
IPSJ SIG Technical Report

Scalability Evaluation of Data Transfer Framework
for Multi-Component Applications

Jie Yin1,a) Balazs Gerofi1,b) Atsushi Hori1,c) Yutaka Ishikawa1,d)

Abstract:
Multi-component workflows play a significant role in High-Performance Computing and Big Data appli-
cations. They usually contain multiple, independently developed components that execute side-by-side to
perform sophisticated computation and exchange data through file I/O over the parallel file system. However,
file I/O can become an impediment in such systems and cause undesirable performance degradation due to its
relatively low speed (compared to the interconnect fabric), which is unacceptable especially for applications
with strict time constraints. The Data Transfer Framework (DTF) is an I/O arbitration layer working with
the PnetCDF I/O library to eliminate the bottleneck by transparently redirecting file I/O operations through
the parallel file system, to message passing via the high-speed interconnect fabrics between coupled compo-
nents. Scalable and high-speed data transfer between components can be thus easily achieved with minimal
development effort by using DTF. However, previous work provides insufficient scalability evaluation of DTF.
In order to comprehensively evaluate the scalability of an I/O middleware like DTF and highlight its major
advantages, we have designed an ensemble-based I/O benchmark that adopts the I/O model of the real-time
weather forecasting application called SCALE-LETKF and present the scalability evaluation results of DTF
against file I/O on two supercomputers, Fugaku and Oakforest-PACS, respectively. We provide insights into
DTF’s scalability and performance enhancements with the intention to impact future I/O middleware design.

1. Introduction

The rapid growth of the computational speed of super-

computers creates new possibilities to solve more complex

scientific problems within a reasonable time limit. It also

brings opportunities for developers to pursue better perfor-

mance and solutions for their High-Performance Comput-

ing (HPC) applications with different computational mod-

els. Multi-component workflow is one of the prevalent scien-

tific computation models in High-Performance Computing,

which tightly couples two independently developed compo-

nents by executing side-by-side and exchanging a gigantic

amount of computational data between them for the suc-

ceeding computation. Big Data Assimilation is a representa-

tive application deployed widely in many real-world systems

indispensable to modern society, such as in weather forecast-

ing systems. According to the characteristic of such work-

flow by binding to separately executing applications, file I/O

using the parallel file system has been the traditional ap-

proach for data exchange between components. Data writ-

ten by a component will be read by its couple component

for the subqequent computations. I/O libraries are common

approaches to generate data files and store massive datasets

1 RIKEN Center for Computational Science
a) jie.yin@riken.jp
b) bgerofi@riken.jp
c) ahori@riken.jp
d) yutaka.ishikawa@riken.jp

in an organized and portable way. Some HPC application-

oriented optimizations are usually introduced into such li-

braries to improve I/O performance [5], [10]. For example,

Parallel netCDF (PnetCDF) [10] is one of the widely used

I/O libraries which provides parallel support for accessing

data stored in NetCDF format using MPI-IO [8]. How-

ever, in some multi-component applications with time con-

straints, massive data transfer between components through

file I/O prevents the progress of achieving the real-timeliness

due to its relatively slow processing speed. Coupling toolk-

its [3], [9] or transmitting data via interconnect fabrics by

message passing are the two possible solutions for this bot-

tleneck. However, several of the proposed solutions are time-

consuming to be implemented into a HPC application be-

cause rewriting a large part of code is required. There ex-

ists a pressing need for an easy-to-use approach to diminish

data exchange time for multi-component applications since

improving data transfer should not be the problem for sci-

entific application developers to tackle. This has been the

primary motivation to design an I/O middleware such as

the Data Transfer Framework (DTF) [11] for alleviating the

data transfer problem and meeting the expectations stated

above.

DTF is an I/O arbitration middleware aiming at reducing

data exchange time between coupled components through

bypassing file I/O and transmitting data via the interconnec-

tion network. It works with the Parallel netCDF (PnetCDF)

1ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.24
2020/12/22

IPSJ SIG Technical Report

I/O library while keeping application code intact. DTF

plays a role as an arbitrator and it transparently intercepts

PnetCDF calls invoked in user applications. It provides both

file I/O and network based data transfer modes. All the

steps required for switching from file I/O to high-speed data

transfer are to write a simple configuration file, insert three

intuitive DTF functions, and compile the project with the

provided DTF based PnetCDF library. Section 2 gives a

detailed description of DTF and its mechanism.

Previous work [11] has reported performance evaluation

comparing direct data transfer using DTF against file I/O

on the K Computer [7]. The K computer had its compute

nodes connected by the 6D mesh/torus network Tofu [2],

and equipped with a Lustre-based global parallel file system.

DTF’s in-depth behavior analysis has been conducted using

the S3D-IO benchmark [13], and its performance for a real-

world multi-component application SCALE-LETKF [12] has

been disclosed. However, there are mainly three limitations

addressed in the previous assessment.

• Limited number of data sets. SCALE-LETKF

is a real-time weather forecasting application adopting

an ensemble-based approach, in which the two compo-

nents, SCALE and LETKF, are developed by indepen-

dent research groups [12]. SCALE is in charge of en-

semble forecasting while LETKF assimilates real-world

observation data reported by weather radar with the

output data produced by SCALE during each opera-

tion cycle. Its operation requires real-world datasets,

which proved to be difficult for performing a thorough

performance evaluation.

• Inflexible problem size configuration. The size of

real-world datasets is often based on observation and its

resolution, which is continuously upgraded along with

the efforts of domain scientists. The fixed ensemble size

in the datasets limits our ability to conduct an in-depth

discussion of the I/O behavior and scalability of the I/O

middleware, because the throughput of data transfer for

the whole system can only be adjusted by changing the

number of ensembles. It’s difficult to gain a thorough

insight into the scalability of the I/O middleware with

respect to a specific ensemble.

• Interleaved computation and I/O. Real-world ap-

plications interleave computation with I/O in their

code, which may hinder the accurate evaluation of I/O

behavior. Computation phases cause components to en-

ter their respective I/O phase asynchronously, which

makes it difficult to identify potential I/O bottlenecks

and provide further performance improvement.

To address the limitations stated above, this paper pro-

poses an I/O benchmark that precisely follows the I/O

model of SCALE-LETKF. The benchmark strips compu-

tation phases away and provides the ability to adjust the

size of the overall and per-process I/O operations. We use

this benchmark to evaluate both strong scaling and weak

scaling of DTF comparing to file I/O using two different

supercomputer platforms, Fugaku and Oakforest-PACS [6].

We also present the speedup and efficiency comparison of

DTF direct data transfer between these two supercomput-

ers, demonstrating DTF’s ability to scale over different net-

work topologies.

The rest of this paper is organized as follows. Section

2 includes a detailed description of the mechanism behind

DTF and its simple usage. Section 3 introduces the bench-

marks used for the performance assessment and showcases

the comparison results in detail. The current conclusion and

future efforts are stated in Section 4.

2. Data Transfer Framework

Data Transfer Framework (DTF) [11] is an I/O arbitra-

tion middleware devoted to reducing the data transfer time

between coupled components in a multi-component appli-

cation. The principle of DTF is to silently redirect the file

I/O based data exchange to message passing for the compo-

nents while keeping the original application code intact and

requiring the least effort to start using it. In this section,

we provide a brief overview of DTF, describe how it works

under the hood, and highlight its advantages.

2.1 DTF Overview

DTF works with I/O operations for files in the Network

Common Data Form (NetCDF) format [15], which is de-

signed for storing and organizing massive data in a portable

and efficient way. As shown in Figure 1, DTF is integrated

with the parallelized implementation of the NetCDF format

named Parallel netCDF (PnetCDF) that is built on top of

MPI-IO [8], to allow multiple processes performing I/O to

the same NetCDF file in parallel. PnetCDF is proven to

produce an outstanding file I/O performance against other

I/O libraries like serial netCDF and parallel HDF5 in terms

of scalability and bandwidth [10]. According to the previ-

ous work, it only requires about 50 lines of code modification

inside PnetCDF for integrating with DTF [11].

Component 1 Component 2

Message Passing Interface (MPI)

High Performance Interconnect

̴̴̴
���DTF

Parallel netCDF (PnetCDF)

Fig. 1: An overview of the Data Transfer Framework (DTF).

During the initialization stage, DTF sets up a connec-

tion session between the two components by establishing

an MPI inter-communicator. All the succeeding inter-

2ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.24
2020/12/22

IPSJ SIG Technical Report

components communications happen through this inter-

communicator. While PnetCDF interfaces being invoked

during I/O sessions in each component, DTF redirects the

execution flow to its embedded function calls and performs

inter-component message passing instead of the original I/O

processing. Its internal operations are categorized into the

following two types.

2.1.1 I/O Request Handling

Several processes in the writer component will be en-

trusted with being request matchers when an I/O session

starts, whose responsibilities are to collect all the posted I/O

requests from other processes and perform request match-

ing. It is configurable through an environment variable for

designating the expected number of matchers. By default,

the number of matchers is set into 64.

Whenever a PnetCDF function from the get or put fami-

lies is invoked to access a NetCDF variable, DTF will redi-

rect this call to its internal function and initialize an I/O

request object, which stores descriptive metadata about the

request like start coordinate, shape, request type and ad-

dress of user buffer. Request matching happens when the

user signals DTF to start transferring data between the cou-

pled components by invoking a DTF function dtf transfer().

All the processes of reader and writer will distribute their

I/O request objects to the matchers of the writer, which

will be further stored in matchers’ read request pool and

write request pool respectively. After all the request objects

are received, matchers will start matching requests based

on the metadata stored in the request objects. All the read

requests will be processed by searching in the write request

pool for the write requests that cover the requested data

block. Once two requests are matched, matchers will notify

the matched writer process to send the requested data blocks

to its reader. DTF is well aware that two components may

perform asymmetric I/O operations, which happens when

the reader processes never read some data blocks that are

written by the writer. Request matching perfectly solves the

situation by only transferring data blocks that are explicitly

requested by the reader. The writer process packs a mes-

sage header with the requested data blocks and delivers this

package to the matched reader by message passing. Finally,

the reader process receives the package, parses the message

header, and unpacks the data into its designated buffer.

2.1.2 I/O Replaying

I/O replaying is an optimization solution inspired by the

I/O pattern of some multi-component applications. These

applications commonly execute multiple cycles, while each

cycle performs the identical I/O operations. When I/O re-

playing is enabled, DTF saves the history of request match-

ing for the first cycle, and repeat the same transfer pattern

for the rest of the cycles. Request matching is skipped for

the subsequent cycles and DTF can start transferring data

immediately. This feature can be enabled for applications

by setting the parameter replay io in the configuration file.

2.2 Simple Use of DTF

DTF needs three preparation works to be done before

multi-component applications can switch from file I/O to

high-speed data transfer.

• Write a configuration file. DTF requires a simple

configuration file in a given format, which is shown in

Figure 2. User is expected to briefly describe the I/O

dependencies between the two components and specify

the mode of data transfer for each listed file pattern in

key-value pairs. DTF encourages users to make the final

decision on how data will be exchanged during runtime.

When the name of data files do not match the listed

name pattern or the file I/O mode is explicitly set, DTF

will silently step aside without interfering with the I/O

processing of PnetCDF. Other optional configurations

are available for users to flexibly adjust DTF’s behavior

and fully boost data transfer between components, such

as replaying I/O and buffering user data.

CONFIG FILE

[INFO]
ncomp=2
comp_name=“bin1”
comp_name=“bin2”

[FILE]
filename=“outputfile%.nc”
comp1=“bin1”
comp2=“bin2”
mode=“transfer”

Fig. 2: An example of a DTF configuration file.

• Insert DTF interfaces. Three intuitive DTF func-

tions listed below should be inserted into the code of

both components.

dtf init(config file, comp name) parses user-

defined configuration file config file, initializes DTF

and builds the inter-communicator between coupled

componenets. This function should be called by all the

processes after the MPI library is initialized.

dtf finalize() finalizes DTF. This function should be

called by all the processes before the MPI library is fi-

nalized.

dtf transfer(file name) starts matching collected

I/O requests and transferring data between components

for the file named file name, therefore, it can only be

called when there are I/O requests already posted. This

function has to be called by all the processes that per-

form I/O to the data file file name, which should have

already be registered in the configure file config file.

dtf transfer() is a blocking function call that returns

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.24
2020/12/22

IPSJ SIG Technical Report

only when the reader receives all the data it has re-

quested. User should decide the appropriate location to

call this function in their applications.

• Build with DTF based PnetCDF library. Lastly,

user should recompile each component with the pro-

vided PnetCDF library integrated with DTF. DTF is

ready-to-use once this step is completed.

2.3 Strong Points of DTF

In this subsection, advantages of DTF are summarized

into three points as follows.

Minimal changes to the original source code.

DTF keeps the original application code as intact as

possible. It lifts a great weight for application de-

velopers if their multi-component applications are

suffering from inefficient data exchange but can only

be improved by largely modifying the I/O code.

Adjustable run-time behavior. The run-time be-

havior of DTF is adjustable by changing the key-value

pair in the configuration file. Its flexibility keeps DTF

being competent in diverse I/O scenarios.

Only explicitly requested data is transferred.

In some I/O scenarios, writer component constantly

writes large amount of uncalled-for data while reader

never consumes them. DTF ingeniously avoids spend-

ing time on these unwanted I/O operations by request

matching.

3. An Ensemble-Based I/O Benchmark

The ensemble-based method is widely used in various geo-

physical applications. In an ensemble-based I/O pattern,

processes of each component are organized into multiple en-

sembles and performing I/O to different files in each inde-

pendent ensemble. In this section, we present an ensemble-

based multi-component benchmark adopting the I/O pat-

tern of a real-world weather forecasting application named

SCALE-LETKF [12].

3.1 Benchmark Overview

We designed this benchmark for simulating the I/O ses-

sions of the SCALE-LETKF. As briefly introduced in Sec-

tion 1, it is a weather forecasting application with real-time

requirements – that is, the execution of one cycle should fin-

ish within 30 seconds, which includes both computation time

and I/O time. Reducing the I/O time as much as possible

can help the application get one step closer to its timeliness

target.

The I/O workflow of each iteration in each ensemble is

portrayed in Figure 3. Three I/O sessions happen in each

cycle between the two components with two type of files in-

volved, which are the history file and analysis file. SCALE

processes in each ensemble start every cycle by reading the

analysis file that is written by LETKF processes and subse-

quently write to the history file and analysis file that is read

by LETKF.

Ensemble
1

Ensemble
2

Ensemble
N

…

ANALYSIS FILE

ANALYSIS FILE

SCALE PROCS LETKF PROCS

HISTORY FILEWRITE READ

WRITE READ

WRITEREAD

ŏ 7,0(7,0(

Fig. 3: An overview of SCALE-LETKF’s I/O model for each

cycle in each ensemble. The same ensemble-based I/O pat-

tern is adopted in this benchmark.

Besides performing I/O in an ensemble approach, a mix-

ture of symmetry and asymmetry between the two com-

ponents is another major characteristic of this I/O model.

Symmetry happens in the session while SCALE reads the

analysis file and LETKF writes it. Both of them access

the same number of NetCDF variables with an identical

description of data access region. However, I/O behaviors

of the two components become asymmetric in the sessions

when SCALE writes data to the history and analysis file for

LETKF. SCALE outputs data to 89 NetCDF variables of

the history file and 143 variables of the analysis file, while

LETKF only reads data of 20 NetCDF variables from the

history file and 11 variables from the analysis file. Moreover,

SCALE writes values of halo space to the analysis file while

LETKF never reads them. The asymmetry incurs a large

amount of execution time being wasted on the undesirable

I/O operations. Fortunately, DTF perfectly diminishes this

problem by request matching as introduced in Section 2.1.1.

3.2 Scalability Evaluation

This subsection introduces the scalability evaluation re-

sults of DTF compared to the PnetCDF file I/O using this

benchmark. The benchmark contains multiple execution cy-

cles, and the I/O operations performed in each cycle behave

in the same pattern and data size. Therefore, we enable

the replay io optimization for this benchmark and measure

the average data transfer time for one cycle. PnetCDF-1.7.0

library is used for all the experiments.

Supercomputer Fugaku and Oakforest-PACS (OFP) are

used for these scalability evaluation experiments. Fugaku

has gained the title of the world’s fastest supercomputer.

Its compute nodes are connected via the newly designed

6D mesh/torus interconnect called Tofu Interconnect D (To-

fuD) [1]. It is equipped with a three-layered storage system

4ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.24
2020/12/22

IPSJ SIG Technical Report

that includes a Lustre-based global file system named Fu-

jitsu FEFS [4], [14]. Only the second layer of FEFS is used

for the following experiments conducted on Fugaku. OFP is

another Fujitsu built supercomputer which is managed by

The University of Tsukuba and The University of Tokyo [6].

All the compute nodes are interconnected by Intel’s Omni

Path network and able to access a Lustre-based global par-

allel file system.

Due to the varied number of available nodes between the

two platforms, we have designed experiments with different

configurations. Currently we change the total amount of

I/O by adjusting data sizes in each ensemble, while the total

numbers of ensembles are fixed on both platforms. We com-

pletely follow the working model of SCALE-LETKF and as-

sume all the processes in an ensemble are organized as a 2-D

cartesian grid. Several parameters are introduced to control

the shape of each grid cell, such as IMAX which means the

length of a grid cell on the x-dimension, and JMAX which

refers to the length on the y-dimension. The size of each

grid cell also signifies the base of data volume per process.

In the case of strong scaling, the overall grid size of each

ensemble is configured into 1024× 1024 on both platforms.

In the case of weak scaling, each process performs the same

amount of I/O by setting the shape of each grid cell into

constants. Subsections 3.2.1 and 3.2.2 introduce experiment

configurations and evaluation results in detail.

Data Transfer Time of each following plot literally means

the average time interval from I/O requests posted until all

the requested data delivered during one cycle in DTF direct

data transfer. Because we removed all the operations irrele-

vant to I/O from the operating cycles, the writer and reader

will post I/O requests almost at the same time. There-

fore, the reported time genuinely reflects how much time the

reader has to wait for the delivery of data. In the PnetCDF

file I/O, Data Transfer Time indicates the average total

time spent in writing and reading for each cycle. The Y-

axis of all the figures is on a logarithmic scale for a clear

and precise comparison.

3.2.1 Scalability on Fugaku

We deployed the experiments up to 5120 nodes on Fugaku

with a total number of ensembles set into 10. The I/O sizes

performed by each process in the strong scaling experiment

are listed in Table 1. The maximum amount of I/O during

each cycle performed by SCALE reaches about 189.8 GiB,

and 142.3 GiB performed by LETKF. In the weak scaling

experiment, the amount of I/O per process during each cy-

cle is fixed into 77.4 MiB per SCALE process and 57.6 MiB

per LETKF process.

The strong scaling and weak scaling results are presented

in Figure 4. DTF considerably outperforms the PnetCDF

file I/O and scales better in each case. In the strong scal-

ing, data transfer time is reduced to 10x lower when the total

number of nodes reaches 5120 compared to its starting point

in the direct data transfer, while the PnetCDF file I/O can

achieve 2x speedup. In the weak scaling, the DTF direct

Table 1: The amount of I/O per-process during each cycle

in the strong scaling experiment on Fugaku. (MiB)

SCALE LETKF
of
PROCS

WRITE
AMOUNT

READ
AMOUNT

WRITE
AMOUNT

READ
AMOUNT

320 894.4 320.5 320.5 590.2
640 449.0 160.3 160.3 295.3
1280 225.5 80.3 80.3 147.9
2560 113.7 40.3 40.3 74.2
5120 57.2 20.2 20.2 37.3

data transfer keeps a steady transfer time with a growing

number of nodes, while PnetCDF file I/O performs at an

increasingly slower rate.

It’s necessary to mention that evaluation results on Fu-

gaku are tentative for the current stage because it’s still

under development. There are a lot of spaces available for

the Fugaku project to grow.

3.2.2 Scalability on Oakforest-PACS

Due to the compute resource limitation, we deployed the

experiments on OFP using 2048 nodes maximumly with the

number of ensembles set into 8. Table 2 has listed the

amount of I/O performed by each process in the strong scal-

ing evaluation. The total amount of I/O during each cycle

performed by SCALE and LETKF are approximately 151.4

GiB and 113.7 GiB respectively. In the weak scaling ex-

periment, the amount of I/O per process during each cycle

is configured into 153.6 MiB per SCALE process and 113.7

MiB per LETKF process.

Table 2: The amount of I/O per-process during each cycle

in the strong scaling experiment on OFP. (MiB)

SCALE LETKF
of
PROCS

WRITE
AMOUNT

READ
AMOUNT

WRITE
AMOUNT

READ
AMOUNT

64 3563.0 1281.0 1281.0 2359.0
128 1785.1 640.5 640.5 1179.5
256 894.4 320.2 320.2 589.7
512 449.0 160.1 160.1 294.8
1024 225.5 80.1 80.1 147.4
2048 113.7 40.0 40.0 73.7

Figure 5 exhibits the scalability difference between DTF

and PnetCDF file I/O using OFP. DTF significantly outper-

forms the PnetCDF file I/O and scales better as expected.

DTF delivers data in a notably faster rate in strong scal-

ing, while keeps a stable data transfer time in weak scaling.

The PnetCDF file I/O scales distinctly worse in both scaling

experiments.

For clarification purposes, we present the speedup com-

parison of DTF direct data transfer between Fugaku and

OFP as shown in Figure 6. We carried out the experi-

ment using the same configuration as introduced in Subsec-

tion 3.2.2 on both platforms. According to the evaluation

results, DTF is constantly scalable on both supercomput-

ers in the experiments of strong scaling and weak scaling.

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.24
2020/12/22

IPSJ SIG Technical Report

0.01

0.1

1

10

100

320 640 1280 2560 5120

DA
TA

 T
RA

N
SF

ER
 T

IM
E

(S
)

TOTAL NUMBER OF NODES

TRANSFER FILE I/O

(a) Strong scaling

0.01

0.1

1

10

100

320 640 1280 2560 5120

DA
TA

 T
RA

N
SF

ER
 T

IM
E

(S
)

TOTAL NUMBER OF NODES

TRANSFER FILE I/O

(b) Weak scaling

Fig. 4: Scalability of DTF compared to the PnetCDF file I/O on Fugaku.

0.1

1

10

100

1000

10000

64 128 256 512 1024 2048

DA
TA

 T
RA

N
SF

ER
 T

IM
E

(S
)

TOTAL NUMBER OF NODES

TRANSFER FILE I/O

(a) Strong scaling

0.1

1

10

100

1000

64 128 256 512 1024 2048

DA
TA

 T
RA

N
SF

ER
 T

IM
E

(S
)

TOTAL NUMBER OF NODES

TRANSFER FILE I/O

(b) Weak scaling

Fig. 5: Scalability of DTF compared to the PnetCDF file I/O on Oakforest-PACS.

1

10

100

64 128 256 512 1024 2048

SP
EE

DU
P

TOTAL NUMBER OF NODES

OFP FUGAKU IDEAL

(a) Strong scaling speedup

0.1

1

10

64 128 256 512 1024 2048

EF
FI

CI
EN

CY

TOTAL NUMBER OF NODES

OFP FUGAKU

(b) Weak scaling efficiency

Fig. 6: Speedup and efficiency comparison of direct data transfer between OFP and Fugaku

DTF gains almost linear speedup in the strong scaling ex-

periments and performs in excellent weak scaling efficiency

on both platforms.

4. Conclusion

This work presents an ensemble-based multi-component

I/O benchmark and comprehensive results of scalability

evaluations for the direct data transfer using Data Transfer

Framework (DTF) compared against PnetCDF file I/O. Ac-

cording to the evaluation results collected on two supercom-

puters, Fugaku and Oakforest-PACS (OFP), DTF is found

to have significant scalability advantage over the PnetCDF

file I/O both for strong scaling and weak scaling. Multi-

component applications can easily benefit from DTF due to

its minimal code change requirements. Additionally, com-

parison results of strong scaling speedup and weak scaling

efficiency between Fugaku and OFP have been presented.

They both have superior scalability under the direct trans-

fer mode of DTF. The results presented in this work could

be informative for future I/O middleware design.

Our future effort will focus on characterizing the scala-

bility and performance of DTF using applications that have

irregular I/O behaviors, to which replaying I/O is inappli-

cable. We believe that request matching has space to be

6ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.24
2020/12/22

IPSJ SIG Technical Report

optimized when the total number of I/O requests becomes

large, and load balancing between matcher processes should

be revisited. With the proposed benchmark in Section 3, we

are able to conduct in-depth investigation of the behavior

and scalability of DTF alike I/O middleware and propose

further optimization to the current approach.

5. Acknowledgement
This work has been partially funded by JST AIP Grant

Number JPMJCR19U2 and MEXT’s program for the Devel-
opment and Improvement of Next Generation Ultra High-
Speed Computer Systems under its subsidies for operating
the Specific Advanced Large Research Facilities in Japan.

References

[1] Ajima, Y., Kawashima, T., Okamoto, T., Shida, N., Hirai,
K., Shimizu, T., Hiramoto, S., Ikeda, Y., Yoshikawa, T.,
Uchida, K. et al.: The tofu interconnect D, 2018 IEEE In-
ternational Conference on Cluster Computing (CLUSTER),
IEEE, pp. 646–654 (2018).

[2] Ajima, Y., Sumimoto, S. and Shimizu, T.: Tofu: A 6D
mesh/torus interconnect for exascale computers, Computer,
No. 11, pp. 36–40 (2009).

[3] Craig, A. P., Jacob, R., Kauffman, B., Bettge, T., Larson,
J., Ong, E., Ding, C. and He, Y.: CPL6: The new exten-
sible, high performance parallel coupler for the Community
Climate System Model, The International Journal of High
Performance Computing Applications, Vol. 19, No. 3, pp.
309–327 (2005).

[4] Fujitsu: FEFS: Scalable Cluster File System, https://www.
fujitsu.com/downloads/TC/sc11/fefs-sc11.pdf.

[5] Howison, M.: Tuning hdf5 for lustre file systems (2010).
[6] Joint Center for Advanced HPC (JCAHPC): Basic Specifica-

tion of Oakforest-PACS, http://jcahpc.jp/eng/ofp_intro.
html.

[7] Kurokawa, M.: The K computer: 10 Peta-FLOPS supercom-
puter, The 10th International Conference on Optical Inter-
net (COIN2012), IEEE (2012).

[8] Lang, S., Carns, P., Latham, R., Ross, R., Harms, K. and
Allcock, W.: I/O performance challenges at leadership scale,
Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, IEEE, pp. 1–12
(2009).

[9] Larson, J., Jacob, R. and Ong, E.: The model coupling
toolkit: a new Fortran90 toolkit for building multiphysics
parallel coupled models, The International Journal of High
Performance Computing Applications, Vol. 19, No. 3, pp.
277–292 (2005).

[10] Li, J., Liao, W. k., Choudhary, A., Ross, R., Thakur, R.,
Gropp, W., Latham, R., Siegel, A., Gallagher, B. and Zin-
gale, M.: Parallel netCDF: A high-performance scientific I/O
interface, SC’03: Proceedings of the 2003 ACM/IEEE con-
ference on Supercomputing, IEEE (2003).

[11] Martsinkevich, T. V., Gerofi, B., Lien, G. Y., Nishizawa,
S., Liao, W. k., Miyoshi, T., Tomita, H., Ishikawa, Y. and
Choudhary, A.: DTF: An I/O Arbitration Framework for
Multi-component Data Processing Workflows, International
Conference on High Performance Computing, Springer, pp.
63–80 (2018).

[12] Miyoshi, T., Lien, G. Y., Satoh, S., Ushio, T., Bessho, K.,
Tomita, H., Nishizawa, S., Yoshida, R., Adachi, S. A., Liao,
J. et al.: ”Big data assimilation” toward post-petascale se-
vere weather prediction: An overview and progress, Proceed-
ings of the IEEE, Vol. 104, No. 11, pp. 2155–2179 (2016).

[13] Northwestern University: The S3D-IO Benchmark, https:
//github.com/wkliao/S3D-IO.

[14] RIKEN Center for Computational Science: Fugaku
Supercomputer, https://www.r-ccs.riken.jp/en/fugaku/
project/outline.

[15] Unidata: Network Common Data Form (NetCDF), https:
//www.unidata.ucar.edu/software/netcdf.

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-177 No.24
2020/12/22

