller. This indicates the effectiveness of the
self-supervised DL. As compared to SVM, the fully-supervised
DL performs much better when the number of labeled training
samples is larger. However, this advantage disappears when the
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number of labeled training samples decreases. This shows the
limitation of the fully-supervised DL when a large enough num-
ber of training samples are not available. On the other hand,
the proposed self-supervised DL method is always much better
than SVM and is never inferior to the fully-supervised DL. In
other words, we can always recommend to use the proposed self-
supervised DL method.

To make sure whether the difference is significant or not, we
applied the statistical analysis. The one-way repeated measures
analysis of variance (ANOVA) test was first applied. The null
hypothesis is that the population means of all three methods are
equal and the significance level is 0.01. Then the post-hoc paired
t-test was applied for the further analysis. A null hypothesis here
is that the population mean of one method is equal to that of
another method. We conducted three t-test experiments. Mul-
tiple comparisons for the three methods was mitigated by a Bon-
ferroni correction. With the correction applied, significance is
found if p < 0.0033. For the pair of the proposed self-supervised
DL method and the fully-supervised DL, all but the case of
5,340 training samples, we have confirmed that the proposed self-
supervised DL method is statistically significantly better than the
fully-supervised DL. For the comparison with SVM, the advan-
tage of the proposed self-supervised DL method is shown for
all cases. For the comparison between the fully-supervised DL
and SVM, we cannot reject the null hypothesis for the cases for
smaller sample sizes (10 and 50).

By analyzing the results, we found the following tendencies.
“Reading English” and “Reading horizontally written Japanese”
tends to be confused, because both reading behaviors are dom-
inated by horizontal eye movement. Among all the methods,
the proposed self-supervised DL method was most effective at
distinguishing these classes. Some “not reading” behaviors are
classified into reading, because they contain similar behaviors by
chance.

5.2 Confidence Estimation
5.2.1 Experimental Conditions

The purpose of the experiments is the same as the reading de-
tection and we employed the same methods for comparison. In
the self-supervised pre-training, for each image, we selected one
of four transformations, including no transformation, as shown in
Fig. 3 and applied it. Because each transformation was selected
equally, the chance rate of the pre-training was 25%.

After the pre-training, we created the target task network of
confidence estimation by fine-tuning the pre-trained base net-
work, as shown in the lower part of Fig. 1(b). In this case, we
used the labeled data. Although we applied LOOCV for reading
detection, it is not appropriate for confidence estimation due to
the seriously skewed distribution of confident and unconfident la-
bels. Thus we took a different approach for data preparation for
training and testing as shown in Fig. 8. The chance rate of the
classification is 50%.

In the case of the fully-supervised DL, we trained the network
using only the labeled data. We used SVM as a baseline method
using basic statistical features such as mean and variance. We
calculated and used four features from one sample (one MCQ);
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Fig. 8: Ten-fold cross-validation for confidence estimation.
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Fig. 9: Dependency of test accuracy to the number of labeled
training samples per class for confidence estimation.

means and variances of the two axes of the eye gaze to classify
data samples. All methods were also evaluated by the ten-fold
cross-validation. We changed the number of labeled training sam-
ples per class in the order of 10, 20, 50, 100, 150, 200, 300, 400,
500, 1,000, and 5,382.
5.2.2 Results of the Target Task

Fig. 9 shows the results of the target task. Tendencies similar to
the reading detection results were observed. The proposed self-
supervised DL method performed the best regardless of the num-
ber of labeled training samples. The performance of the fully-
supervised DL dropped when the number of labeled training sam-
ples was insufficient. With confidence estimation, SVM was not
always worst, though performance was limited even with a larger
number of labeled samples. From these results, we can always
recommend to use the proposed self-supervised DL method in
the case of reading detection.

We also applied the statistical tests for the results of confidence
estimation. From the one-way repeated measures ANOVA test,
we have confirmed that there exists at least one population mean
is different from the rest. From the results of the post-hoc paired
t-test, we have confirmed the following: For the comparison be-
tween the proposed self-supervised DL method and the fully-
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supervised DL, we found significant differences except for the
cases of 400, 500, and 1,000 training samples. For the compari-
son between the proposed self-supervised DL method and SVM,
all cases show a significant difference. For the comparison be-
tween the fully-supervised DL and SVM, we could not reject the
null hypothesis for the case of 150 training samples per class, but
it was rejected for all other cases. For the cases with the larger
number of training samples, the fully-supervised DL worked bet-
ter than SVM, and for the case with the smaller number of train-
ing samples, the opposite conclusion is held. From these results
of statistical analysis, we can also confirm that our discussion of
the performance comparison we made above has been supported.

By analyzing the results, we found that for all the methods
predictions were not biased with the larger number of training
samples, but biased with the smaller number of training samples
except for the case of the proposed self-supervised DL method.

6. Conclusion
Automatic recording and reading behavior analysis allow users

to examine their reading habits which can help with the devel-
opment of reading strategies. Methods that use classical ma-
chine learning approaches and handcrafted features may achieve
good results in laboratory settings, but may not obtain satisfac-
tory results in-the-wild. DL methods that can solve this issue
that requires a large-sized labeled dataset. However, a large-
sized labeled data collections are difficult to obtain. As a step
towards tackling this issue, we have proposed a self-supervised
DL method. We evaluated the effectiveness of the proposed self-
supervised DL method by selecting two reading activities that
explore physical reading and confidence, respectively. We evalu-
ated both tasks with the proposed self-supervised DL method, the
fully-supervised DL, and SVM.

The proposed self-supervised DL method for reading detection
consists of two stages. In the first stage, we trained the network
by solving pretext tasks automatically applied to the unlabeled
data for representation learning. In the second stage, we created
the reading detection target task network by fine-tuning the pre-
trained base network using labeled data. Confidence estimation
followed a similar process.

From the experimental results, we have confirmed that the pro-
posed self-supervised DL method performs the best for both read-
ing activity classification tasks compared to the fully-supervised
DL method and SVM for all cases of the numbers of training sam-
ples. Therefore we can always recommend to use the proposed
self-supervised DL method regardless of the available number of
training samples.

Future work includes further improvement in accuracy of the
proposed self-supervised DL method by introducing other sen-
sors, as well as its application for other reading activity classifi-
cation tasks using various sensors.
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I., Hoffman, J. and Plötz, T.: Masked Reconstruction Based
Self-Supervision for Human Activity Recognition, Proceedings
of the 2020 International Symposium on Wearable Computers,
ISWC ’20, New York, NY, USA, ACM, p. 45–49 (online), DOI:
10.1145/3410531.3414306 (2020).

[14] Bulling, A., Ward, J. A. and Gellersen, H.: Multimodal Recognition
of Reading Activity in Transit Using Body-Worn Sensors, ACM Trans.
Appl. Percept., Vol. 9, No. 1 (online), DOI: 10.1145/2134203.2134205
(2012).

[15] Bulling, A., Ward, J. A., Gellersen, H. and Tröster, G.: Eye Movement
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Recurrent Models for Human Activity Recognition Using Wearables,
Proceedings of the Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence, IJCAI’16, AAAI Press, p. 1533–1540 (online),
available from 〈https://www.ijcai.org/Proceedings/16/Papers/220.pdf〉
(2016).

[24] Sarhan, S., Nasr, A. A. and Shams, M. Y.: Multipose Face
Recognition-Based Combined Adaptive Deep Learning Vector Quan-
tization, Computational Intelligence and Neuroscience, Vol. 2020 (on-
line), DOI: 10.1155/2020/8821868 (2020).

[25] Nonaka, N. and Seita, J.: Data Augmentation for Electrocardiogram
Classification with Deep Neural Network, arXiv:2009.04398 [eess],
(online), available from 〈http://arxiv.org/abs/2009.04398〉 (2020).

[26] Toshev, A. and Szegedy, C.: DeepPose: Human Pose Estimation

via Deep Neural Networks, 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition, IEEE, pp. 1653–1660 (online), DOI:
10.1109/CVPR.2014.214 (2014).

[27] Amis, G. P. and Carpenter, G. A.: Self-supervised ARTMAP, Neural
Networks, Vol. 23, No. 2 (online), DOI: 10.1016/j.neunet.2009.07.026
(2010).

[28] Liu, X., v. d. Weijer, J. and Bagdanov, A. D.: Exploiting Unlabeled
Data in CNNs by Self-Supervised Learning to Rank, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 41, No. 8, pp.
1862–1878 (online), DOI: 10.1109/TPAMI.2019.2899857 (2019).

[29] Agrawal, P., Carreira, J. and Malik, J.: Learning to See by Mov-
ing, 2015 IEEE International Conference on Computer Vision (ICCV),
IEEE, pp. 37–45 (online), DOI: 10.1109/ICCV.2015.13 (2015).

[30] Gidaris, S., Singh, P. and Komodakis, N.: Unsuper-
vised Representation Learning by Predicting Image Rota-
tions, CoRR, Vol. abs/1803.07728 (online), available from
〈http://arxiv.org/abs/1803.07728〉 (2018).

[31] Owens, A., Wu, J., McDermott, J. H., Freeman, W. T. and Tor-
ralba, A.: Ambient Sound Provides Supervision for Visual Learn-
ing, Computer Vision – ECCV 2016, Lecture Notes in Computer Sci-
ence, Vol. 9905, Cham, Springer, pp. 801–816 (online), available from
〈https://doi.org/10.1007/978-3-319-46448-0 48〉 (2016).

[32] Wikipedia: Horizontal and vertical writing in
East Asian scripts, (online), available from
〈https://en.wikipedia.org/w/index.php?title=Horizontal and vertical
writing in East Asian scripts&oldid=984358336〉 (accessed Oct 29,
2020.)

[33] Wang, Z. and Oates, T.: Imaging Time-Series to Im-
prove Classification and Imputation, Proceedings of the
24th International Conference on Artificial Intelligence, IJ-
CAI’15, AAAI Press, p. 3939–3945 (online), available from
〈https://www.ijcai.org/Proceedings/15/Papers/553.pdf〉 (2015).

[34] Hatami, N., Gavet, Y. and Debayle, J.: Classification of
Time-Series Images Using Deep Convolutional Neural Net-
works, CoRR, Vol. abs/1710.00886 (online), available from

〈http://arxiv.org/abs/1710.00886〉 (2017).

8ⓒ 2021 Information Processing Society of Japan

Vol.2021-HCI-191 No.21
2021/1/29


