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Abstract: This paper proposes an indoor localization method for Bluetooth Low Energy (BLE) devices using an end-
to-end LSTM neural network. We focus on a large-scale indoor space where there is a tough environment for wireless
indoor localization due to signal instability. Our proposed method adopts end-to-end localization, which means input
is a time-series of signal strength and output is the estimated location at the latest time in the input. The neural network
in our proposed method consists of fully-connected and LSTM layers. We use a custom-made loss function with 3
error components: MSE, the direction of travel, and the leap of the estimated location. Considering the difficulty of
data collection in a short preparation term, the data generated by a simple signal simulation is used in the training
phase, before training with a small amount of real data. As a result, the estimation accuracy achieves an average of
1.92 m, using the data collected in GEXPO exhibition in Miraikan, Tokyo. This paper also evaluates the estimation
accuracy assuming the troubles in a real operation.
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1. Introduction

To realize location-based services, such as navigation to one’s
destination, information provision at appropriate times and col-
lection of marketing information, the people’s location is essen-
tial information. There are increasing demands for activity analy-
sis of visitors at an indoor exhibition event (for example, walking
trajectory, crowded areas, and popular booths). The optimization
of booth placement and precise targeting of audiences in the fol-
lowing year’s event or a similar event require such information.

However, the GPS signal, which is a de facto standard out-
doors, gets weaker and leads to inaccurate location detection. To
solve this problem, indoor location estimation has long been re-
searched. Among a variety of methods proposed, we focus on
Bluetooth Low Energy (BLE) based location estimation. BLE
is ready-to-use with many devices such as smartphones, smart-
watches, and IoT devices. Because BLE is designed to keep
power consumption low for better battery life, we can use BLE
devices for a long time without being bothered by battery short-
age.

We have been working on BLE location estimation for large-
scale exhibitions with mobile tag and fixed scanner. A mobile
BLE tag is carried by a visitor and broadcasts packets at a certain
frequency. Fixed scanners in the target environment receive the
packets from BLE tags, and received packets are sent to a server
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which runs location estimation. This process has several merits.
(1) A complex estimation method can be used. The location es-
timation runs in a server, which has more computing resources
than a smartphone. (2) The service operation is simple because
giving a BLE tag to a visitor is the only thing needed to start the
estimation. If a smartphone app is needed, visitors have to install
and run it. Installation will take time, and a continuous run of the
app will increase power consumption.

The location estimation method in our previous research [1]
was based on a trilateration and particle filter. The calculation
of existing probability at a location was done by trilateration with
signal strength. The probability was used to resample the parti-
cles which represent the candidates of the estimated location.

The common problems of signal strength based location esti-
mation are the fluctuation of signal and packet loss. Our previous
method dealt with these problems by improving both on hardware
and algorithm. Using a tandem scanner which has multiple Blue-
tooth adapters and the algorithm with parameters to control the
behavior, a higher accuracy was achieved. On the other hand, re-
cent deep learning based location estimation methods are robust
to noise and packet loss and reported to improve accuracy. An ex-
isting deep learning based method adopts denoising autoencoder
and estimates location based on the similarity of an input signal
and the reconstructed signal.

In this paper, we propose deep learning based end-to-end loca-
tion estimation using BLE. End-to-end is, in this context, defined
as the neural network outputting the estimated location from the

The preliminary version of this paper was published at The 12th Inter-
national Conference on Mobile Computing and Ubiquitous Networking
(ICMU 2019), November 2019. The paper was recommended to be sub-
mitted to Journal of Information Processing (JIP) by the chief examiner
of SIGMBL.
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Fig. 1 Overview of the proposed end-to-end location estimation.

input signal strength. The proposed neural network takes a time-
series of signal strength captured by the scanners in the area as
input and outputs the estimated location at the latest time in the
input time-series. The overview of the proposed end-to-end lo-
cation estimation is shown in Fig. 1. Fully connected layers and
LSTM layers are used in the proposed neural network. We also
use custom-made loss function which can evaluate several error
components such as distance and direction to achieve higher ac-
curacy. Because there are many possible network layer configu-
rations, to find the optimal configuration, we evaluate estimation
accuracy when changing the configuration with the data collected
in a real exhibition event.

Moreover, to decrease the amount of real data to train the neu-
ral network, a simple signal strength simulation is adopted. This
is because collecting a large amount of training data is difficult in
the short preparation term of an event. As a result, the training
phase consists of two stages, the first stage with a vast amount of
simulated data and the second stage with a small amount of real
data.

We also show additional discussion assuming the common
troubles in real operation. (1) Some scanners stop working. (2)
Little real data for additional training is collected in the prepara-
tion. The effect of these troubles on estimation accuracy is evalu-
ated in quantitative and qualitative ways.

In summary, this paper has the following contributions.
( 1 ) This paper presents an end-to-end location estimation

method, from the time-series of BLE signal strength to the
location with deep learning. The proposed method uses a
custom-made loss function to model the movement of a per-
son for better accuracy.

( 2 ) Considering the difficulty of collecting the training data in a
real environment, training of the neural network is done with
simulated data and a small amount of real data.

( 3 ) Evaluation of the estimation accuracy when changing the
layer configuration is performed to the data collected in a
real exhibition event.

( 4 ) Additional discussion, assuming the troubles we face in the
real operation of location estimation system.

The remainder of this paper is organized as follows. In Sec-
tion 2, related location estimation methods are introduced. The
proposed method is described in detail in Section 3. The evalu-
ation of estimation accuracy when changing the layer configura-
tion of the neural network is performed in Section 4. Additional
discussion of real troubles is shown in Section 5. Parameter dis-
cussion is made in Section 6, followed by the conclusions in Sec-
tion 7.

2. Related Work

There are many location estimation methods proposed with
various approaches such as inertial sensor based [2], ultrasound
based [3] and wireless communication based [4], [5]. Among the
many wireless communications (for example FM [6], RFID [7])
used in location estimation, Wi-Fi [8] and BLE based methods
are promising because of the rapid spread of smartphones and IoT
devices. Because BLE is newer and knowledge of Wi-Fi based lo-
cation estimation can be applied to BLE based estimation, BLE is
sometimes compared to Wi-Fi in terms of its characteristics and
location estimation accuracy [9]. In this section, methods based
on Wi-Fi and BLE are summarized by their estimation approach.

2.1 Proximity
The proximity-based estimation uses the location of the device

which recorded the strongest signal. This approach is straightfor-
ward, easy-to-use, and useful for area-level estimation. Komai et
al. [10] used this approach aiming to monitor what the residents
do in the rooms of a nursing home.

2.2 Distance or Angle Calculation
These methods estimate the location based on signal strength,

Time of Flight (ToF), Angle of Arrival (AoA), and so on. Signal
strength is often used in the trilateration method which is based
on the distances from at least three devices.

INTRI [11] employed the idea of forming contours surround-
ing the estimation target using the query signal strength and the
signal strength collected in advance (like a fingerprint approach)
for Wi-Fi location estimation rather than performing pure trilat-
eration. Wang et al. [12] proposed trilateration based location es-
timation with Bluetooth devices. ToF needs accurate time sync
among all devices. AoA needs antenna array or directional an-
tenna. Wi-Fi Channel State Information (CSI) [13] is used in
SpotFi [14] to estimate ToF and AoA. BLoC [15] defined Blue-
tooth CSI for location estimation while signal strength is the only
information which we can get from a Bluetooth signal in gen-
eral. In iBill [16], BLE beacons assisted inertial based location
estimation in university library services hall.

2.3 Fingerprint
To consider the environmental characteristics of signal strength

(e.g., reflection, fading) the fingerprint approach is widely used.
This approach has two phases. In the training phase, reference
fingerprint of signal strength is built through the measurement
throughout the target environment. In the testing phase, pat-
tern matching to the fingerprint is used to estimate the location
from the query signal strength. For better accuracy or estima-
tion speed, various fingerprint formats and matching methods are
proposed [17].

RADAR [18] adopted Wi-Fi signal strength based fingerprint
and matching based on neighborhoods in signal strength space.
Wu et al. [19] focused on the similarity of Wi-Fi signal strength
among adjacent locations and dealt with the instability of the sig-
nal. Faragher et al. [20] adopted fingerprint with fixed BLE tag
and mobile scanner style location estimation. Powar et al. [21] ex-
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amined how signal strength changes by the channel (frequency)
of BLE and proposed to use channel information in the finger-
print. Kriz et al. [22] showed the combination of Wi-Fi and
BLE for improved accuracy. Their approach was the weighted
k-Nearest Neighbors (WkNN) and the combination led to more
transmitters detected in a single measurement.

2.4 Deep Learning based Method
The recent success of deep learning enables higher accuracy

location estimation. Current deep learning based methods adopt
various structures as a neural network. Estimated location is ba-
sically calculated as a weighted average of fingerprint locations.
The weight for each fingerprint location is calculated based on
the similarity of the input and the output of autoencoder.

Xiao et al. proposed DABIL [23] which estimates 3D location
from BLE signal strength with a denoising autoencoder. A de-
noising autoencoder is trained to restore missing values in the
input and it is effective in the real environment with a lot of
packet loss. In Wi-Fi location estimation, Wang et al. proposed
DeepFi [24] which takes Wi-Fi CSI as the input for restricted
Boltzmann machine. Wang et al. also proposed CiFi method [25]
using a convolutional neural network in which input is AoA im-
age derived from Wi-Fi CSI. WiDeep [26] proposed by Abbas et
al. trained multiple autoencoders for robust estimation.

Hoang et al. [27] focused on the relationship of the trajectory
and the signal strength and proposed RNN-based Wi-Fi location
estimation. They compared multiple neural network configura-
tions for better results. The main idea is similar to us however, in
that our method hires fully connected layer(s) aiming to extract
beneficial features from raw signal input and custom loss func-
tion for better accuracy. The target environment of our proposed
method can be identified as more challenging than the environ-
ment introduced in the paper in terms of the size of the area and
signal noise.

2.5 Limitations of Existing Methods
Existing methods shown above have advantages and disadvan-

tages. Proximity methods are simple but need dense installation
of devices into the target environment for accurate estimation.
Distance or angle calculation methods can keep the number of
devices low, whereas signal noise affects estimated distance and
angle. Fingerprint methods can realize accurate estimation, how-
ever, collecting a large amount of data throughout the target envi-
ronment as training the model is tough labor.

When using deep learning, although we can expect robust and
accurate estimation with a smaller number of devices, the same
problem as fingerprint – collection of a large amount of training
data – occurs. Against this problem, Rizk et al. [28] showed the
effectiveness of synthetic data, generated by modifying the small
amount of real data, in the dataset for cellular-based location esti-
mation. Moreover, existing deep learning based location estima-
tion does not estimate location directly with a neural network. In
this paper, we propose end-to-end location estimation with LSTM
using time-series input with location output instead of weighted
average of location weights. To mitigate the negative impact on
estimation accuracy by the shortage of training data, simple sim-

ulation is used to generate the training data before training with a
small amount of real data.

3. End-to-end Localization Method

3.1 Input and Output Data
To realize end-to-end location estimation, input data is signal

strength captured by the scanners in the target environment. Us-
ing the signal strength rt

i captured by the scanner i at time t, the
set of signal strength Rt can be described as Eq. (1). The total
number of the scanners is referred to as N.

Rt = (rt
1, r

t
2, . . . r

t
N) (1)

However, in general, rt
i is affected by noise or is unavailable

due to packet loss. Because of that, only using Rt as input makes
the estimation difficult. Considering that the transition of signal
strength is related to the movement of the person, time-series fea-
ture extraction can be used. Inputting time-series also helps the
neural network to restore the missing value or remove the noise
of signal strength. Therefore, the proposed neural network takes
the input with the shape shown in Eq. (2), which is a matrix of
signal strength from time t1 to t2.

R(t1 ,t2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rt1
1 rt1

2 · · · rt1
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r(t1+1)
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2 · · · r(t1+1)
N

...
. . .

rt2
1 rt2

2 · · · rt2
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

The output is the estimated location at the time t2 which is the
latest time in the input time-series. This estimated location P̂t2 is
the 2D absolute location in the target area as described in (3).

P̂t2 = (x̂t2 , ŷt2 ) (3)

3.2 Neural Network Structure
The basic neural network structure is shown in Fig. 2. Before

inputting the data R(t1 ,t2) into the neural network, preprocessing is
performed. In the preprocess all missing values are replaced with
−100 and then all values are shifted by +90. These values are
empirically determined, through monitoring the change of train-
ing loss and estimation accuracy in several small experiments.

The preprocessed data is altered by fully connected (FC) units
which consist of a linear layer, ReLU activation, and dropout.
These FC units are expected to restore missing values and re-
move the noise as a result of looking at every value in the input.
Actually, FC units modify their inputs into useful features for the
next layer. It is natural that feeding features will produce a better
result than RSSI matrix including missing value and noise. After

Fig. 2 Basic structure of proposed neural network.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

the FC units, LSTM layers are placed to extract the features in the
time-series. The output of the last LSTM layer is processed by a
linear layer to get the output P̂t2 .

FC units and LSTM layers can be repeated for changing the
complexity of the neural network. The number of FC units can
be zero, which means there is no correction on input data before
LSTM layers. The number of LSTM layers is at least one be-
cause we need at least one LSTM layer to extract the features in
the input. To find the optimal layer configuration, estimation ac-
curacy when changing the numbers of FC units and LSTM layers
is evaluated in the next section.

3.3 Loss Function
To get a better result in a noisy environment, the loss function is

defined as Eq. (4) using the estimated location P̂t and the ground
truth locations Pt−1 and Pt . In the equation, wm, wc and wr are
the weights of the terms. Cos() returns cosine similarity of input
vectors. D and D̂ are described as Eqs. (5) and (6) respectively.
They correspond to the distance from Pt−1.

L(P̂t , Pt−1, Pt) = wmMSE(P̂t , Pt)

+ wcD(1 − Cos(Pt − Pt−1, P̂t − Pt−1))

+ wrReLU(D̂ − D) (4)

D = Distance(Pt , Pt−1) (5)

D̂ = Distance(P̂t , Pt−1) (6)

This loss function consists of three terms. The first MSE term
corresponds to the distance between the estimated location P̂t and
the ground truth location Pt . This term just means that the dis-
tance error should be small.

The second term corresponds to the direction difference of the
estimated location P̂t and the ground truth location Pt , based on
the ground truth location Pt−1. The latter part produces 0 when
Pt and P̂t head for the same direction from Pt−1. The value of
this term also changes depending on the distance of ground truth
locations, D. The intuitions behind this term are that even if the
direction error is small, greater location error occurs with longer
distance and that if the direction error is large, a smaller penalty
is enough with smaller distance. This leads to the following as-
sumptions. (1) This term should react sharply to the direction
error when D is large. This is because even if the direction error
is small, a large error occurs with a long distance. (2) When D is
small, a large direction error does not lead to large location error.
Therefore, this term does not charge a large penalty.

The third term is for avoiding the leap of the estimated location
from the previous location. When the estimated location goes far-
ther than the ground truth location, ReLU is activated to place the
additional penalty.

3.4 Training with Simulated and Real Data
Collecting a large enough amount of training data is an in-

evitable problem with the deep learning based method. The diffi-
culty of data collection at an exhibition event is greater than that
at a permanent installation case due to the following reasons.
• Short preparation time – Booth construction time, which we

can use for data collection is very limited. Moreover, signal

propagation changes during the construction of booths.
• Gap of signal strength – Signal strength is different between

preparation time and exhibition time due to visitors. There
is greater noise when many visitors are moving about.

To train the neural network with a small amount of real data,
we use the signal strength data generated by a simple simulation.
This idea is related to data augmentation, although we generate
the simulated data instead of modifying real data. The procedure
of the data generation is as follows.
( 1 ) Randomly choose a location P1 in the target area.
( 2 ) Within a certain (predefined) distance from P1, randomly

choose another location P2.
( 3 ) Calculate how distances from the scanners change when the

person moves from P1 to P2.
( 4 ) Calculate ideal signal strength which should be recorded by

each scanner in the area based on the distances calculated in
the previous step.

( 5 ) Add random value sampled from a normal distribution as the
signal noise to the signal strength.

( 6 ) Replace some values with −100 based on a predefined prob-
ability. This operation simulates packet loss.

In step 4, the set of ideal signal strength Rt
ideal

is described
as Eq. (7) using the set of distances dt = (dt

1, d
t
2, . . . , d

N) to the
person from the scanners. In Eq. (7), tx corresponds to the trans-
mission power which should be recorded when the distance of a
BLE tag and a scanner is 1 m and n corresponds to the attenuation
constant which models how much loss the signal has in the target
environment.

Rt
ideal
= tx − 10n log10 dt (7)

In step 5, a set of random variables nN is added to Rt
ideal

as
described in Eq. (8). nN is sampled from a normal distribution
with predefined mean and standard deviation. This step models
the noise which occurs due to the presence of visitors and booths.

Rt
noise
= Rt

ideal
+ nN (8)

After that, in step 6, some values of Rt
noise

are replaced to −100
(which means missing value) based on the probability pdrop as
shown in Eq. (9). This operation models packet loss. Consider-
ing the complex indoor signal propagation, applying per-scanner
probabilities may be needed. In this paper, however, single packet
loss probability is applied to all scanners for simplicity.

Rt
drop
= fdrop(Rt

noise
; pdrop)

= (−100, rt
2, r

t
3,−100,−100, . . . , rt

N) (9)

4. Evaluation of Estimation Accuracy

As stated in the previous section, estimation accuracy when
changing the number of layers is evaluated in this section. 10 pat-
terns of configurations are tested – FC: 0, 1, 2, 3, 4 and LSTM: 1,
2. Larger number of FC means the neural network will alter sig-
nal strength more strongly before LSTM. Single LSTM extracts
the features of time-series and double LSTMs extract the features
of the change of time-series.
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Fig. 3 Locations of the installed scanners.

Fig. 4 Fixed scanner and mobile BLE tag.

4.1 Target Environment
Data Collection

The data used in the evaluation is from the experiment at the
GEXPO2016 exhibition held in Miraikan museum, Tokyo, Japan.
The exhibition was a 3-day exhibition aiming to promote the ac-
tive use of geospatial technology. The number of total visitors
was 19,138. In the experiment, 38 scanners were installed in the
exhibition area (70 m × 23 m) as shown in Fig. 3. In Fig. 3, or-
ange squares correspond to normal scanners with one bluetooth
adapter. Blue and green squares correspond to tandem scanners
with multiple bluetooth adapters aiming for better packet receiv-
ing. An example of scanner placement (using tandem scanner) is
shown in Fig. 4 (a).

The experiment subject, as shown in Fig. 4 (b), wore a BLE tag
and a UWB (Ultra Wide-Band) tag *1 (for recording the ground
truth) at the entrance and moved freely. We collected the data
from a total of 260 subjects in the exhibition (including total 19
experiment operation members).
Data at a Glance

A simple analysis on GEXPO2016 data is made here. Using
UWB ground truth data, the average distance from a scanner to
UWB tag is 26.3 m, standard deviation is 15.5 m, minimum is
0.00 m, and maximum is 94.2 m. Maximum distance of 94.2 m is
obviously an outlier considering the area.

Figure 5 shows the distance distribution for each scanner as
boxplot. The orange line in the plot shows 50 percentile, the box
shows the range between 25 percentile and 75 percentile. Mini-
mum value and maximum value are shown as whisker, while 99
percentile is shown as a blue cross. In the figure, a green dot indi-
cates the maximum distance calculated considering area size and
scanner location. Values exceeding the green dot are obviously
regarded as outliers. Because the number of outliers is small and

*1 The manufacturer claims 0.15 m accuracy.

Fig. 5 Boxplot of distances from scanners to ground truth locations.

Fig. 6 Boxplot of signal strength.

correcting these to the right locations is difficult, we do not mod-
ify the data for training.

From the figure, minimum distances are around 0 m. However
the boxes indicate that majority values range from around 10 m
to 60 m. This indicates that target users are basically distant from
the scanners and that location estimation must be done with the
signal which is noisy and weak. There was a height difference be-
tween scanners and experiment subjects. Considering that many
values are above 10 m and signal strength fluctuates badly, we do
not take height difference into account when running the estima-
tion (the fluctuation has larger impact than the height difference).

The boxplot of signal strength is shown in Fig. 6. The orange
line indicates 50 percentile, the box shows 25 percentile to 75 per-
centile, and the whiskers display maximum and minimum values.
From the figure, we could not collect data on scanner 35. Despite
this situation, scanner number N is set to 38 in evaluation (aim
that the model learn to ignore the values on this scanner). An
evaluation assuming more scanners are dead will be performed
afterward.

For all scanners, signal strength has a wide variety ranging
from around −60 dBm to −95 or −105 dBm. Each box is drawn
around −80 dBm to −90 dBm and indicates that many values are
gathering to this range.

As we can connect a ground truth location and signal strength
recorded by scanners, Fig. 7 is made with the data of 20 ran-
domly picked subjects. From the figure, the signal strength varies
even in a short distance. It implies that the signal is badly af-
fected by noise in a large-scale exhibition environment. Using
the data of the same 20 subjects, the packet receive rate (total
packet count/total duration) is 9.3%. The average value of stan-
dard deviation for each scanner is 4.4 dBm.
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Fig. 7 Relation of signal strength and distance for each scanner.

Table 1 Common neural network parameters of all configurations.

Parameter Value
Length of input time-series 10 s
Number of scanners N 38
Dropout probability 0.3
Number of LSTM hidden state 64
Weights of loss function wm, wc, wr 1, 10, 5
Optimization Adagrad

Table 2 Parameters of simulated data generation.

Parameter Value
Number of scanners 38
Area size 70 m × 23 m
Length of time-series 10 s
Distance of P1 and P2 10 m *2

Transmission power tx −59 *3

Attenuation constant n 2.0 *4

Noise mean −5 *5

Noise standard deviation 4 *5

Packet loss prob. pdrop 0.85 *6

Training and Testing
As stated in the previous section, simulated data is used as well

as real experiment data to train the neural network. The common
neural network parameters of all configurations are shown in Ta-
ble 1. The simulated data with the amount of 160,000 is gener-
ated for training with the parameters shown in Table 2. Training
with this simulated data is done for 200 epochs with a batch size
of 100.

Additional training with the real data follows the training with
the simulated data. From the GEXPO2016 experiment data, the
records of 20 subjects are used. Each record is converted into
10-second slices using the sliding window with 1-second slide
width. Because the beaconing frequency of the BLE tags used in
the experiment was 10 Hz, maximum signal strength is extracted
when multiple signal readings are available for a scanner in one
second. The total amount of the data for the additional training is
78,000. Additional training is done for 100 epochs with a batch
size of 100.

*2 The subject is assumed to walk at 1 m/s.
*3 This value was set to the BLE tags used in the experiment.
*4 Assuming that signal can fly in a free space.
*5 Empirically determined to imitate the behavior of noise that basically

works to weaken the signal from viewing the proportion shown in Fig. 7.
*6 Empirically determined, as mitigated value from 91% loss in real packet

statistics, assuming that the scanners about to 10 m away from the sub-
ject can receive packets, through monitoring the change of training loss
in several small experiments.

Fig. 8 Paths for testing.

Fig. 9 Error distributions.

Table 3 Error at cumulative probability of 0.5, 0.75, 0.9.

FC units LSTM
Error at cum. prob.[m]

p=0.5 p=0.75 p=0.9
0

1

2.19 3.83 6.15
1 1.30 2.44 4.26
2 1.80 2.88 4.94
3 1.60 3.07 4.39
4 2.36 4.59 10.1
0

2

1.87 3.37 5.70
1 1.48 2.97 5.70
2 1.66 2.93 4.62
3 1.51 2.85 4.95
4 1.56 3.02 4.83

In the training with the simulated data, the loss reduced during
the earlier epochs and showed some fluctuation. When it comes
to the additional training, the value got much higher at first and
later showed a stable transition but was pinned at a higher value
area than that of the simulated data.

The data for testing is from the records of 3 subjects which are
not included in the data for the additional training. These subjects
walked four paths which are shown in Fig. 8. For all paths, the
subjects walked from the experiment desk to the direction shown
by the arrow marks and returned to the desk. The same conver-
sion with the adittional training data is performed to feed the data
to the neural network.

4.2 Quantitative Result
For all configurations, training and testing are performed. Fig-

ure 9 shows the cumulative probabilities and estimation errors
of all configurations. Figure 9 (a) and Fig. 9 (b) illustrates the er-
ror distributions of the configurations with one LSTM and the
results of the configurations with two LSTMs, respectively. Ta-
ble 3 shows the error when cumulative probabilities are 0.5, 0.75,
0.9. Table 4 shows the error average and standard deviation (SD)
of each configuration.

From Fig. 9 (a) and Table 3, when using one LSTM, the results
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Fig. 10 Distributions of estimated locations by different configurations.

Table 4 Error average and standard deviation (SD).

FC units LSTM Error average [m] Error SD [m]
0

1

2.83 3.47
1 1.92 2.05
2 2.27 2.05
3 2.07 1.74
4 3.62 3.52
0

2

2.53 2.38
1 2.39 2.56
2 2.20 2.11
3 2.22 2.27
4 2.20 2.19

of 0 FC and 4 FCs clearly degrade. When using two LSTMs, as
shown in Fig. 9 (b), there is little difference among the configura-
tions. From Table 3, the configuration of one FC and one LSTM
achieved the lowest error at the all cumulative probabilities of 0.5,
0.75, 0.9. Table 4 shows that there is little difference both in error
average and error SD among almost all configurations. Consider-
ing these results and the idea that a simpler model is better when
several models report the same result, the configuration with one
FC and one LSTM is the best with an average error of 1.92 m
in this experiment. This result outperforms the average of 4.51 m
which is the best result of our previous trilateration based location
estimation [1].

In both tables, the error values of two LSTMs configurations
are a little bit larger than the best one. There can be a reason in
that, the real data we feed in the training may still have differ-
ent signal strength features because we diverted the data of gen-
eral visitors. General visitors might have stayed at some booths,
while the test-data taker walked at an almost constant speed with-
out staying. Two LSTMs configurations may overfit to general
visitors’ data. In qualitative results, the resulting images of two
LSTMs configurations show some knots. That can be interpreted
as the leak of general visitors’ data who might have stayed at
some locations.

4.3 Qualitative Result
From the quantitative result, estimation accuracy is not much

different regardless of layer configuration. Therefore the exam-

Fig. 11 Results of best configuration by path.

ples of the qualitative result are shown here. Figure 10 shows
the examples of ground truth locations and the estimated loca-
tions plotted on the map of the target environment. According
to Table 3, Fig. 10 (a) illustrates the best result and Fig. 10 (b) il-
lustrates a good result. Figure 10 (c) and Fig. 10 (d) illustrate bad
results.

In Fig. 10 (c), the estimation on the most left part of the area is
not successful. The estimated locations of all configurations with
two LSTMs gathered to some locations. We can see some nodes
in Fig. 10 (b), except zero FC configuration (Fig. 10 (d)). From
Fig. 10 (a), the estimated locations fluctuate rather than align to
the ground truth even in the best result. This tendency can be
seen in the standard deviation shown in Table 4. Therefore addi-
tional consideration is needed to the neural network structure or
the loss function, for example, loss based on the quality of cor-
rected signal strength.

Qualitative results of one FC and one LSTM, which is the
best of ten configurations in this paper are shown in Fig. 11.
Figure 11 (a) shows the result of the counterclockwise path and
Fig. 11 (b) shows the result of the zigzag path. In Fig. 11 (a), es-
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timated locations are generally aligned to the ground truth loca-
tions. We can see some locations, even in Fig. 11 (a), are wan-
dering, leaping, or staying although ground truth locations are
equally spaced (the subject walked at a constant pace).

4.4 Literature Comparison
As stated in Section 2, many methods have been proposed for

wireless indoor localization. Unfortunately we could not collect
grid-aligned taining data in the GEXPO2016 experiment, there-
fore a direct comparison between our proposed method and ex-
isting BLE methods cannot be made. Our GEXPO2016 data also
lack Wi-Fi information and that prevents us from comparing to
Wi-Fi-based methods. Therefore, comparison here is to the re-
ported accuracies of the papers considering area size and crowd-
edness.

Faragher and Robert [20] take the fingerprint approach and
show the accuracies of < 2.6 m 95% using 19 high-power and
high-frequency BLE beacons in 50 m × 15 m office space. Their
experimental setup is similar to ours in terms of area shape. In
the paper, CDF of their method rises up sharply and marks higher
accuracy than ours. Considering the crowdedness of the area, if
their method was available in our GEXPO2016 experiment, esti-
mation accuracy would be comparable to our proposed method.

DABIL [23] employs denoising autoencoder for 3D BLE local-
ization and achieves median 2D error of 1.09 meters in 9.6 m ×
17.5 m room (reference points and test points are located nar-
rower area than that room size). The idea of using the neural
network can be related to our proposed method. CDF of DABIL
also rises sharply and marks a higher accuracy than our method.
However in the DABIL’s experiment, the area is much narrower
than us. The GEXPO2016 area is about 10 times larger than
the DABIL experiment, however, the average error is less than
2 times that of DABIL.

There also exists many Wi-Fi methods using the fingerprint or
neural network. DeepFi [24], which uses autoencoder-like struc-
ture with Wi-Fi CSI reports mean error of 0.94 m with 4 m × 7 m
living room and of 1.81 m with 6 m × 9 m university laboratory.
CiFi [25] uses the convolutional neural network with Wi-Fi AOA
images from CSI. It shows the error < 3 m 87% with 6 m × 9 m
univeristy laboratory (same room as DeepFi), and < 3 m 60%
with 8 m × 24 m corridor. These methods use CSI which seems
to find it hard to obtain clean samples in crowded, wide area. Our
proposed method showed error 2.44 m at CDF 0.75 with 23 m ×
70 m area, which is competitive to CiFi’s corridor experiment.

Hoang et al. [27] focuses on the trajectory of the target and
tries several structures using RNN with Wi-Fi signal strength in-
put. Their focus is similar to ours, though we do not use grid-
aligned data for training. It marks the average error of 0.75 m
with a 16 m × 21 m university building corridor. The number it-
self outperforms our proposed method, while their environment
has a smaller area and less crowdedness (equals to less packet
loss rate) than our experiment environment. Available locations
are actually limited to the rectangle perimeter. If applied to our
experiment setup, collected samples would have more missing
values and noise-infected values, leading to degraded accuracy.

5. Implication for Real World Deployment

In the real world operation, many troubles may happen on the
estimation system which affects the estimation accuracy. The lo-
cation estimation system should continue working when data is
incomplete. In this section, additional evaluation and discussion
are made for two most typical situations: (1) smaller amount of
real data, (2) dead scanners.

5.1 Impact of Dataset Size
As stated earlier, data collection is difficult in an exhibition en-

vironment. The amount of real data collected beforehand is lim-
ited. The worst pattern is no real data, meaning that we have to
use the neural network trained only with simulated data.

This section evaluates estimation accuracy when decreasing
the amount of real data used in additional training. In Section 4,
the amount of real data used in the additional training was 78,000
from 20 subjects. Because real data collection can be with a
shorter time and many people, the data of the subjects with longer
recording time is omitted in additional training. The evaluation is
done with 4 different real data amounts: 39,000 from 15 subjects,
18,000 with 11 subjects, 8,900 with 8 subjects, 0 (no additional
training). The model used for this evaluation has one FC and one
LSTM in Section 4 (the best one).

Quantitative results of this evaluation are shown in Table 5 (er-
ror at cumulative probabilities of 0.5, 0.75, 0.9). Compared to Ta-
ble 3, the results degrade little for 8,900 and 18,000, and much for
39,000 and 0. Error distribution is shown in Fig. 12. Error aver-
age and standard deviation are shown in Table 6. From the tables
and the figure, we need real data because accuracy is obviously
bad when the amount of real data is 0. The effect on estimation
accuracy when limiting real data is not large.

Table 5 Error at cumulative probability of 0.5, 0.75, 0.9 when changing real
data amount.

Real data amount
Error at cum. prob.[m]

p=0.5 p=0.75 p=0.9
39,000 1.87 3.37 5.49
18,000 1.42 2.82 4.66
8,900 1.27 2.50 4.78

0 3.21 6.21 9.53

Fig. 12 Error distribution when changing real data amount.

Table 6 Error average and standard deviation (SD) when changing real data
amount.

Real data amount Error average [m] Error SD [m]
39,000 2.42 2.07
18,000 2.08 2.07
8,900 1.97 2.10

0 4.14 3.39
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Fig. 13 Distributions of estimated locations when changing real data
amount.

Qualitative results are shown in Fig. 13. In Fig. 13 (a), esti-
mated locations in the left half do not align to ground truth lo-
cations. The degradation seen in the quantitative results corre-
sponds to this result. Figure 13 (b) and Fig. 13 (c) are similar to
Fig. 10 (a).

From the quantitative and qualitative results, the estimation ac-
curacy changes with the amount of real data. The reason for small
degradation when using the amount of 8,900 and 18,000 seems
the variety of the data. Only the data of the subjects with shorter
recording time remains in these two patterns because decreasing
data was under the strategy of removing the subjects with longer
recording time. Shorter recording time means that a subject took
a simple path, such as one lap on the main aisle. As a result, the
data used in additional training was similar to the test data. This
led to a better result than it should have been.

Supposing that the activity patterns of an exhibition visitor are
likely staying at one place and wandering slowly, but not walking
fluently, real data collection should be done with care not to feed
the model only with the data of fluent walking.

5.2 Impact of Hardware Trouble
We can easily enumerate reasons for accidental dead scanners:

hardware fault, power cord disconnection, network issue, etc.
This situation can be regarded as all packets being lost for the
dead scanners. Therefore, this evaluation is ruled as: training –
data of all scanners, testing – data with some scanners dropped.

We test 2 dead scanner patterns shown in Fig. 14. The first
pattern (A) of available scanners is the same as the one tested in
our previous method [1], which cannot use many scanners in the

Fig. 14 Dead scanner patterns (Grayed-out scanners are dead).

Table 7 Error at cumulative probability of 0.5, 0.75, 0.9 for dead scanner
patterns.

Pattern
Error at cum. prob.[m]

p=0.5 p=0.75 p=0.9
A 1.88 3.44 6.25
B 2.01 3.76 6.26

Table 8 Error average and standard deviation (SD) for dead scanner pat-
terns.

Pattern Error average [m] Error SD [m]
A 2.63 2.60
B 2.73 2.44

Fig. 15 Error distribution of dead scanner situations.

islands, as shown in Fig. 14 (a). The second pattern (B) is the ex-
pansion of the first pattern. It assumes more scanners are dead.
The model used for this evaluation has one FC and one LSTM in
Section 4 (the best one).

The error-related values are shown in Table 7 and Table 8.
These values are all inferior to the values of one FC and one
LSTM in Table 3 and Table 4. This degradation can also be seen
in the error distribution shown in Fig. 15. Although the accuracy
degrades, the error average of pattern A still outperforms the best
result as well as the same situation result (5.49 m) in our previous
trilateration method [1].

Qualitative result of the patterns is shown in Fig. 16. Com-
pared to Fig. 10 (a), in Fig. 16 (a), obvious differences can be seen
around scanner No.5 and No.6. Scanner No.5 and No.6 are tan-
dem scanners that can receive more packets. Because of that,
no packet from these scanners leads to such degradation. On the
contrary, scanner No.22 to No.27 are normal ones and little dif-
ference can be seen around them in the qualitative result. Normal
scanners lose packets more easily than tandem scanners, meaning
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Fig. 16 Distributions of estimated locations of dead scanner situation.

that the number of received packets is small even in the normal
situation. Therefore lacking normal scanners does not affect the
qualitative result much.

However, looking at Fig. 16 (b), lacking Scanners 13, 15, 17,
30 has a significant impact on the upper left area. As previous
results point, the estimation gets worse in the upper left area. We
can assume that we have some critical places where we cannot
lack the scanners.

6. Parameter Discussion

In this section, the estimation accuracy is discussed when
changing the parameters of the model. We show the estimation
results with the following parameters changed: output features of
FC units, hidden state size of LSTM layer, optimization method,
and weights of loss function terms.

6.1 Number of Output Features of FC Units
In the previous section, an FC unit is configured to output the

tensor which feature is doubled from its input. For example, the
first FC receives a tensor with 38 features (= the number of scan-
ners) and output a tensor with 76 (2 × 38) features. Therefore,
the estimation accuracy is evaluated by changing the ratio of the
number of output features: 1x, 2x (default), 3x, 4x. The model is
with one FC unit and one LSTM layer and the rest of the param-
eters are the same as the previous section.

Table 9 shows the results. Default 2x produced the best re-
sult, followed by 4x. They showed a similar result to each other.
Because changing the number of output features leads to underfit
or overfit, adjusting this value corresponding to the environment
will be needed.

6.2 Hidden State Size of LSTM Layer
LSTM hidden state size is related to the memory performance

of the layer. Using a larger hidden size can store more info about
the past. Using the same parameters as the previous section but
LSTM hidden size, the estimation accuracy is evaluated.

Table 10 compares the results of using a hidden size of: 32, 64
(default), 128, 256. The hidden size of 64 shows the best and 256

Table 9 Error average and standard deviation (SD) when changing the num-
ber of FC output features.

Ratio Error average [m] Error SD [m]
2x (default) 1.92 2.05

1x 2.95 2.28
3x 2.47 2.26
4x 2.15 1.97

Table 10 Error average and standard deviation (SD) when changing LSTM
hidden state size.

Hidden state size Error average [m] Error SD [m]
64 (default) 1.92 2.05

32 2.64 2.45
128 2.24 2.16
256 2.19 2.03

Table 11 Error average and standard deviation (SD) when changing opti-
mization method.

Optimization Error average [m] Error SD [m]
Adagrad (default) 1.92 2.05

Adam 2.28 1.99
SGD 3.15 2.56

Table 12 Error average and standard deviation (SD) when changing loss
weights ratio.

Weights ratio Error average [m] Error SD [m]
1, 10, 5 (default) 1.92 2.05

1, 5, 10 2.26 2.14
5, 1, 10 2.26 2.03
5, 10, 1 2.08 1.76
10, 1, 5 2.21 1.81
10, 5, 1 2.20 2.24
1, 1, 1 2.37 2.12

marks the 2nd best. Restricting hidden size to 32 led to the worst
performance between them.

6.3 Optimization Method
Since we hire a constant 200 epoch (with simulated data) and

100 epoch (with real data) for model training, the optimization
method affects the performance. Among the many optimization
methods proposed, Adagrad (default), and Adam, SGD are com-
pared. Other model parameters are all the same as the previous
section. The results are shown in Table 11. Adagrad – our default
showed the best while SGD marked inferior performance.

6.4 Weights of Loss Function Terms
Loss in this paper is defined a three-term function as Eq. (4).

Each term has its weight as wm, wc, wr, respectively. The weights
were set to (1, 10, 5) for (wm, wc, wr). This was because direc-
tion error leads to larger location errors as longer distances are
travelled. Changing the ratio of these weights, with other param-
eters fixed as in the previous section leads to different estimation
results. Patterns are the permutation of (1, 10, 5) and (1, 1, 1).

The results are displayed in Table 12. There is no obvious
difference between the weights ratios. This may thank to the re-
cent superior optimization method. In terms of error average,
default (1, 10, 5) performed best. However, for error SD, (5, 10,
1) showed a better performance. Ratio (1, 1, 1) is inferior to other
ratio patterns, suggesting that imposing some weights leads to a
better result.
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7. Conclusions

In this paper, we proposed an end-to-end BLE indoor location
estimation method which adopts a LSTM neural network. The
neural network of our proposed method takes the time-series of
signal strength captured by the scanners in the target environment
as input and outputs the estimated location at the latest time in the
input. For higher estimation accuracy, loss function is designed
to model the movement of a person. With the aim of using it at
a large-scale exhibition where exhaustive data collection is diffi-
cult, simulation data is used to train the neural network as well as
a small amount of real data.

Evaluation of estimation accuracy by changing the number of
layers is performed to find the optimal neural network structure.
As a result, one FC and one LSTM is found to be the best config-
uration with an average error of 1.92 m. However, from the qual-
itative result, estimated locations do not align well to the ground
truth. Additional discussion assuming real troubles is also per-
formed. In the smaller amount of real data situation, decreased
data amount led to the inaccurate result. Leaving the subjects
with shorter recording time led to the similarity between the data
for additional training and the data for testing. In the dead scan-
ner situation, the result got worse than when all scanners are alive.
However, the result was not destructive, suggesting that the loca-
tion estimation still works in such a situation.

In conclusion, the proposed neural network can estimate the
location of the person in the exhibition. However, the follow-
ing three things need to be investigated and improved to achieve
an accurate and robust result. Firstly, simulated data for training
should be more realistic. Simple signal strength calculation and
noise from a normal distribution are used to generate the sim-
ulated data in this paper. Packet loss rate and noise proportion
should be determined as a function of distance. Moreover using
complex simulations like ray-tracing can be affordable, as sig-
nal strength simulation can take time. Secondly, testing should
be with a wider variety of paths. In this paper, test paths are
simple, without staying and wandering around. Estimation accu-
racy may change if more complex paths are used. Thirdly, this
method should be tested in various environments (for example, a
museum, hall and office building). Another environment has dif-
ferent signal propagation characteristics and estimation accuracy
would change.
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Editor’s Recommendation
In this paper, deep learning is applied to indoor location es-

timation using BLE beacons. In order to improve the accuracy,
the walking pattern is incorporated by using the beacon reception
history of pedestrians. Since it uses both real data and simulation
data in learning, it is possible to learn with a small amount of data
suitable for practical use. The paper gives insights to readers in
this research field and thus is selected as a recommended paper.
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