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Abstract: As smartphones and tablets are widely spread and used, route recommendation and guidance services have
become commonplace. Conventional services in route recommendation and guidance try to give best routes in terms
of route length, time required, and train/bus fares, whereas even different users are given the same route when inputting
the same parameters. However, each user has various preferences from the aspect of safety and comfort. It is strongly
desirable to reflect the user’s preferences in route recommendation and recommend the most preferable route to every
user. Since user’s preferences are extremely vague and complicated, how to evaluate them in route recommendation
is one of the key problems there. In this paper, we propose a route recommendation method, called P-UCT method,
considering individual user’s preferences utilizing Monte-Carlo tree search. In the proposed method, we firstly ex-
tract route features based on the route recommendation history of every user and construct a route evaluator based on
Support Vector Machine (SVM). After that, the method generates a random route from a start point to an end point
by Monte-Carlo tree search. The route evaluator determines how well every generated route matches the user’s pref-
erences. By repeating the evaluation, the method obtains the route, which must be closest to the user’s preferences.
Experimental results demonstrate that the proposed method outperforms the existing method from the viewpoint of the
average evaluation scores. They also demonstrate that the proposed method provides the recommended route reflecting
the user’s individual preferences even if it learns the recommended route history of areas in different situations.
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1. Introduction

As smartphones and tablets are widely spread and used, route
recommendation and guidance services have become common-
place. Conventional services in route recommendation and guid-
ance try to give best routes in terms of route length, time required,
and train/bus fares, whereas even different users are given the
same route when inputting the same parameters [1], [2].

Generally, individual users have various preferences from the
aspect of safety and comfort. In fact, according to the question-
naires in Ref. [3], it is shown that users prefer a route with side-
walks, a small number of turns, and a small number of slopes.
It is strongly desirable to reflect the user’s preferences in route
recommendation and recommend the most preferable route to ev-
ery user. However, since user’s preferences are extremely vague
and complicated, how to evaluate them in route recommendation
becomes a great concern.

1.1 Previous Works
Route recommendation methods considering individual user’s

preferences proposed so far can be roughly classified into (1)–(3).
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(1) A route recommendation method based on the Dijkstra
method [3]
In Ref. [3], a method reflecting the user’s preferences by
applying the Dijkstra method is proposed. In this method,
based on the questionnaire survey, the user’s preferences are
quantified and reflected in the weighting of the route cost and
then the best possible route is recommended to every user.

(2) Route recommendation methods based on the genetic al-
gorithm [4], [5], [6], [7]
The methods using the genetic algorithm (GA) encode route
information as a gene. After that, GA generates a route by
repeating the crossover and mutation of superior individuals
calculated by a certain evaluation function. The advantages
of using GA are that multi-purpose optimization can be per-
formed simultaneously by designing a multi-purpose evalu-
ation function and that a suboptimal solution can be derived.
For example, in Ref. [4], a method using the multi-objective
genetic algorithm (MOGA) for car navigation is proposed.
In this method, each route is encoded into a gene and the
best possible route is recommended to each user by repeat-
ing crossover and mutation.

(3) Route recommendation methods based on fuzzy mea-
sures and fuzzy integral [8], [9]
The methods using fuzzy measures and fuzzy integral evalu-
ate a generated route by the non-additivity of fuzzy measure.
The weight of the user’s individual preferences is calculated
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by taking into account the interaction such as the synergistic
effect and the offset effect between the attributes that evalu-
ate the route. The preference correlation is calculated non-
additively, and the evaluation function is calculated using
a weighted sum. For example, in Ref. [8], a route recom-
mendation system based on the fuzzy measures and integral
model is proposed. Based on the detailed questionnaire sur-
veys for an individual user, the road weights are fully cus-
tomized somehow for the user and the system recommends
the satisfactory route.

In all of these previous researches, a user-specific route recom-
mendation is realized by giving the weights to the route elements
such as route length, number of turns, number of slopes based
on the questionnaire surveys. However, even if individual user’s
preferences are reflected in individual route elements, the entire
route may not match the user’s preferences. For example, when
a user prefers “a route in which the total length of stairs is equal
to the total length of slopes”, it is almost impossible to search for
such a route, just considering the weights of the route elements.
In this case, we have to evaluate an entire route, not an individ-
ual route element. Furthermore, in Ref. [8], customizing the road
weights based on detailed questionnaire surveys for every user is
necessary. However, it is generally too difficult for an individual
user to customize the road weights to always give best prefer-
able routes. In order to recommend a route that meets the user’s
preferences, it is essential to have a mechanism that evaluates an
entire route without explicitly customizing the weights of route
elements.

Now we focus on a Monte-Carlo tree search method [10], [11],
[12] to tackle this problem. In Monte-Carlo tree search, we can
evaluate an entire route by using the Monte-Carlo simulation. The
key point in the success of Monte-Carlo tree search is how to set
up the node evaluation index, called a UCB1 (Upper Confidence

Bound 1) value. In Refs. [10], [11], [12], the UCB1 value is set
up by giving the appropriate reward to the Monte-Carlo simula-
tion results. However, as far as we know, there exists no research
in which Monte-Carlo tree search is applied to route search, nor
effective design method for UCB1 value.

1.2 Our Proposal
In this paper, we propose a route recommendation method,

called P-UCT (Personalized Upper Confidence Tree) method,
considering individual user’s preferences utilizing Monte-Carlo
tree search *1. Particularly, we propose a P-UCB1 (Personalized

Upper Confidence Bound 1) value for node evaluation index so
that the Monte-Carlo tree search is efficiently applied to route
search. The proposed P-UCB1 value can be given to every inter-
section node in the given road network, which demonstrates how
much the intersection node can be preferable for an individual
user.

In the proposed method, we firstly extract route features based

*1 The preliminary version of this paper appeared in Ref. [13]. This paper
describes the details of the method including the features learned in Sup-
port Vector Machine in Section 3.3. Furthermore, we conducted many
experiments to confirm the effectivness of the proposed method in Sec-
tion 4.

on the route recommendation history of every user and construct
a route evaluator based on Support Vector Machine (SVM). By
introducing SVM, we can evaluate an entire route without explic-
itly customizing the weights of route elements for every user. Af-
ter that, the method generates a random route from a start point
to an end point by Monte-Carlo tree search using P-UCB1 val-
ues. The route evaluator determines how well every generated
route matches the user’s preferences. By repeating the evalua-
tion, the method obtains the route, which must be closest to the
user’s preferences.

1.3 Contributions of the Paper
The contributions of this paper are summarized as follows:

( 1 ) We propose a route recommendation method utilizing Monte
Carlo tree search, where we can evaluate an entire route and
hence effectively realize route recommendation considering
user’s preferences.

( 2 ) In order to apply Monte Carlo tree search to route rec-
ommendation, we newly propose a P-UCB1 value, which
demonstrates how much the intersection node in a given road
network can be preferable for an individual user.

( 3 ) The experimental results demonstrate that the average score
of the proposed method becomes 3.00 (the full score is 4.00)
when 30 routes are learned beforehand, while that of the ex-
isting method becomes 1.875. We also demonstrate that the
proposed method provides the recommended route reflecting
the user’s individual preferences even if it learns the recom-
mended route history of areas in different situations.

1.4 Organization of the Paper
The rest of this paper is organized as follows: Section 2 firstly

defines a road network and route recommendation history. Af-
ter that, a route recommendation problem is defined. Section 3
proposes a route recommendation method called P-UCT method
considering user’s individual preferences. Section 4 demon-
strates experimental evaluations and Section 5 gives concluding
remarks.

2. Route Recommendation Problem Consider-
ing User’s Individual Preferences

2.1 Road Network
A road network is represented by the graph G = (V, E)*2, where

V is a set of nodes showing intersections, corners, and intersec-
tions of pedestrian crossings and foot-bridges and E is a set of
edges between nodes. A set of landmarks L = {l1, l2, · · · , lk} is
given to the road network additionally. Here, vs ∈ V is simply
called an intersection node and eu ∈ E is called a road edge.

The intersection node vs ∈ V has the parameters of latitude lat,
longitude lng, altitude z, a set of visible landmarks Lvisible ⊆ L,
where a visible landmark refers to a landmark visible at the target
node [16].

Each edge e ∈ E is associated with the road width parameter
w, which shows e is a main road or not (if w = 1, the edge is a
main road). Each edge e ∈ E is also associated with the road type

*2 The road network is provided by Zenrin [17].
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Fig. 1 Road network example.

Table 1 Typical landmarks and non-typical landmarks.

Typical landmarks

Government office facilities,
Government building,
Educational institutions,
School, Hospital，Leisure, Traffic,
Accommodation building,
Commercial building,
Target building, General building,
Station building

Non-typical landmarks Other than those above

Fig. 2 Route recommendation history example.

ct (ct = either of “sidewalk”, “crosswalk”, or “none”) and the
road gradient type sl (sl = either of “stairway”, “slope”, “step”,
or “flat”).

Each landmark lt ∈ L has the parameters of the category lc,
height h, and a set PP of its coordinates. The landmark category
lc indicates whether the landmark is a typical landmark or not (if
lc = 1, the landmark is a typical landmark). Table 1 lists the typ-
ical landmarks used. PP shows a set of vertex coordinates of the
landmark lt, when lt is regarded as a polygon on a map.
Example 1. An example of a road network is shown in Fig. 1.
Figure 1 (a) shows a map composed of main roads (wide roads)
and non-main roads (narrow roads). In Fig. 1 (a), we have
two landmarks, a hotel and a restaurant. The road network
G = (V, E) showing Fig. 1 (a) is depicted as in Fig. 1 (b), where
V = {v1, v2, · · · , v9} and E = {e1, e2, · · · , e16}. The edges in
{e1, · · · , e10} show the main roads and those in {e11, · · · , e16}
show the non-main roads. Whether it is a main road or not
is judged by the road width parameter w. l1 and l2 show the
landmarks of the hotel and the restaurant, respectively. Each
landmark has a set of landmark coordinates. l1 has a set of
coordinates {pp1, pp2, pp3, pp4} and l2 has a set of coordinates
{pp5, pp6, pp7, pp8}.

2.2 Route Recommendation History
The route recommendation history consists of a set of routes

H = {h1, h2, · · · , hu} to which the user u has been recommended
beforehand and a parameter like(hi) (1 ≤ i ≤ u) representing
whether each route hi is preferable or not to the user u. Ev-
ery route in the route set H has various start point and end
point and the parameter like(hi) has a two-stage evaluation value:
{like, dislike} = {1, 0}.

Figure 2 shows an example of route recommendation history.
In Fig. 2, two routes h1 (blue line) and h2 (red line) are already
recommended to the user u. The route h1 does not match the pref-
erences of the user u, and the route h2 matches the preferences of
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Fig. 3 Route recommendation problem.

the user u.

2.3 Route Recommendation Problem
A route recommendation problem here is defined as follows:
Route recommendation problem: Given a road network G =

(V, E), a start point vs ∈ V and an end point vg ∈ V , and a user’s
route recommendation history, a route recommendation problem
is to find a route from vs to vg satisfying the user’s individual pref-
erences based on his/her route recommendation history.
Example 2. For example, assume that a road network as shown
in Fig. 2 is given and a user has the preference that “some amount
of route detours are acceptable and it is better to go along a main
road” under the route recommendation history. The start point vs
and the end point vg are also given in Fig. 3. In this case, the red
route as in Fig. 3 is generated, which is composed of main roads
and matches the user’s preferences. The blue route in Fig. 3 gives
the shortest route from vs to vg but it is not preferable to the user.

3. Route Recommendation Method Consider-
ing User’s Individual Preferences

In the route recommendation problem above, we have to reflect
the following two points:
(a) Firstly, we have to take into account individual user’s prefer-

ences.
(b) Secondly, we have to introduce a mechanism to evaluate an

entire route, not a partial route.
In order to realize (a), the proposed method adopts machine

learning by a support vector machine (SVM) [18], which is
known as a powerful two-class pattern classifier. In the proposed
method, a user recognizes every recommended route to be like or
dislike in the route recommendation history and hence the two-
class pattern classifier like SVM can be effectively applied to it
without explicitly customizing the weights of route elements for
every user.

In order to realize (b), the proposed method adopts a UCT

(Upper Confidence Tree) approach [10], which is one of typical
Monte-Carlo tree search methods. In Monte-Carlo tree search, a
large number of Monte-Carlo simulations are performed to ob-
tain a sub-optimal solution where complete routes can be evalu-
ated. We also propose a P-UCB1 value to apply Monte-Carlo tree
search to route recommendation. The proposed P-UCB1 value
can be given to every intersection node in the given road net-
work, which demonstrates how much the intersection node can
be preferable for an individual user.

Based on the above discussion, we propose a P-UCT method
as follows:

3.1 P-UCT Method
Given a road network G = (V, E), the proposed route recom-

mendation method consists of the following three phases (1)–(3):
Phase (1): Generate a route evaluator

Before performing the route search, extract 20 route features
from every route in the route recommendation history and
generate a route evaluator using SVM (see Section 3.3 be-
low).

Phase (2): Set up start and end points
Specify the start point vs ∈ V and the end point vg ∈ V in the
road network. Place the pointer vnow onto vs. Initialize the
number of Monte-Carlo simulations and the P-UCB1 value
for all nodes to 0.

Phase (3): Route search and recommendation
This phase consists of the following five steps (3-1)–(3-5):
Step (3-1): Selection
On the road network, select one node vselect with the largest
P-UCB1 value among all the nodes adjacent to vnow.

Step (3-2): Simulation
Generate a random route from vselect to vg (Monte-Carlo
simulation) *3. The generated route is called a playout

route.
Step (3-3): Playout route evaluation
Extract 20 route features from the playout route generated
by Step (3-2) and calculate the probability 0 ≤ rwselect ≤ 1
based on 20 route features using the route evaluator (rwselect

is called a reward). rwselect shows how well the playout
route matches the user’s preferences.

Step (3-4): Update P-UCB1 value
Update the P-UCB1 value of vselect using rwselect (see Sec-
tion 3.2 below). Increase the number of Monte-Carlo sim-
ulations for vselect by 1.

Step (3-5): Route generation
Repeat Steps (3-1) to (3-4). At the end of Step (3-4), if

*3 In Step (3-2) of Phase (3), a number of random routes to destination
(playout routes) are generated by Monte-calro simulation. All the play-
out routes that reach the destination are evaluated in the next step. How-
ever, due to the randomness of route generation, not all routes generated
reach the destination in Step (3-2). Since we cannot evaluate a route that
does not reach the destination, it is necessary to terminate the simulation
in such a case. In order to generate a route without detouring too much,
we set the following conditions for the cancellation of the simulation:
Let L be the linear distance from vselect to vg. In order to generate a route
without detouring too much, we generate a random route from vselect to
vg whose distance is not larger than NL×L, where NL shows a parameter.
Through the preliminary experiments, we tried various NL values and set
up NL = 5 in the experiments in Section 4.
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Fig. 4 Example of the P-UCT method.

the number of Monte-Carlo simulations for vselect reaches
the threshold Nth, *4 move the pointer vnow to vselect. If vnow

reaches vg, output the route from vs to vg along trajectory of
the pointer vnow.

Example 3. Figure 4 shows an example of the proposed P-UCT
method. We firstly generate a route evaluator based on the route
recommendation history (Phase (1), See Section 3.3). After the
user specifies the start point and end point, the pointer vnow is
placed on the start point (Phase (2), Fig. 4 (a)). Since the node
vnow is adjacent to the two nodes v1 and v2, we select the one
with a larger P-UCB1 value. In this case, we select v2, i.e.,
v2 = vselect (Step (3-1) of Phase (3), Fig. 4 (b)). We randomly
generate a route from v2 to vg, called a playout route (Step (3-
2) of Phase (3), Fig. 4 (c)). In Fig. 4 (c), the dotted blue route

*4 The number of playout routes to apply depends on the threshold Nth in
Step (3-5) of Phase (3). Through the preliminary experiments, we also
tried various Nth values and set up Nth = 100 in the experiments in Sec-
tion 4.

shows a playout route. By extracting 20 route features from
the playout route, the route evaluator calculates the reward rw2

(0 ≤ rw2 ≤ 1), showing how well the playout route matches the
user’s preferences (Step (3-3) of Phase (3), Fig. 4 (d)). The P-
CUB1 value of v2 is updated by using the rw2 value and the num-
ber of Monte-Carlo simulations in v2 is increased by 1 (Step (3-4)
of Phase (3), Fig. 4 (e)). This process is repeated until the number
of Monte-Carlo simulations in the node vselect reaches the thresh-
old N. When it reaches N, vnow is moved to vselect and the route
from vs to vselect is determined. For example, if the number of
Monte-Calro simulations of v2 reaches N when v2 is currently
vselect, vnow is moved to v2 (Step (3-5) of Phase (3), Fig. 4 (f)).

3.2 P-UCB1 Value
The P-UCB1 value is a node evaluation index that represents

the potential of each intersection node v j ∈ V based on the UCB1
value [10]. It directly controls the behavior of the P-UCT method
proposed in Section 3.1.
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The initial P-UCB1 value of every intersection node is set to
be ∞. Then, based on Ref. [10], the P-UCB1 value of the inter-
section node v j is calculated as follows:

P-UCB1(v j) = X j +

√
2 log n

n j
. (1)

In Eqn. (1), Xj is the expected reward value to be returned when
the intersection node v j is selected, n j shows how many times the
intersection node v j is selected as vselect, and n is the sum of the
selection numbers (n j value) of all the intersection nodes in the
road network. Note that n and n j are reset to 0 every time vnow is
updated.

The expected reward value Xj is given by:

X j =

n j∑
k=1

rw j(k)

n j
, (2)

where rw j(k) is a reward for v j for the k-th playout route from v j.
By using the P-UCB1 value above, we can have the two advan-

tages below:
( 1 ) Intersection nodes with large expected reward values (likely

to generate a preferable route) are likely to be selected and
Monte-Carlo simulations will be performed for them.

( 2 ) Intersection nodes, not much selected before, are likely to be
selected, by adding the second term of Eq. (2).

This is because the P-UCB1 value is composed of (expected
value) + (biased value) and the bias value increases when the in-
tersection node is not much selected (i.e., n j decreases).

3.3 Route Features and a Route Evaluator
3.3.1 Route Features

According to Matsuda’s questionnaire survey [3], pedestrian
users generally have needs for road types and slope types such as
“I want to go through a road with a sidewalk” or “I want to avoid
stairs”. With regard to the safety characteristics, Matsuda [3]
incorporates “presence or absence of sidewalks” and “presence
or absence of crosswalks” as safety conditions. Therefore,
the proposed method adopts these conditions as feature values
and incorporates them as indicators of “Safety” and “Comfort”.
Yonekura’s study [14] reports that it is easy to memorize a route
using landmark information. The proposed method adopts these
conditions as feature values and incorporates them as indicators
of “Difficulty to get lost”.

In the proposed method, we do not adopt the feature of the time
required directly, but it can be indirectly evaluated by obtaining
the feature of the route length (“Time required” later). Accord-
ingly, we consider that the categories that we introduce here cor-
respond to user’s preferences.

Based on the these results, we extract 20 road features from a
complete route from the start point to the end point as follows:
(A) Time required

1. Route length
Route length is the total distance from the start point to the
end point along the route, which definitely affects the user’s
preference.

Fig. 5 Route from vs to vg.

(B) Difficulty to get lost
2. Number of branches

The number of branches can be an indicator of the like-
lihood of being lost in the route, which may much affect
the user’s preference. The larger the number of intersection
nodes in the route becomes, the more we expect that the
user is likely to be lost. In addition to that, the larger the
number of branches in every intersection node is, the more
we expect that the user is likely to be lost.

Then we define the feature value to be the total num-
ber of intersection nodes included in the route and the total
number of intersection nodes adjacent to one of the inter-
section nodes in the route excluding vg.

For example, assume that we have a red route from vs to
vg as shown in Fig. 5. In this case, we have four intersection
nodes {v1, v4, v7, v8} included in the route. The intersection
node adjacent to v1 (= vs) is v2. The intersection nodes ad-
jacent to v4 are v3 and v5. The intersection nodes adjacent to
v7 are v5 and v6. The node v5 is counted twice here. Hence,
the number of branches here becomes 9.

3. Number of turns
According to Yamamoto’s study [15], humans recognize di-
rections based on eight directions and the number of turns
also definitely affects the user’s preference.

Thus, if the route direction is changed by 22.5 degrees
or more, we consider it to be a left/right turn. The number
of turns is defined by the total number of left/right turns in
the route.

4. Number of visible landmarks
A visible landmark is a landmark that can be visually seen
from each intersection node. In the proposed method, the
visible landmarks at each intersection node are determined
using the Takeda’s method [16].

The number of visible landmarks is the average number
of visible landmarks per intersection node in the route.

5. Number of typical visible landmarks
Typical visible landmarks are those whose category lc cor-
responds to typical landmarks of Table 1 in visible land-
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marks.
The number of typical visible landmarks is the average

number of typical visible landmarks per intersection node
in the route.

6. Number of non-typical visible landmarks
Non-typical visible landmarks are those whose category lc

corresponds to non-typical landmarks of Table 1 in visible
landmarks.

The number of non-typical visible landmarks is the aver-
age number of non-typical visible landmarks per intersec-
tion node in the route.

(C) Safety
7. Route length of sidewalks

Route length of sidewalks is the total distance of the edges
whose road type ct is “sidewalk” in the route.

8. Number of sidewalk edges
Number of sidewalk edges is the total number of the edges
whose road type ct is “sidewalk” in the route.

9. Route length of crosswalks
Route length of crosswalks is the total distance of the edges
whose road type ct is “crosswalk” in the route.

10. Number of crosswalk edges
Number of crosswalks edges is the total number of the
edges whose road type ct is “crosswalk” in the route.

11. Route length of main roads
Route length of main roads is the total distance of the edges
whose road width parameter w shows “main road” in the
route.

12. Number of highway edges
Number of main road edges is the total number of the edges
whose road width parameter w is “main road” in the route.

(D) Comfort
13. Route length of stairways

Route length of stairways is the total distance of the edges
whose road type ct is “stairway” in the route.

14. Number of stairways
Number of stairways is the total number of the edges whose
road type ct is “stairway” in the route.

15. Route length of slopes
Route length of slopes is the total distance of the edges
whose road type ct is “slope” in the route.

16. Number of slopes
Number of slopes is the total number of the edges whose
road type ct is “slope” in the route.

17. Route length of step
Route length of steps is the total distance of the edges
whose road type ct is “step” in the route.

18. Number of steps
Number of steps is the total number of the edges whose
road type ct is “step” in the route.

19. Route length of flat roads
Route length of flat roads is the total distance of the edges
whose road type ct is “flat” in the route.

20. Number of flat road edges
Number of flat road edges is the total number of the edges
whose road type ct is “flat” in the route.

3.3.2 Route Evaluator
In the proposed method, SVM is used to learn the route fea-

tures of every recommended route in the route recommendation
history and classify every playout route. Here, SVM is used be-
cause a user recognizes every recommended route to be like (= 1)
or dislike (= 0) in the route recommendation history and hence
the two-class pattern classifier like SVM can be effectively ap-
plied to it. The parameters of SVM are optimized by grid search,
and are set as the polynomial kernel, the cost parameter C = 1,
and the hyper parameter γ = 0.1.

By learning many recommended route data by SVM, we can
generate a route evaluator based on SVM. When a test route is
given to the learned SVM, it outputs the value how much the route
matches the user’s preferences ranging from 0.0 to 1.0.

4. Evaluation Experiment

We implemented the proposed method in Python 3 on Intel
Core i7 CPU with 16GB RAM and carried out route recommen-
dation experiments. We performed two experiments to confirm
the effectiveness of the proposed method.

In Experiment 1, we evaluated the recommended routes for
eight males and females aged from 22 to 23 as test users.
The maps used were selected around Shinjuku Station and
Takadanobaba Station, Tokyo, Japan.

In Experiment 2, we evaluated the recommended routes for six
males and females aged from 22 to 55 as test users. In order to
investigate whether the route recommendation history collected
only in urban areas is also effective for route recommendation
in the suburbs, we used the route recommendation history col-
lected only in urban areas and performed route recommendation
in both suburbs and urban areas. The maps used were selected
Itoshima and Kitakyushu, Fukuoka, Japan as a suburb area. The
maps used were selected around Tenjin Station and Kokura Sta-
tion, Fukuoka, Japan as an urban area.

The example maps used for the experiments are shown in
Fig. 6. The maps used in the experiments except for Takadanob-
aba Station area have the area size of 1,000 m × 1,000 m. The
map around Takadanobaba Station has the area size of 1,900 m ×
2,300 m. The number of intersection nodes, edges, and landmarks
of these maps are shown in Table 2 and Table 3.

4.1 Experimental Set Up
Experiment 1 was carried out according to the following pro-

cedures (1-1)–(1-5).
(1-1) Fill-out

We prepare random 15 pairs of different start points and end
points in the target maps (5 pairs around Shinjuku Sta. and
10 pairs around Takadanobaba Sta.) and a test user writes in
his/her preferable routes into the maps. Every pair of start
and end points has a linear distance of 300 m to 1,000 m.

(1-2) Setup a route evaluator
Every route that completely matches the written route in
Procedure (1-1) is considered to be a positive example for
the test user. We also generate random routes and consider
them to be negative examples. Then we learn these positive
and negative examples using the SVM classifier and set up a
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Table 2 Map data information of Experiment 1.

Map data # of intersection nodes # of edges # of landmarks
Shinjuku Station area 4881 5611 66

Takadanobaba Station area 10614 11936 130

Table 3 Map data information of Experiment 2.

Map data # of intersection nodes # of edges # of landmarks

Suburb
Itoshima area 809 832 0

Kitakyusyu area 522 534 0

Urban
Tenjin Station area 4938 5786 105
Kokura Station area 3154 3621 51

Fig. 6 The example maps used for the experiments.

route evaluator.
In this experiment, the number of routes learned by SVM

is 10, 20, and 30, in which the number of positive examples
and the number of negative examples *5 are always the same

*5 The route data learned as a negative example is a randomly generated
route from the specified start point to the end point. The method of gen-
erating this random route is simple: select one node randomly from the
intersection nodes connected to the start point to proceed, and then re-
peat the process of selecting one randomly from the intersection nodes
connected to the current intersection node to proceed in the same way.
We simply consider the routes generated above to be negative examples
in Experiment 1 and Experiment 2.

(for example, when we learn 10 routes by SVM, 5 positive
examples and 5 negative examples are learned) *6.

(1-3) Route recommendation
After having learned the fixed number of positive and neg-
ative examples by SVM in Procedure (1-2), a new pair of
start and end points which linear distance is 300 m–1,000 m,
not used in learning, are specified in the target map and a
route between them is recommended to the test user by the
proposed P-UCT method.

(1-4) Evaluation
The test user evaluates how well the route recommended
by the proposed method matches the test user’s preferences.
The evaluation is done by the five-scale rating. The lowest
evaluation score is 0 and the highest evaluation score is 4.
Note that a user cannot well evaluate the recommended route
to be “like” or “dislike”, if detailed factors such as landmark
and road conditions as discussed in Section 3.3.1 are not pro-
vided. However, in Experiment 1, the test users commute to
or live in the target map areas and the test users well know
every route on the map areas. Hence they can evaluate every
route by assuming the actual road conditions with only map
information.

(1-5) Comparison with the existing method
For the comparison purpose, we also carry out route rec-
ommendation using the method proposed in Ref. [3] *7. In
the same way, the test user evaluates the generated route by
Ref. [3] using the five-scale rating.

In order to reflect user’s preferences, one of the easiest
ways is that we perform a large-scale questionnaire survey
for each user from the viewpoints of the route features such
as in Section 3.3.1 and construct a route recommendation
system customized for every user. But it must be impractical
because performing such a large-scale questionnaire survey
requires much time and effort and it must be a burden for

*6 If we evaluate routes using SVM on data with unbalanced number of
positive and negative examples, the results are generally pulled towards
the class with more ones (to the positive direction if there are more pos-
itive ones and to the negative direction if there are more negative ones).
Therefore, it can be true that the balanced examples are used in route
learning. As in the footnote *5, we can easily generate negative exam-
ples and hence we prepare the same number of positive and negative
examples in the experiments.

*7 Ref. [3] is based on Dijkstra method, but when each path element (e.g.,
slope, crosswalk) is passed, the actual distance is multiplied by the
pathfinding parameter associated with each path element. The pathfind-
ing parameters are predetermined by the questionnaire. For example,
the slope parameter is 1.418, which results in a larger distance than the
actual slope distance.
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Table 4 Experimental results in Experiment 1.

Route recommendation method
Score by test user

Average score
A B C D E F G H

Proposed method
Number of learning routes = 10 0 0 0 3 0 2 2 0 0.875
Number of learning routes = 20 0 2 4 3 2 1 4 3 2.375
Number of learning routes = 30 4 4 4 4 0 1 4 3 3.000

Existing method [3] 2 4 4 0 0 2 1 2 1.875

every user. Hence, in Ref. [3], the general weights are de-
signed to route elements based on the large-scale surveys for
many users at once and the best preferable routes are gen-
erated to almost all the users without explicitly customizing
the weights of route elements for every user. How to weigh
each factor is another concern and the method [3] solves this
problem effectively by using the Dijkstra’s method. This is
quite a practical approach.

On the other hand, the proposed method does not explic-
itly obtain a large-scale questionnaire survey for route rec-
ommendation for every user but instead just asks whether
the route is like or dislike in the route history. The proposed
method learns the route based on the 20 route features by
SVM but every user does not have to characterize each route
feature in the questionnaire.

Both of the approaches are quite similar from the view-
point of reducing the users’ burden but provides the route
preferable to users. In this sense, we believe that the com-
parison is fair.

Experiment 2 was carried out according to the following proce-
dures (2-1)–(2-3).
(2-1) Setup a route evaluator

We obtain 50 positive and negative examples (route recom-
mendation histories) in only urban areas per test user by the
same procedure as in Experiment 1. After that, we learn
these positive and negative examples using the SVM classi-
fier and set up a route evaluator.

(2-2) Route recommendation
After having learned 50 positive and negative examples by
SVM in Procedure (2-1), a new pair of start and end points
which linear distance is 1,000 m, not used in learning, is
specified in the target map and a route between them is rec-
ommended to the test user by the proposed P-UCT method.
At this time, we perform route recommendation in both sub-
urb and urban areas 40 times each.

(2-3) Evaluation
The test user evaluates how well the route recommended
by the proposed method matches the test user’s preferences.
The evaluation is done by the five-scale rating. The lowest
evaluation score is 0 and the highest evaluation score is 4.
In Experiment 2, the test users also commute to or live in
the target map areas and the test users well know every route
on the map areas. Hence they can evaluate every route by
assuming the actual road conditions with only map informa-
tion.

4.2 Experimental Results
4.2.1 Result of Experiment 1

The results in Experiment 1 are shown in Table 4. The num-

ber of learning routes is the routes learned in Procedure (2) of
Section 4.1 (the sum of positive and negative examples), and A–
H show the test users. The numbers below the test users show
the five-scale scores which each test user gives to every recom-
mended route. As shown in Table 4, the average score of the
proposed method is 0.875, 2.375, and 3.000 when 10, 20, and
30 learning routes are given, respectively. On the other hand, the
average score of the existing method [3] is 1.875.

As an example, the route recommendation results of the test
user A are shown in Figs. 7–10. When the number of learning
routes is 10 or 20, the evaluation score becomes 0 since the pro-
posed method recommends complicated and hard-to-understand
routes to the test user. When the number of learning routes
reaches 30, the evaluation score becomes 4 since the proposed
method recommends the route which is almost the same as the
one that the test user usually uses. The route recommended by
the existing method [3] (Fig. 10) has a small number of turns but
is not easy to understand. The test user gives the score of 2 to this
route.

Table 6 summarizes the feature values in Section 3.3.1 for
Fig. 9, Fig. 10 and the route that the test user A usually uses. Each
value in Table 6 shows the average value for every category. As
Table 6 indicates, the proposed method recommends the route
very close to the one that the test user A usually uses quantita-
tively, comparing to the existing method.

The purpose of Experiment 1 is to investigate how many routes
in the recommendation history we need to learn to obtain rea-
sonably good results. We can clearly obtain a high-scored result
when the number of routes in the route history is increased. Par-
ticularly, when we learn 30 routes in the proposed method, the
scores of the obtained routes become the highest in almost all
the cases and higher than those of the existing method in almost
all the cases. As in Figs. 7–10, the obtained routes must be good
enough when we learn 30 routes. We cannot say that 20–30 routes
are sufficient theoretically in machine learning but these results of
Table 3 and Figs. 7–10 show that the proposed method is superior
to the existing method when learning 20 or more routes at least.

However, it must be important to see if the number of routes is
increased more. Table 7 summarizes the results on the additional
experiment. In this experiment, the set up is the same as Experi-
ment 1 but the number of routes learned is increased to up to 100.
In this case, the test user H participates in this experiment, since
the score of the test user H does not reach the highest level when
30 routes are learned. Even if the number of the routes learned is
increased, the score is not changed too much. We consider that
learning 30–50 routes can lead reasonably good results.

Overall, when the number of learning routes is 20 or 30, the
results show that the proposed method outperforms the existing
method in most cases. The results indicate that, if the test user
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Table 5 Experimental results in Experiment 2.

Map used for route recommendation
Average score by test user

Overall average
I J K L M N

Suburbs 3.20 3.30 2.95 3.15 2.95 3.15 3.117
Urban areas 3.35 3.20 2.85 3.40 3.15 3.10 3.175

Table 6 Comparison of features for each route.

Feature categories Time required Difficulty to get lost Safety Comfort
Route by proposed method (Fig. 9) 0.87 1.03 0.20 0.02
Route by existing method (Fig. 10) 0.76 1.15 0.20 0.02

Route usually taken 0.86 1.05 0.19 0.02

Fig. 7 The route recommendation result to the test user A by the proposed
method (10 learning routes).

Fig. 8 The route recommendation result to the test user A by the proposed
method (20 learning routes).

prefers main roads and a small number of left/right turns, the pro-
posed method can easily find out those preferable routes, even
if the number of learned routes is small. However, if the test
user prefers a route which goes through a complicated residen-
tial area or park, the proposed method cannot always generate a
satisfactory route. This is because the proposed method is based
on Monte-Carlo simulations and cannot always obtain the best
results when too complicated routes are preferable.

Fig. 9 The route recommendation result to the test user A by the proposed
method (30 learning routes).

Fig. 10 The route recommendation result to the test user A by the existing
method [3].

4.2.2 Result of Experiment 2
The results in Experiment 2 are shown in Table 5. I–N show

the test users. As shown in Table 5, the average of the evaluation
scores of the route recommendation results in urban areas was
higher, but the difference was just 0.058 points.

As an example, the route recommendation results of the test
user I are shown in Figs. 11 and 12. Figure 11 shows the route
recommendation result in a suburb area and Fig. 12 shows one
in an urban area. In both cases, the evaluation scores become
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Table 7 The test user H’s rating of the recommended routes.

Method
Proposed method

Existing method [3](# of learning routes)
10 20 30 50 70 100

Score 0 3 3 3 3 3 3

Fig. 11 The route recommendation result in a suburb area.

Fig. 12 The route recommendation result in an urban area.

4 since the proposed method recommends easy-to-understand
routes with few turns.

With regard to the differences in road characteristics between
suburb and urban roads, the main differences are in the number of
intersection nodes and landmarks, as shown in Table 3. Roughly
saying, the number of intersection nodes in the suburb areas is
1/4–1/6 compared to the urban areas. The number of edges in the
suburb areas is 1/10–1/4 compared to the urban areas. There may
be no landmarks in the suburb areas. Based on this premise, Ex-
periment 2 is conducted with the proposed method learning only
urban routes. The results of Experiment 2 show that the recom-
mendation accuracy is almost the same in both suburb and urban
areas, as shown in Table 5. As in Table 5, the score of the suburb
areas is higher in some users but the score of the urban areas is
higher in other users. The difference between them is very small.
“0.058” shows the difference between the average scores in sub-
urb and urban areas in all the users, which we believe is small
enough. Table 5 indicates that the proposed method is effective
even in areas with different characteristics.

This result shows that: even when the recommended route his-
tory collected only in urban areas was used for route recommen-
dation in the suburb area, the recommended route reflected the

Table 8 Average computation time of the route recommendation in the pro-
posed method.

Linear distance between
Average computation time

start and end points
300 m 125 s
500 m 385 s
700 m 1,158 s

1,000 m 3,027 s

user’s individual preferences.

4.3 Computation Time
In order to justify the effectiveness of the proposed method,

the computation time to obtain every converged result of the pro-
posed method is summarized in Table 8. The computation time
is the average of 20 route recommendations for every linear dis-
tance, varying start and end points.

As in Table 8, the proposed method requires 100–3,000 sec-
onds to obtain a recommended route currently. The computation
time is approximately 120 seconds when the linear distance be-
tween start and end points is 300 m, which may be acceptable,
but as the linear distance becomes larger, the computation time
also becomes larger. Since the implementation of the proposed
method is just the first trial to confirm the effectiveness of the
proposed method, the computation time can be reduced by im-
plementing the method more carefully. How to reduce the com-
putation time so that the quality of recommended routes is not
degraded is one of the most important future works.

5. Conclusion

In this paper, we proposed a route recommendation method,
called P-UCT method, considering individual user’s preferences
utilizing Monte-Carlo tree search. The experimental results
demonstrate that the average score of the proposed method be-
comes 3.00 (the full score is 4.00) when 30 routes are learned be-
forehand, while that of the existing method becomes 1.875. We
also demonstrate that the proposed method provides the recom-
mended route reflecting the user’s individual preferences even if
it learns the recommended route history of areas in different situ-
ations.

In the future, we will reduce the computation time of the pro-
posed method so that the quality of recommended routes is not
degraded.
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