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Abstract: The discrete acyclic convolution computes the 2n + 1 sums∑
i+ j=k

(i, j)∈[0,1,2,...,n]2

aib j

in O
(
n log n

)
time. By using suitable offsets and setting some of the variables to zero, this method provides a tool to

calculate all non-zero sums ∑
i+ j=k

(i, j)∈P∩Z2

aib j

in a rectangle P with perimeter p in O
(
p log p

)
time.

This paper extends this geometric interpretation in order to allow arbitrary convex polygons P with k vertices and
perimeter p. Also, this extended algorithm only needs O

(
k + p(log p)2 log k

)
time.

Additionally, this paper presents fast algorithms for counting sub-cadences and cadences with 3 elements using this
extended method.
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1. Introduction
The convolution is a well-known and very useful method, which

is not only closely linked to signal processing (e.g. [10]) but is also
used to multiply polynomials (see [2], p. 905) and large numbers
(e.g. [9] (written in German)) in quasi-linear time. The convolution
can be efficiently computed with the fast Fourier transform or its
counterpart in residue class rings, the number theoretic transform:
Theorem 1. Let a = (a0, a1, a2, . . . , an) and b =

(b0, b1, b2, . . . , bn) be two sequences. The sequence
c = (c0, c1, c2, . . . , c2n) with ck =

∑
i+ j=k

(
aib j

)
can be com-

puted in O
(
n log n

)
operations.

The most well-known proofs use additions and multiplications
of arbitrary complex numbers. However, with the finite register
lengths of real-world computers, one must either cope with the
roundoff errors or do all calculations in a different ring. In Ap-
pendix of a full version of this paper [4], we show that a suitable
ring can be found deterministically in O

(
n(log n)2(log log n)

)
time

if the generalized Riemann hypothesis is true.
The convolution can also be interpreted geometrically: Let

a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be sequences.
Then the convolution calculates the partial sums
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∑
i+ j=k

(i, j)∈P∩Z2

aib j,

where P is the square given by {(x, y) : 0 ≤ x, y ≤ n}.
This paper extends this geometric interpretation and shows that

if P is an arbitrary convex polygon with k vertices and perimeter p,
the partial sums can be calculated in O

(
k + p(log p)2 log k

)
time.

We also use this extended method to solve an open problem of a
string pattern called cadence. A cadence is given by an arithmetic
progression of occurrences of the same character in a string such
that the progression cannot be extended to either side without
extending the string as well. For example, in the string 001001001
the indices (3, 6, 9) corresponding to the “1”s form a 3-cadence.
On the other hand, in the string 001010100 the indices (3, 5, 7) cor-
responding to the “1”s do not form a 3-cadence since, for example,
the index 1 is still inside of the string.

3-cadences can be found naı̈vely in quadratic time. In the pa-
per [1], a quasi-linear time algorithm for detecting the existence
of 3-cadences was proposed, but this algorithm also detects false
positives as the aforementioned string 001010100.

This paper fixes this issue and also extends the algorithm to the
slightly more general notion of (a, b, c)-partial-k-cadences. The
resulting extended algorithm also allows counting those partial-
cadences with a given character of an alphabet Σ of a string with
length n and only needs O

(
n(log n)2

)
time. Using a method pre-

sented by Amir et al. in [1], this implies that all (a, b, c)-partial-k-
cadences can be counted in O

(
min(|Σ|n(log n)2, n3/2 log n)

)
time.
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Furthermore, we show that the output of the counting algorithm
also allows finding x partial-cadences in O (xn) time.

This paper also gives similar results for 3-sub-cadences.
For the time complexity, we assume that arithmetic operations

with O(log n) bits can be done in constant time. In particular,
we want to be able to get the remainder of a division by a prime
p < 2(2n log(2n))2 in constant time.

Also, in this paper, we assume a suitable alphabet. I.e. the
characters are given by sufficiently small integers in order to allow
constant time reading of a given character in the string and in order
to allow sorting the characters.

Recent Work on (Sub-)Cadences
Recently, Funakoshi et al. [3] presented counting / locating

algorithms for k-(sub-)cadences for arbitrary k. Furthermore,
Pape-Lange [8] very recently proposed detecting algorithms for
3-cadences in grammar-compressed / uncompressed binary strings.
In the same work [8], he proved that the problems of detecting
several variants of cadences in grammar-compressed strings are
NP-complete.

2. (Sub-)Cadences and Their Definitions
While the concept of cadences in the context of strings was

already considered in [11] by Van der Waerden, the term cadence
dates back to 1964 and was first introduced by Gardelle and Guil-
baud in [5] (written in French). Since then, there were at least two
other, slightly different and non-equivalent definitions given by
Lothaire in [7], Chapter 3.3 and Amir et al. in [1].

This paper uses the most restrictive definition of the cadence,
which was introduced by Amir et al. in [1], and also uses their
definition of the sub-cadence, which is equivalent to Gardelle’s
cadence in [5] and Lothaire’s arithmetic cadence in [7], Chapter
3.3.

A string S of length n is the concatenation S = S [1..n] =

S [1]S [2]S [3] . . . S [n] of characters from an alphabet Σ.
Definition 1. A k-sub-cadence is a triple (i, d, k) of positive inte-
gers such that

S [i] = S [i + d] = S [i + 2d] = · · · = S [i + (k − 1)d]

holds.
In this paper, cadences are additionally required to start and end

close to the boundaries of the string:
Definition 2. A k-cadence is a k-sub-cadence (i, d, k) such that
the inequalities i − d ≤ 0 and n < i + kd hold.

Since for any k-sub-cadence the inequality i+(k−1)d ≤ n holds,
for any k-cadence i + (k − 1)d ≤ n < i + kd holds. This implies
k − 1 ≤ n−i

d < k and thereby k =
⌊

n−i
d

⌋
+ 1. It is therefore sufficient

to omit the variable k of a k-cadence (i, d, k) and just denote this
k-cadence by the pair (i, d).
Remark 1 (Comparison of the Definitions).
• The cadence as defined by Lothaire is just an ordered se-

quence of unequal indices such that the corresponding char-
acters are equal.

• The cadence as defined by Gardelle and Guilbaud addition-
ally requires the sequence to be an arithmetic sequence.

• The cadence as defined by Amir et al. and as used in this pa-

per additionally requires that the cadence cannot be extended
in any direction without extending the string as well.

For the analysis of cadences with errors, we need two more
definitions:
Definition 3. A k-cadence with at most m errors is a tuple
(i, d, k,m) of integers such that i, d, k ≥ 1 and i − d ≤ 0 and
n < i + kd hold and such that there are k − m different integers
π j ∈ {0, 1, 2, . . . , k − 1} with j = 1, 2, 3, . . . , k − m and

S [i + π1d] = S [i + π2d] = S [i + π3d] · · · = S [i + πk−md].

A particularly interesting case of cadences with errors is given
by the partial-cadences in which we know all positions where an
error is allowed:
Definition 4. For some different integers π j ∈ {0, 1, 2, . . . , k − 1}
with j = 1, 2, 3, . . . , p, a (π1, π2, π3, . . . , πp)-partial-k-cadence is a
triple (i, d, k) of positive integers with i − d ≤ 0 and n < i + kd
such that

S [i + π1d] = S [i + π2d] = S [i + π3d] · · · = S [i + πpd]

hold.
In this paper, we will only consider the case of k−3 errors. I.e. k-

cadences with at most k − 3 errors and (a, b, c)-partial-k-cadences
for three different integer a, b, c ∈ {0, 1, ..., k − 1}.

3. 3-Sub-Cadences and Rectangular Convolu-
tions

It is a direct consequence of van der Waerden’s theorem that
sufficiently large strings are guaranteed to have sub-cadences of a
given length:
Theorem 2 (Existence of sub-cadences (Van der Waerden [11]
(written in German), see Lothaire [7], Chapter 3.3)).

Let Σ be an alphabet and k an integer. There exists an inte-
ger N = N(|Σ|, k) such that every string containing at least N
characters has at least one k-sub-cadence

However, this theorem does not provide the number of k-sub-
cadences of a given string.

In this section, we will show that 3-sub-cadences with a given
character of a string of length n can be efficiently counted in
O

(
n log n

)
time. We will also show that arbitrary 3-sub-cadences

of a string of length n can be counted in O
(
n3/2(log n)1/2

)
time

and that both counting algorithms allow us to output x different
3-sub-cadences in O (xn) additional time if at least x different
3-sub-cadences exist.

Let σ ∈ Σ be a character. We will now count all 3-sub-cadences
with character σ.

Let (i, d) be a 3-sub-cadence. Since i + d =
i+(i+2d)

2 holds, the
position i + d of the middle occurrence of σ only depends on the
sum of the index i of first occurrence and the index i + 2d of the
third occurrence but does not depend on the individual indices
of those two positions. Therefore, it is possible to determine the
candidates for the middle occurrences with the convolution of the
candidates of the first occurrence and the candidates of the third
occurrence.

Let the sequence δ = (δ0, δ1, δ2, . . . , δn) be given by the indica-
tor function for σ in S :
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δi :=

1 if S [i] = σ

0 if S [i] , σ (this includes i = 0)

With this definition, the product δiδ j is 1 if and only if S [i] =

S [ j] = σ and otherwise is 0. Therefore ck =
∑

i+ j=k

(
δiδ j

)
= #{i :

S [i] = S [k − i] = σ} counts in how many ways the index k
2 lies

in the middle of two σ. These partial sums can be calculated in
O

(
n log n

)
time by convolution.

If k is odd or S
[

k
2

]
, σ holds, the index k

2 cannot be the mid-

dle index of a 3-sub-cadence. If S
[

k
2

]
= σ holds, the indicator

function δ k
2

is 1, and therefore δ k
2
δ k

2
= 1 holds as well. Since

the arithmetic progression (δ k
2
, 0, 3) consisting of three times the

number δ k
2

is not a 3-sub-cadence, the output element ck contains
one false positive. Additionally, for i + j = k with i , j and
S [i] = S [ j] = σ, the output element ck counts the combination
δiδ j as well as δ jδi.

Therefore,

sk :=


c2k−1

2 if S [k] = σ

0 if S [k] , σ

counts exactly the number of 3-sub-cadences with character σ
such that the second occurrence of σ has index k. The sum of the
sk is the number of total 3-sub-cadences with character σ.

Also, for each sk , 0, all those sk 3-sub-cadences can be found
in O(k) ⊆ O(n) time by checking for each index i < k whether
S [i] = S [k] = S [2k − i] = σ holds.

If the character σ is rare, we can also follow the idea of Amir
et al. in [1] for detecting 3-cadences with rare characters: If all
nσ occurrences of the character are known, the ck can be com-
puted in O(n2

σ) time by computing every pair of those occurrences.
Therefore:
Theorem 3. For every character σ ∈ Σ, the 3-sub-cadences with
σ can be counted in O(n log n) time. Also, if all nσ occurrences of
σ are known, the 3-sub-cadences with σ can be counted in O(n2

σ)
time.

Following the proof in [1], we can get all occurrences of every
character by sorting the input string in O

(
n log n

)
time. This im-

plies that the algorithm needs at most O
(∑

σ∈Σ min(n2
σ, n log n)

)
⊆

O
(

n
(n log n)1/2 n log n

)
= O(n3/2(log n)1/2) time.

Theorem 4. The number of all 3-sub-cadences can be counted in

O
(
min(|Σ|n log n, n3/2(log n)1/2)

)
time.

Theorem 5. After counting at least x 3-sub-cadences, it is possi-
ble to output x 3-sub-cadences in O(xn) time.

4. Non-Rectangular Convolutions
In this section, we will extend the geometric interpretation of the

convolution and show that for convex polygons P with k vertices
and perimeter p it is possible to calculate the partial sums

ck =
∑

i+ j=k
(i, j)∈P∩Z2

aib j

in O
(
k + p(log p)2 log k

)
time.

Let us imagine a graph where all integer coordinates (i, j) have
the value f (i, j) := aib j. We do not need the convolution in order

to determine the sum of the function values in a given rectan-
gle since we can use the simple factorization

∑n
i=0

∑m
j=0

(
aib j

)
=(∑n

i=0 ai
)(∑m

j=0 b j
)

in O(n + m) time. However, the convolution
provides the 2n partial sums on the 45◦-diagonals in almost the
same time of O

(
(n + m) log(n + m)

)
.

We will now extend this geometric interpretation firstly to tri-
angles with a vertical cathetus and a horizontal cathetus, then to
arbitrary triangles and lastly to convex polygons. In order to do
this, we will cover the given polygon P in polygons P+

p and P−m
such that for each integer point (i, j) the equality

#{P+
p |(i, j) ∈ P+

p} − #{P−m|(i, j) ∈ P−m} =

1 if (i, j) ∈ P

0 if (i, j) < P

holds, and we define

(cp)k :=
∑

i+ j=k
(i, j)∈P+

p∩Z
2

aib j and (cm)k := −
∑

i+ j=k
(i, j)∈P−m∩Z

2

aib j.

By construction, ck =
(∑

(cp)k

)
+ (

∑
(cm)k) holds. However, if

the edges and vertices of the polygons P+
p and P−m contain integer

points, we need to carefully decide for every of these polygons,
which edges and vertices are supposed to be included in the poly-
gons and which are excluded from the polygons.

0

yl

yl+yu
2

yu

xl xl+xu
2

xu

P′′

P′

Fig. 1 The right-angled triangle P in Lemma 1.

Lemma 1. Let P be a triangle with a vertical cathetus and a
horizontal cathetus and perimeter p. Let also the sequences
a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be given.

Then the partial sums

ck =
∑

i+ j=k
(i, j)∈P∩Z2

aib j

can be calculated in O
(
p(log p)2

)
time.

Proof. The proof will be symmetrical with regard to horizontal
and vertical mirroring. Therefore, without loss of generality, we
will assume that P is oriented as in Figure 1.

We first initialize the output vector c =

(cxl+yl , cxl+yl+1, cxl+yl+2, . . . , cxu+yu ) with zero. This takes
O (p) time.

In the following proof, we assume that both catheti are included
in the polygon and that the hypotenuse as well as its endpoints are
excluded. If this is not the expected behavior, we can traverse the
edges in O (p) time and for each integer point (i, j) on the edge, we
can decrease/increase the corresponding ci+ j by aib j if necessary.

If p is at most one, there is at most one integer point (i, j) in the
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triangle, and this point can be found in constant time. In this case,
we only have to increase ci+ j by aib j.

If p is bigger than one, we will separate the triangle P into three
disjoint parts as seen in Figure 1.
• The triangle P′ of points with x-coordinate of at least

⌈
xl+xu

2

⌉
,

• the triangle P′′ of points with y-coordinate of at least
⌈
yl+yu

2

⌉
and

• the red rectangle of points with x-coordinate of at most⌈
xl+xu

2

⌉
− 1 and y-coordinate of at most

⌈
yl+yu

2

⌉
− 1.

There are no integers bigger than
⌈

xl+xu
2

⌉
− 1 but smaller than⌈

xl+xu
2

⌉
nor integers bigger than

⌈
yl+yu

2

⌉
− 1 but smaller than⌈

yl+yu
2

⌉
− 1. Therefore, each integer point in P is in exactly one of

the three parts.
For the red rectangle, we can calculate the convolution and

thereby get the corresponding partial sums in O
(
p log p

)
time.

The partial sums corresponding to the sub-triangles are calculated
recursively. Increasing the ck by the partial results leads to the
final result.

Hence, the algorithm takes

O

p +

log2 p∑
i=0

2i
( p
2i log

p
2i

) + 2log2 p

 ⊆ O
log p∑

i=0

p log p


= O

(
p(log p)2

)
time. �

We will now further extend this result to arbitrary triangles:

0

0

yl

yl

yu

yu

xl

xl

xu

xu

Fig. 2 The two possible triangles P in Lemma 2.

Lemma 2. Let a triangle P with perimeter p and sequences
a = (a0, a1, a2, . . . , an) and b = (b0, b1, b2, . . . , bn) be given.

Then the partial sums

ck =
∑

i+ j=k
(i, j)∈P∩Z2

aib j

can be calculated in O
(
p(log p)2

)
time.

Proof. Let xl, yl, xu, yu be the minimal and maximal x-
coordinates and y-coordinates of the three vertices of the polygon

P. As in the last lemma, we first initialize the output vector
c = (cxl+yl , cxl+yl+1, cxl+yl+2, . . . , cxu+yu ).

Similarly to the last lemma, we can remove/add edges and ver-
tices in linear time with respect to p. Since the number of edges
and vertices is constant, we ignore them for the sake of simplicity.

Let R be the rectangle {(x, y)|xl < x < xu ∧ yl < y < yu}. Since
R has four edges but P only has three vertices, at least one of the
vertices of P is also a vertex of R. Without loss of generality, this
vertex is (xl, yl).
Case 1: The opposing vertex (xu, yu) in R also coincides with a

vertex of P (as in the upper part of Figure 2):
Without loss of generality, we can assume that the third vertex
of P is above the diagonal from (xl, yl) to (xu, yu). In this case,
the partial sums corresponding to P are given by the sum of
the partial sums of the red triangles and the partial sums of the
blue rectangle minus the partial sums of the lighter triangle.
There are only three triangles and one rectangle involved, and
each of those polygons has perimeter O (p). Furthermore, all
triangles have a vertical cathetus and a horizontal cathetus.
Therefore, using Lemma 1, we can calculate all partial sums
in O

(
p(log p)2

)
time.

Case 2: The opposing vertex (xu, yu) in R does not coincide with
a vertex of P (as in the lower part of Figure 2):
In this case, one vertex of P lies on the right edge of R and
one vertex of P lies on the upper edge of R.
The wanted partial sums are in this case the difference of the
partial sums of the rectangle and of the partial sums of the
three red triangles. Again, we can calculate all partial sums
in O

(
p(log p)2

)
time.

Since both cases require O
(
p(log p)2

)
time, this concludes the

proof. �

0

yl

yu

xl xu

Fig. 3 A regular k-gon. All chords from the leftmost vertex to the vertices
on the right-hand side of the k-gon are at least p

4 long. The sum of all
chords’ lengths is therefore Θ (kp)

Now we will extend this algorithm to convex polygons with k
vertices by dissecting them into k − 2 triangles by adding k − 3
chords. Since the time complexity of the triangular convolution
given by Lemma 2 depends on the sum of the triangles’ perimeters,
it is not sufficient to just select one vertex and connect it with every
other vertex in the polygon (see Figure 3). On the other hand, the
triangulation algorithm itself should not take longer than the con-
volutions. Additionally, the order in which the chords are added
does not matter for the convolutions. We will show that for convex
polygons there is a triangulation which can be computed in linear
time and only increases the perimeter by the factor O

(
log k

)
.

Theorem 6. Let P be a convex polygon with k vertices and

4ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-AL-181 No.3
2021/1/28



0

0

yl

yl

yu

yu

xl

xl

xu

xu

B
C

D

A

V1

V2

V3

V4

V5

V6V7

P′

Fig. 4 Two possible convex polygons P with more than 3 vertices in Lemma
6.

perimeter p. Let also the sequences a = (a0, a1, a2, . . . , an) and
b = (b0, b1, b2, . . . , bn) be given.

Then the partial sums

ck =
∑

i+ j=k
(i, j)∈P∩Z2

aib j

can be calculated in O
(
k + p(log p)2 log k

)
time.

Proof. As in the last two Lemmata, we define xl, yl, xu, yu to
be the minimal and maximal x-coordinates and y-coordinates of
the k vertices of P. Also, we first initialize the output vector
c = (cxl+yl , cxl+yl+1, cxl+yl+2, . . . , cxu+yu ). We further assume that
none of the edges and vertices of P is included in P.

If P is a triangle, then this Lemma simplifies to Lemma 2 and
there is nothing left to prove.

If P is a quadrilateral ABCD, as in the upper part of Figure 4,
then it can be partitioned into the triangles ABD and CDB where
the edge BD is included in exactly one triangle and all other edges
are excluded. The triangle inequality proves that |BD| ≤ |DA|+|AB|
and |BD| ≤ |BC| + |CD| hold. Therefore, both triangles have a
perimeter of at most p. This implies that the partial sums can be
calculated in O

(
p(log p)2

)
If P is a polygon V1V2V3 . . .Vk with more than four vertices, as

in the lower part of Figure 4, it can be partitioned into
• the polygon P′ = V1V3V5 . . .V2d k

2 e−1, which is given by the
odd vertices without its edges,

• the red triangles ViVi+1Vi+2 with i = 1, 3, 5, . . . , 2
⌈

k
2

⌉
− 3 in-

cluding the edge ViVi+2 but excluding the other edges and the
vertices,

• if k is even, the triangle Vk−1VkV1 including the edge Vk−1V1

but excluding the other edges and the vertices.
By construction and triangle inequality, the perimeter p′ of P′ is at
most p. This, however, also implies that the total perimeter

∑
pi

of the triangles is at most 2p. The inequality∑
min

(
1, pi(log pi)2

)
≤ k +

∑(
pi(log p)2

)
≤ k + p(log p)2

implies that the algorithm needs O
(
k + p(log p)2

)
time plus the

time we need for processing P′. Since each step almost halves the
number of vertices, we need O

(
log k

)
steps. This results in a total

time complexity of O
(
k + p(log p)2 log k

)
. �

5. (a,b,c)-Partial-k-Cadences
In this section, we will show how the non-rectangular convo-

lution helps counting the (a, b, c)-partial-k-cadences as defined in
Definition 4.

In particular, we will show that (a, b, c)-partial-k-cadences with
a given character σ can be counted in O

(
n(log n)2

)
time. We will

further show that all (a, b, c)-partial-k-cadences can be counted
in O

(
min(|Σ|n(log n)2, n3/2 log n)

)
time and that both counting al-

gorithms allow us to output x of those partial-cadences in O (xn)
time.

As a special case, these results also hold for 3-cadences.
We further conclude from these results that the existence of

k-cadences with at most k − 3 errors as defined in Definition 3 can
be detected in O

(
min(|Σ|k3n(log n)2, k3n3/2 log n)

)
time.

Without loss of generality, we will only deal with the case a < b
in this section.
Lemma 3. Three positions x, y and z form a (a, b, c)-partial-k-
cadence if and only if
• the equation y−x

b−a =
z−y
c−b ∈ Z holds,

• the equation S [x] = S [y] = S [z] holds and
• the inequalities

0 ≥
(b + 1)x − (a + 1)y

b − a
, (1)

0 <
bx − ay
b − a

, (2)

n ≥
(b − k + 1)x − (a − k + 1)y

b − a
and (3)

n < i + kd =
(b − k)x − (a − k)y

b − a
hold. (4)

Proof. Define d := y−x
b−a and i := x − ad. Then x = i + ad and

y = i + bd. Furthermore, the equation y−x
b−a =

z−y
c−b holds if and only

if z = i + cd and y−x
b−a ∈ Z holds if and only if d is an integer.

Additionally, using x = i + ad and y = i + bd, the four inequal-
ities can be simplified to 0 ≥ i − d, 0 < i, n ≥ i + (k − 1)d and
n < i + kd.

Therefore, the lemma follows from the definition of the partial-
cadence. �

The four inequalities hold if the points (x, y) lie inside the con-
vex quadrilateral given, as shown in Figure 5, by the corners

A =

(
an
k
,

bn
k

)
B =

(
(a + 1)n

k + 1
,

(b + 1)n
k + 1

)
C =

(
(a + 1)n

k
,

(b + 1)n
k

)
D =

(
an

k − 1
,

bn
k − 1

)

including the vertex C and the edges between B and C as well as

5ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-AL-181 No.3
2021/1/28



x

y

0 1
4 n 2

4 n

2
4 n

3
4 n

(1)(2)

(3)

(4)

(n, n)

A

B

C
D

Fig. 5 The four inequalities of Lemma 3 for (1, 2, 3)-partial-4-cadences.

between C and D but excluding all other vertices and the edges
between A and B as well as between D and A.

For given x = i+ad and y = i+bd, the third occurrence z = i+cd
can be calculated with the equation i + cd =

(b−c)(i+ad)+(c−a)(i+bd)
b−a

directly without calculating i and d first. The corresponding partial
sums

ck =
∑

i+ j=k
(i, j)∈P∩Z2

a i
(b−c)

b j
(c−a)

can be calculated by using the partial sums

ck =
∑

i+ j=k
(i, j)∈P′∩Z2

a′ib
′
j

with a′i :=

a i
b−c

if i ≡ 0 (mod b − c)

0 otherwise
and b′j :=b j

c−a
if j ≡ 0 (mod c − a)

0 otherwise
and a polygon P′, which is

derived from P by stretching the first coordinate by (b − c) and
the second coordinate by (c − a). The perimeter of P′ is at
most max(|b − c|, |c − a|) times the perimeter of P. Using the
quadrilateral P = ABCD with perimeter

p ≤ 2|Cx − Ax| + 2|Cy − Ay|

= 2
(

(a + 1)n
k

−
an
k

)
+ 2

(
(b + 1)n

k
−

bn
k

)
=

4n
k
∈ O

(n
k

)
,

the polygon P′ has perimeter p′ ∈ O (n). This proves the following
three theorems.
Theorem 7. For every character σ ∈ Σ, the (a, b, c)-partial-k-
cadences with σ can be counted in O(n(log n)2) time. Also, if all
nσ occurrences of σ are known, the (a, b, c)-partial-k-cadences
with σ can be counted in O(n2

σ) time.
Theorem 8. The number of all (a, b, c)-partial-k-cadences can be
counted in

O
(
min(|Σ|n(log n)2, n3/2 log n)

)
time.

Theorem 9. After counting at least x (a, b, c)-partial-k-cadences,
it is possible to output x (a, b, c)-partial-k-cadences in O(xn) time.

Since every 3-cadence is an (0, 1, 2)-partial-3-cadence, we also
obtain the special case:
Corollary 1. For every character σ ∈ Σ, the 3-cadences with σ

can be counted in O(n(log n)2) time. Also, if all nσ occurrences
of σ are known, the 3-cadences with σ can be counted in O(n2

σ)
time.

Therefore, the number of all 3-cadences can be counted in

O
(
min(|Σ|n(log n)2, n3/2 log n)

)
time.

Also, after counting at least x 3-cadences, it is possible to output
x 3-cadences in O(xn) time.

Taking the sum over all possible triples (a, b, c), we can also
search for k-cadences with at most k − 3 errors. It can be checked
in

O
(
min(|Σ|k3n(log n)2, k3n3/2 log n)

)
time whether the given string has a k-cadence with at most k − 3
errors. However, since k-cadences with less than k − 3 errors are
counted more than once, it seems to be difficult to determine the
exact number of k-cadences with at most k − 3 errors.

6. Conclusion
This paper extends convolutions to arbitrary convex polygons.

One might wonder whether these convolutions could be sped up
or be further extended to non-convex polynomials.

Instead of just partitioning the interior of the polygon into trian-
gles, it is also possible to identify polygons by the difference of a
slightly bigger but less complex polygon and a triangle. However,
if the algorithm presented in this paper is adapted to non-convex
polygons, it can generate self-intersecting polygons. While the
time-complexity stays the same for these polygons, it becomes
hard to ensure that every vertex and every edge of the polygon is
counted exactly once.

Another approach is given by Levcopoulos and Lingas in [6].
This paper shows that any simple polygon can be decomposed
into convex components in O

(
k log k

)
time while only increasing

the total perimeter by the factor O
(
log k

)
. This paper also shows

that if the input polygon is rectilinear, this partition only contains
axis-aligned rectangles. Since the convolution handles rectangles
quicker and more easily than triangles, this saves a logarithm.
However, in general, it is not obvious how to transform arbitrary
polygons into equivalent simple rectilinear polygons in quasilinear
time without blowing-up the number of vertices too much.

The non-rectangular convolution, unlike the usual convolution,
allows us to define a dependence between the indices of the convo-
luted sequences. This dependence is not usable in applications like
the multiplication of polynomials, and for many signal processing
applications this extended method does not seem to bring any
benefits either. However, in order to count the partial-cadences
this dependence was essential. The non-rectangular convolution
may also have future applications in image processing and convo-
lutional neural networks.

In terms of cadences, this paper presents algorithms to count
and find sub-cadences, cadences and partial-cadences with three el-
ements. However, if there are linearly many c-positions of (a, b, c)-
partial-k-cadences, the knowledge of those partial-cadences does
not lead to a sub-quadratic-time-algorithm for determining the
existence 4-cadences. On the other hand, it is also not shown that
this problem needs quadratic time.
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Also, the time-complexity O (xn) for finding x 3-cadences is
quite pessimistic. If there are many 3-cadences, it is very likely
that quite a few of these 3-cadences share one of their occurrences.
These occurrences can be found in O(n) time. On the other hand,
in the string 10n−112n, for example, there are linearly many 3-
cadences but every second occurrence and every third occurrence
only occurs in at most one of those 3-cadences.
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