FP21及びFP41を使用した不完全コレスキー分解前処理

河合 直聡^{1,a)} 中島 研吾^{1,2,b)}

概要:科学技術計算では倍精度浮動小数点演算(FP64)が広く使用されてきたが,近年,計算量・メモリ アクセス量・消費電力削減の観点から,単精度(FP32),半精度(FP16)などの低精度演算の適用が盛ん に実施されるようになっている。FP32によって広範囲な問題を解けることが示されているが,FP16は有 効桁が3桁程度であり,用途は限定されている。山口等によって提案されたFP21はFP32とFP16の中 間であり,GPU向けに実装され,地震シミュレーションにおいてはその有効性が示されている。本研究 では,このFP21を汎用CPU向けに実装し、構造解析アプリケーションを解くための不完全コレスキー 分解前処理に適用、その効果を検証した。構造解析のアプリケーションはポアソン比などの変更で問題の 条件数が変わるため、より実用的にFP21の効果を評価可能である。また、先述のような理由からFP21、 32、64の適用によって収束性が変化するため、FP21に加えてFP42の実装も行い、同時に評価を行った。

Incomplete Cholesky Preconditioner with FP21 and FP42

Masatoshi Kawai^{1,a)} Kengo Nakajima^{1,2,b)}

1. はじめに

近年の科学技術分野では FP64 以外に FP32 や FP16 の 利用が再検討され、計算時間短縮、消費電力削減を目的と して複数の精度を混在させる研究が行われている。現在の 数値シミュレーションなど分野では暗黙的に倍精度浮動小 数点演算(FP64)が利用されているが、深層学習の分野 を中心に単精度(FP32)や半精度(FP16)の使用が広く議 論、実用化されている[1],[2]。実際に、近年の GPU では 半精度演算がサポートされ、また 2020 年春から試験稼働 を開始している富岳で採用されている CPU(ARM64Fx)で も同様にサポートされている。加えて、第3世代の Intel Xeon Scalable processor でも FP16 のサポートがアナウン スされている。このような背景を受け、計算科学の分野で も単精度や半精度の利用が研究されており、FP32 がアプ リケーションによっては実用的な精度であると報告されて いる[3],[4],[5]。一方で、FP16 は有効桁数が3 桁程度と少

¹ 東京大学 情報基盤センター

² 理化学研究所 計算科学研究センター R-CCS, RIKEN なく、指数部の最大値も 10⁵ と小さいために、用途が限定 的である。そこで、FP16 と FP32 の間の精度を持つ FP21 が山口等によって提案、GPU 向けに実装され、地震シミュ レーションにおいてその有効性が示されている [6]。

数値シミュレーションで広く用いられているクリロフ部 分空間法は FP64 の利用が一般的と考えられている典型的 な例である。これは、クリロフ部分空間法は収束性が計算 精度に強く影響を受けるためである。しかし、クリロフ部 分空間法で併用される前処理部分に着目すると、ここでは 簡易的に対象の方程式が解ければよいという性質から、低 精度でもある程度の効果が得られることが分かってきてい る。特に、不完全コレスキー分解前処理は、簡易的なコレス キー分解であるため、低い精度でも十分な収束性改善が確 認されており、実際に計算時間の短縮に寄与している [7]。

本研究ではこれまでに提案された FP21 を GeoFEM ベン チマーク [8], [9] の不完全コレスキー分解前処理に適用し、 FP32 と比較した。加えて、FP32 と 64 の間である FP42 を新たに実装し、同様に評価を行った。不完全コレスキー 分解は前処理付きクリロフ部分空間法の計算時間の半分以 上を締めているため、この前処理への FP21 の適用により さらなる時間短縮が期待できる。ただし、問題の条件数と

ITC, The Uiveristy of Tokyo

^{a)} kawai@cc.u-tokyo.ac.jp

^{b)} nakajima@cc.u-tokyo.ac.jp

前処理の低精度化によっては収束性が大きく悪化し、FP21 の優位性がなくなる場合あがる。よって、本研究では計算 時間と収束性に着目し、FP21の優位性を確認した。同様 に、収束性の観点から FP32 よりも FP64 のほうが優位な 結果も想定でき、この場合には FP42 の優位性が出てくる 可能性がある。よって、新たに FP42 提案、実装も行い評 価を行った。

2. FP21、FP42型浮動小数

本節では FP21 および FP42 の格納形式、表現能力を既 存のデータ型である FP16、FP32、FP64 との比較しつつ 述べる。また、FP21、42 はコンパイラー、CPU のサポー トがないため、使用のためには型キャストが必須となる。 本節ではこれを実現する実装についても述べる。

2.1 FP21、FP42の概要

本節では FP21 および FP42 の形式および表現能力につ いて述べる。

計算機で扱う浮動小数表現はいくつか存在し、2008年に改 定された IEEE754[10] では半精度 (FP16)、単精度 (FP32)、 倍精度 (FP64)、四倍精度 (FP128) が基本形式として定め られている。いずれの形式でも、符号部、指数部、仮数部 をもっており、それぞれで指数部と仮数部の長さが異なる。 図1にFP16、FP32、FP64の符号部、指数部、仮数部の 長さを示す。高精度な形式ほど長い指数部および仮数部を 持っている。

FP21 は、計算時の精度が FP16 では不足であるが、FP32 は十分であるというアプリケーションにおいて、データ転 送量削減を目的に提案されている。FP21の指数部はFP32 と同じであるが、仮数部が 23bit から 12bit に削減されて いる (図 1)。結果、データ転送量はおおよそ 2/3 に削減さ れるため、メモリ律速なアプリケーションで、計算時間短 縮が期待できる。本稿ではこの FP21 の CPU 上での実用 性を評価する。

本稿では FP32 と FP64 の間の表現をもつ FP42 に関し ても提案、実装、評価を行う。FP42 は FP64 の仮数部を 52bit から 30bit に削減している。FP21 と同様に FP32 で は表現力が足りないが、FP64 では十分なアプリケーショ ンで 2/3 へのデータ転送量削減が期待できる。

表1には各精度の表現能力を示す指標として、 仮数部の 10 進数での表現可能桁数と指数部の最大冪指数を示す。仮

表 1 谷浮動小数表現の表現力		
データ型	仮数部:表現可能桁数	指数部:最大冪指数
FP16	3.31	5
FP21	3.91	38
FP32	7.22	38
FP42	9.33	308
FP64	15.95	308

図 1 FP64,42,32,21,16 の比較

数部の 10 進数での表現可能桁数 y は、各精度の仮数部の ビット数をxとして、

 $10^y = 2^{(x+1)}$ (1)

$$y = (x+1)\log_{10}2\tag{2}$$

のように算出している。なお、式(1)の右辺、2進数での 表現可能桁数を示す冪指数を x+1 としているのは、浮動 小数表現での仮数部が全て0で、かつ指数部がすべて0で ない場合、仮数部の最上位ビットのさらに上に1が付与さ れているとして (Hidden Bit)、浮動小数形式を扱うためで ある。本表から、10進数での表現能力を基準として考え た場合、FP21と FP16 の仮数部の表現能力は同程度であ り、そこから高精度な形式になるほど表現能力が高くなっ ている。

2.2 先行研究

複数の浮動小数表現を使った計算手法は深層学習の分野 で広く用いられている [11], [12]。また、いくつかのシミュ レーションでもすでに研究されており [13], [14]、複数の報 告がある。このような背景を受け、近年では反復法での研 究も行われるようになっている [15], [16]。

ただし、アプリケーションによっては FP16 や FP32、 FP64 の間がちょうどよい場合があり、そのような状況に 対して、IEEE754 で定義されたデータ型以外の研究が行わ れるようになっている。代表的な物は、Google の深層学 習ライブラリで実際に使用されている bfloat[17] などがあ るが、山口等による論文 [6] では FP21 が提案されており、 これを適用した地震シミュレーションが GPU で評価され ている。同論文内ではベクトルの AXPY、内積および行列 ベクトル積が FP21 で実装されており、全体で 10%程度の 性能向上が確認されている。

これらの先行研究に対して、本稿では、FP21の CPU 上 での効果的な実装の提案、評価を行っている。加えて、新 たなデータ型である FP42 の提案も行っている。FP21 は CPU およびコンパイラによるサポートがないため、計算 時にはより高精度な FP32 への型キャストが必要となる。

これらの型キャストは頻繁に必要となるため、型キャスト によるオーバーヘッドを小さくしなければならない。山口 等の論文[6]では C 言語を用いて実装されており、inline 指示文の挿入でオーバーヘッドの最小化が図られている。 本稿での評価には、Fortran で記述されたアプリケーショ ンを想定しており、C 言語での実装以上に注意しなければ ならず、これらの点を考慮して実装の提案、およびその評 価を行っている。加えて、IC 前処理付き CG 法では FP32 の表現力でも足りない場合が想定されるため、新たなデー タ型として FP32 と 64 の間の精度をもつ FP42 の提案、評 価も同様に行っている。

2.3 FP21、FP42の型変換

本節では FP21 と FP32 データ型間、および FP42 と FP64 データ型間の型キャストの実装について述べる。

山口等によって提案された FP21 の型キャストの実装で は、FP21 の 3 つを C 言語の unsigned long int 1 つに格 納する手法を取っている。本稿で対象とするアプリケー ションは Fortran であるため、同様の実装を Fortran で 行った。ただし、Fortran は unsigned 型の扱いがないた め、unsigned long int 型を integer(8) 型に置き換えている。 サンプルコード 1 に FP21 と FP32 間での型キャスト関 数を示す。本サンプルコードでの "fp32x3_to_fp21x3_f" は FP32 から FP21 への、"fp21x3_to_fp32x3_f" は FP21 から FP32 への型キャスト関数である。FP32 から FP21 へ型 キャストは、以下の手順で行う。なお、FP21 から FP32 へ の変換は逆の操作を行う。

- (1) "cast_fp32_to_fp21x3" 関数を使用して、
 "FP32(real(4))"型のデータを"fp21x3(integer(8))"型
 に変換(型キャストではなく、単純なデータ型の変換)
- (2) 変換後のデータから 21bit 分の値を論理積を使って 抽出
- (3) shiftr または shiftl 関数を使用して、論理シフトを適用 (shiftr および shiftl 関数は Fortran2008 準拠)
- (4) 論理和を使用して対象の変数に代入(もともとのデー タを保持するために論理和を使用)

ここで、"cast_fp32_to_fp21x3" 関数は、FP32 型のデータ を fp21x3 型に内部的なビットの情報を変更することなく 変換するための関数である。一般的な型キャストは数字的 な意味が変わらないように内部的なビット情報が更新され る。FP21 と FP32 間の型キャストでは、この更新を行わず に、言語上で扱う型のみを変更する必要があるため、この ような関数を用いている。C 言語ではポインタのやり取り でこれを実現できるが、Fortran では同じことができない ため、"cast_fp32_to_fp21x3" 関数では real(4) 型のデータ を暗黙的に integer(8) 型のデータとして受け取ることで、 目的の動作を実現している。

```
なお、山口等の実装したコードは github にて公開されて
```

```
サンプルコード 1 FP32 → FP21、FP21 → 32 型キャスト関数
\#define fp21x3 integer(8)
function fp32x3_to_fp21x3_f(a1, a2, a3) result(b)
 implicit none
 real(4), intent(in) :: a1, a2, a3
 fp21x3 :: b
 fp21x3 c
 call cast_fp32_to_fp21x3(a1, c)
 b = shiftr(and(c, int(Z'00000000fffff800', 8)), 11)
 call cast_fp32_to_fp21x3(a2, c)
 b = or(b, shiftl(and(c, int(Z'00000000ffff800', 8)), 10))
 call cast_fp32_to_fp21x3(a3, c)
 b = or(b, shiftl(and(c, int(Z'00000000fffff800', 8)), 31))
end function fp32x3_to_fp21x3_f
subroutine fp21x3_to_fp32x3_f(a, b1, b2, b3)
 implicit none
 fp21x3, intent(in) :: a
 real(4), intent(out) :: b1, b2, b3
 call cast_fp21x3_to_fp32(shiftl(and(a,
                       int(Z'0000000001fffff', 8)), 11), b1)
 call cast_fp21x3_to_fp32(shiftr(and(a,
                                                           Xz.
                       int(Z'000003ffffe00000', 8)), 10), b2)
 call cast_fp21x3_to_fp32(shiftr(and(a,
                      int(Z'7ffffc000000000', 8)), 31), b3)
end subroutine fp21x3_to_fp32x3_f
subroutine cast_fp32_to_fp21x3(a, b)
 implicit none
 fp21x3, intent(in) :: a
 fp21x3, intent(out) :: b
 \mathbf{b} = \mathbf{a}
end subroutine cast_fp32_to_fp21x3
subroutine cast_fp21x3_to_fp32(a, b)
 implicit none
 real(4), intent(in) :: a
 real(4), intent(out) :: b
 \mathbf{b} = \mathbf{a}
```

end subroutine cast_fp21x3_to_fp32

おり [18]、実装の一案として、公開されたコードを Fortran で呼び出すための interface を作成する方法がある。ただ し、ここでの型変換は頻繁に呼び出されるため、レイテン シが重要となる。もしプログラムのコンパイル時に型キャ スト関数がインライン展開される実装ができていれば、レ イテンシの最小化が期待できる。インライン展開されるこ とでコンパイル時や実行時のアウト・オブ・オーダーエン ジンによる命令の並び替えが行われ、型キャストがそれ以 外の計算やメモリのロードストアでオーバーラップされる。 実際に、山口等によって公開されているコードでは inline 指示文が挿入されている。一方で、Fortran の intarface を 用いて C 言語を呼び出す方法ではインライン展開が行わ **サンプルコード 2** FP64 → FP42、FP42 → 64 型キャスト関数 #define fp42x3 integer(8) function $fp64x3_to_fp42x3_f(a1, a2, a3)$ result(b) implicit none real(8), intent(in) :: a1, a2, a3fp42x3 :: b(2)fp42x3 c call cast_fp64_to_fp42x3(a1, c) b(1) = shiftr(and(c, int(Z'ffffffffc00000', 8)), 22) $call cast_fp64_to_fp42x3(a2, c)$ b(1) = or(b(1), shiftl(and(c,int(Z'00000fffffc00000', 8)), 20)) b(2) = shiftr(and(c, int(Z'fffff0000000000', 8)), 44)call cast_fp64_to_fp42x3(a3, c) b(2) = or(b(2), and(c, int(Z'ffffffffc00000', 8)))end function fp64x3_to_fp42x3_f subroutine $fp42x3_to_fp64x3_f(a, b1, b2, b3)$ implicit none fp42x3, intent(in) :: a(2)real(8), intent(out) :: b1, b2, b3 fp42x3 right, left $call cast_fp42x3_to_fp64(shift)(and(a(1), a))$ & int(Z'000003fffffffff, 8)), 22), b1) right = shiftr(and(a(1), int(Z'ffffc000000000', 8)), 20)left = shiftl(and(a(2), int(Z'000000000000fffff', 8)), 44) call cast_fp42x3_to_fp64(or(left, right), b2) $call cast_fp42x3_to_fp64(and(a(2),$ & int(Z'ffffffffc00000', 8)), b3) end subroutine fp42x3_to_fp64x3_f subroutine cast_fp64_to_fp42x3(a, b) implicit none fp42x3, intent(in) :: a fp42x3, intent(out) :: bb = aend subroutine cast_fp64_to_fp42x3 subroutine cast_fp42x3_to_fp64(a, b) use iso_c_binding implicit none real(8), intent(in) :: a real(8), intent(out) :: b b = a

end subroutine cast_fp42x3_to_fp64

れないため、型キャストによるオーバーヘッドが大きくな る可能性がある。よって本研究では同様の動作を Fortran で実装することとした。なお、Fortran には言語で標準化 されたインライン展開を促す指示文などは存在しないが、 インライン展開は一般的な最適化手法であり、必要な最適 化オプションを付与すれば、サンプルコード 1 で示した 程度の規模であれば、ほとんどのコンパイラはインライン 展開を行う。著者らが確認したところ、GNU コンパイラ のバージョン 9.3.1 で"-O3 -flto" オプションをつけた場合 と、Intel コンパイラのバージョン 19.1.1.217 で"-O3 -ipo" オプションをつけた場合で、型キャスト関数とそれを参照 するプログラムが分割コンパイルされても、インライン展 開がされていることを確認した。なお、インライン展開が 行われたかどうかは各コンパイラの最適化レポート (GNU では-fopt-info-inline、Intel では-qopt-report) で確認して いる。加えて、Intel コンパイラではインライン展開を促す ディレクティブとして、

"!DIR\$ ATTRIBUTE FORCEINLINE :: function" が用意されており、これを呼び出し元に挿入すれば、イン ライン展開が明示的に行われる。

次に、FP64 から FP42、FP42 から FP64 への変換につい て述べる。FP21 の実装を FP42 にそのまま拡張するために は、integer(16) がコンパイラでサポートされている必要があ る。しかし、Intel コンパイラのバージョン 19.1.1.217(2020 update2) ではサポートされていなかかった (GNU コンパ イラのバージョン 9.3.1 ではサポート)。そこで、FP42 型 のデータ 3 つを integer(8) 型のデータ 2 つで格納する形式 を採用している。サンプルコード 2 に FP42 と FP64 間で の型キャスト関数を示す。

前述のようにここでの型キャストのオーバーヘッドは性 能に大きく影響する。本稿の数値実験による評価ではこの オーバーヘッドの計測も同時に行う。

3. 評価対象のアプリケーション

本研究では FP21,FP42 の効果を検証するために、GeoFEM ベンチマークの不完全コレスキー分解にこれらの精 度を適用し、評価を行う。GeoFEM ベンチマークでは構造 解析から導出される連立一次方程式を不完全コレスキー分 解前処理つき共役勾配 (ICCG) 法で解いている。構造解析 の問題はその性質から FP21、FP42 でデータを扱うのに向 いている。

3.1 構造解析問題

本節では GeoFEM ベンチマークで扱っている連立一次 方程式が構造解析の問題から導出されるまでを扱う。

本稿で扱う問題は3次元の構造解析問題であり、ある荷 重を物体にかけた場合にその物体の変形(変位)を平衡方程 式を用いて表す。3次元の問題では、各接点毎に*x、y、z* 方向の変位3つを持つ。FP21およびFP42の型キャスト では、データ3つを1つの単位として扱うため、評価する 上で相性のよいアプリケーションである。

平衡方程式では、物体の変位とそこにかかる荷重の関係 が剛性行列を用いて表現される。ここで使用するメッシュ を6面体のソリッド要素とし、ある要素の接点にかかる力 fは、同要素の全て接点の変位 u と、弾性行列 E、変位一 歪の関係を示す行列 B および要素の体積 V を用いて以下 のように表される。

$$\boldsymbol{f} = \int_{V} \boldsymbol{B}^{T} \boldsymbol{E} \boldsymbol{B} dV \boldsymbol{u}$$
(3)

このときの、 $\int_{V} B^{T} E B dV$ が剛性行列 K と呼ばれる。モ デル全体での関係式は、式 (3) の全要素文を加算した形と なる。行列 B はソリッド要素の形によって決まり、行列 E はヤング率とポアソン比によって決まる。ここでの E は、ヤング率を E、ポアソン比を ν として以下のように表 される。

$$\boldsymbol{E} = \gamma \begin{pmatrix} 1 & \alpha & \alpha & 0 & 0 & 0 \\ \alpha & 1 & \alpha & 0 & 0 & 0 \\ \alpha & \alpha & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \beta & 0 & 0 \\ 0 & 0 & 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & 0 & \beta & \beta \end{pmatrix}$$
(4)
$$\because \alpha = \frac{1}{1 - \nu}, \ \beta = \frac{1 - 2\nu}{2(1 - \nu)}, \ \gamma = \frac{E(1 - \nu)}{(1 - 2\nu)(1 + \nu)}$$

なお、ポアソン比は −1 < *ν* < 0.5 である。

3.2 不完全コレスキー分解前処理つき共役勾配法

本稿では、GeoFEM ベンチマークのソルバ部について述 べる。GeoFEM ベンチマークのソルバ部では、ICCG 法を 採用しており、構造解析の問題から導出された連立一次方 程式

$$Ax = b \tag{5}$$

を解いている。なお、A は剛性行列 K を全要素で加算し、 算出された全体剛性行列 (係数行列) であり、解ベクトルxおよび右辺ベクトルbは全接点での変位uおよび荷重fを 並べたベクトルである。対象の問題の接点数をNとする と、解くべき方程式??e:SLE)の未知変数は $3 \times N$ となる。

図 2 に ICCG 法の計算手順を示す。本図での k は反復 回数、 x^k は k 反復目の近似解ベクトル、 r^k は残差ベクト ル、 p^k は探索ベクトル、q は前処理の結果を格納するベク トル、IC() は不完全コレスキー分解 (IC) を示す。

本研究で実装した IC 前処理は、Additive Schwartz 型で あり、メモリ分散環境などでも比較的実装しやすい。IC 前 処理前処理では、反復前に係数行列 A から対角行列 \overline{D} お よび上三角行列 \overline{U} を以下のように計算する。

$$\overline{d_{i,i}} = a_{i,i} - \sum_{k=1}^{i-1} \overline{u_{k,i}} \,\overline{d_{i,i}} \,\overline{u_{k,i}}$$
(6)
$$\overline{u_{i,j}} = \begin{cases} \frac{1}{\overline{d_{i,i}}} \left(a_{i,j} - \sum_{k=1}^{i-1} \overline{u_{k,i}} \,\overline{d_{i,i}} \,\overline{u_{k,j}} \right), \\ a_{i,j} \neq 0 \\ 0, \\ a_{i,j} = 0 \end{cases}$$
(7)

これを用いて、Additive Schwartz 型の IC 前処理では以下 のように r から q を計算する。

$$q = (U^{T})^{-1} r$$

$$q = U^{-1} q$$
通信による q の更新
$$q' = (U^{T})^{-1} q$$

$$q' = U^{-1} q'$$

$$q' = (U^{T})^{-1} q'$$

$$q' = U^{-1} q'$$

$$q = q + q'$$
(8)

次に、ICCG 法への FP21 および FP42 を含めた低精度 演算の適用範囲について述べる。式 (4) に示すように、構 造解析の問題では、係数 γ が

$$\lim_{\nu \to 0.5} \gamma = \lim_{\nu \to 0.5} \frac{E(1-\nu)}{(1-2\nu)(1+\nu)} = \inf$$
(9)

という性質を持つため、ポアソン比によっては係数行列 Aの精度が重要になり、Aを低精度で格納する場合は導かれ た近似解が正しいかの検証が必要になる。また、近似解ベ クトル x^k や残差ベクトル r^k 、探索ベクトル p^k を低精度 化した場合、内積の精度が落ちるため、CG 法そのものが 破綻する可能性がある。一方で、IC 前処理は低精度の適用 によって収束性悪化の可能性はあるが、式8に示すように その計算量は CG 法内の行列ベクトル積の3倍以上に相当 し、ICCG 法全体の大半を占めるため、1反復辺りの計算 時間短縮の効果が大きく、収束性悪化の影響を上回ること が期待できる。よって本研究では IC 前処理に低精度演算 を適用することを考える。

IC 前処理へ低精度演算を適用する場合、行列 \overline{D} および \overline{U} のみに適用する場合と、ベクトル q および q' にも適用 する場合が考えられる。行列へのアクセスに要するデータ 転送料はベクトルへのアクセスよりも3倍程度あり、行列 だけの低精度化でもその効果は十分に得られると期待でき る。ベクトルも含めて適用する場合、1 反復あたりのさら なる計算時間短縮が期待できるが、前進後退代入による演 算精度低下が蓄積されるため、行列の低精度化以上に前処

do
$$k = 1$$
, !until converge
 $\alpha = \frac{(r^k, p^k)}{(p^k, Ap^k)}$
 $x^{k+1} = x^k + \alpha p^k$
 $r^{k+1} = r^k - \alpha Ap^k$
 $q = IC(r^{k+1})$!不完全コレスキー分解前処理
 $\beta = -\frac{(q, Ap^k)}{(p^k, Ap^k)}$
 $p^{k+1} = q + \beta p^k$
enddo

図 2 不完全コレスキー分解前処理つき共役勾配法の計算手順

0		
CPU	モデル名	Xeon Gold Platinum 8280
		(Cascade Lake)
	コア数	56 (2 ソケット)
	動作クロック	2.7GHz
	キャッシュサイズ	38.5Mbyte/Socket
Memory	規格	DDR4
	サイズ	192Gbyte

図 3 FP21 および FP42 の型キャストによるオーバーヘッド

理の効果が低下する可能性が発生する。本研究では、前処 理行列のみに低精度演算を適用してこれを評価する。

4. 評価

本節では FP21 および FP42 の効果を FP32、FP64 と比較して示す。

4.1 評価環境

評価に使用した構造解析問題では構造格子で離散化され たモデルを使用し、格子点数は 256³ とした。このときに 導出される連立一次方程式の自由度は 3³ でおおよそ 5 千 万となっている。必要なメモリ量はベクトル 1 つ辺りで 400MByte 以上が必要となり、計算がメモリ律速となる条 件である。評価では、ポアソン比 ν を 0.30~0.49 まで変 化させ、FP21 や FP32、FP42、FP64 の使用による収束性 の変化も含めて確認する。なお、係数行列の格納形式には CRS 形式を用いている。

評価で使用した計算機は東京大学情報基盤センターが サービスを行っている Oakbridge-CX2 である。ここでは 1ノードを使用し、1ノードあたり4プロセス、プロセス あたり14スレッドとした。コンパイラは Intel コンパイラ のバージョン 19.1.1.217 を使用し、コンパイルオプション は"-O3 -xHost -qopenmp -ipo"を付与した。

4.2 評価結果

はじめに、FP21-FP32 間および FP42-FP64 間の型キャ ストのオーバーヘッドの計測結果を示す。

計測にあたって、ソースコード内の型キャスト部を削除 し、FP21 および FP42 を使用した場合と同じメモリ転送量 になるように、単純な FP32 または FP64 のデータ参照に 置き換えたソースコードを新たに用意した。この際、計算 結果は型キャストの削除前と同じにならず、ICCG 法は収 束しなくなるが、反復回数の上限を正しい結果と同じにな るようにしている。これらの条件での比較により、型キャ ストを行う場合と行わない場合の計算時間の差が算出され

図 4 各ポアソンに対して FP21,32,42,64 を使用した場合の計算時間および反復回数

情報処理学会研究報告

IPSJ SIG Technical Report

る。図3にFP21またはFP42を使用した場合と、型キャ ストを取り除いた場合 (FP21.dummy、FP42.dummy)で の前処理部のみの計算時間を示す。本図の結果からFP21 での型キャストのオーバーヘッドは 6.9%、FP42 でのオー バーヘッドは 0.4%と算出される。FP21 と FP42 の型キャ ストによるオーバーヘッドは同程度が妥当な結果である が、ここでの計測結果では FP21 の型キャストによるオー バーヘッドが FP42 の 10 倍以上という結果になった。こ れは、行列の格納形式が CRS であり、FP21 では十分にメ モリバンド幅を使い切れておらず、メモリ転送で型キャス トによるオーバーヘッドを隠せていないためである。よっ て、本評価での型キャストによるオーバーヘッドは FP42 での結果である 0.4%と結論付ける。このレイテンシは十 分に小さく、実用に耐えうる値である。

図4にポアソン比を変更した場合の各精度での計算時間 および反復回数を示す。図5はポアソン比0.30~0.41の 範囲を拡大したものである。これらの図の棒グラフは計 算時間を、折れ線グラフは反復回数を示す。これらの図か ら、いずれの精度のデータ形式でもポアソン比の増大とと もに収束性の悪化が確認できるが、いずれのポアソン比で も FP64 より低精度なデータ形式で十分な収束性が確認で き、より短い計算時間で近似解を得られている。また、ポ アソン比が 0.43 以下の範囲では精度毎の収束性の差が小 さく、FP21 が最も効果的であった。一方で、ポアソン比 が 0.44 以上の条件では、FP21 での収束性の悪化が目立つ 場合が多く、6つのポアソン比のうち4つで FP32 のほう が計算時間が短くなった。本結果では FP21 または FP32 で十分であるという結果を得たが、FP42の FP64 に対す る優位性も十分に確認できており、非構造格子での問題な ど、FP32 でも収束性が悪化するような問題では FP42 の 優位性がある。具体的な数値では、ポアソン比 0.3~0.43 の範囲で、FP21の使用により FP32 を使用した場合に対 して平均で14.2%、FP64 に対して44.8%の計算時間短縮 を、FP42 は FP64 に対して 23.2%の計算時間短縮を達成 した。

5. まとめ

本稿では GPU で既に効果が確認されている FP21 およ び実用性が期待できる FP42 を CPU 用に実装、評価を行っ た。これらの型はコンパイラおよび CPU の演算器による サポートがないため、型キャストが必要となるが、本稿 で提示した Fortran による型キャストの実装は十分にオー バーヘッド小さいことを数値実験の結果から確認した。

これらの FP21 および FP42 を GeoFEM ベンチマーク の不完全コレスキー分解前処理に適用し、ポアソン比を変 更してその収束性および計算時間の評価を行った。結果、 FP21 および FP42 の使用による収束性の悪化は十分に小 さく、実用的であることを確認した。具体的にはポアソン

図 5 図 4 のポアソン比 0.3~0.41 の範囲の拡大図

比が 0.30~0.43 の範囲で FP21 の使用により FP32 を使用 した場合に対して平均で 14.2%、FP64 に対して 44.8%の 計算時間短縮を、FP42 は FP64 に対して 23.2%の計算時 間短縮を達成した。

今後、より悪条件な非構造問題での評価、構造解析問題 以外への適用の検討や、アプリケーション毎に適した精度 を自動的に選ぶためのオートチューニング手法の開発など を行っていく予定である。 謝辞 本研究の遂行に関しては、本研究は JSPS 科研費 JP12345678 の助成および、学際大規模情報基盤共同利用・ 共同研究拠点、および、革新的ハイパフォーマンス・コン ピューティング・インフラからの計算資源の支援を受けて いる (課題番号: jh200037-NAH)。この場を借りて感謝の 意を表する。

参考文献

- Haidar, A., Tomov, S., Dongarra, J. and Higham, N. J.: Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 603–613 (2018).
- [2] Lee, J., Lee, J., Han, D., Lee, J., Park, G. and Yoo, H.: 7.7 LNPU: A 25.3TFLOPS/W Sparse Deep-Neural-Network Learning Processor with Fine-Grained Mixed Precision of FP8-FP16, 2019 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 142–144 (2019).
- [3] Matsuoka, N., Qiu, L., Li, X., Omori, T. and ya Hashimoto, K.: Applicability of single precision graphics processing unit for fast simulation of 2D surface acoustic wave devices using an hierarchical cascading technique, *Japanese Journal of Applied Physics*, Vol. 58, No. SG, p. SGGC11 (2019).
- [4] Fujita, K., Horikoshi, M., Ichimura, T., Meadows, L., Nakajima, K., Hori, M. and Maddegedara, L.: Development of element-by-element kernel algorithms in unstructured finite-element solvers for many-core wide-SIMD CPUs: Application to earthquake simulation, *Journal* of Computational Science, Vol. 45, p. 101174 (2020).
- [5] Hess, B.: P-LINCS : A Parallel Linear Constraint Solver for Molecular Simulation, *Journal of Chemical Theory* and Computation, Vol. 4, No. 1, pp. 116–122 (2008).
- [6] Yamaguchi, T., Fujita, K., Ichimura, T., Naruse, A., Lalith, M. and Hori, M.: GPU implementation of a sophisticated implicit low-order finite element solver with FP21-32-64 computation using OpenACC, *Lecture Notes in Computer Science, WACCPD 2019*, Vol. 12017 (2019).
- [7] Sakamoto, R., Kondo, M., Fujita, K., Ichimura, T. and Nakajima, K.: The Effectiveness of Low-Precision Floating Arithmetic on Numerical Codes: A Case Study on Power Consumption, HPCAsia2020, p. 199–206 (2020).
- [8] Nakajima, K.: Parallel Iterative Solvers of GeoFEM with Selective Blocking Preconditioning for Nonlinear Contact Problems on the Earth Simulator, SC '03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, pp. 13–13 (2003).
- [9] 研吾中島,孝洋片桐:マルチコアプロセッサにおけるリ オーダリング付き非構造格子向け前処理付反復法の性能, 技術報告 6,東京大学情報基盤センター/科学技術振興機 構戦略的創造研究推進事業(CREST),東京大学情報基 盤センター (2009).
- [10] : IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, pp. 1–70 (2008).
- [11] Nandakumar, S. R., Le Gallo, M., Piveteau, C., Joshi, V., Mariani, G., Boybat, I., Karunaratne, G., Khaddam-Aljameh, R., Egger, U., Petropoulos, A., Antonakopoulos, T., Rajendran, B., Sebastian, A. and Eleftheriou, E.: Mixed-Precision Deep Learning Based on Computa-

tional Memory, Frontiers in Neuroscience, Vol. 14, p. 406 (2020).

- [12] Jiang, W., Song, Z., Zhan, J., He, Z., Wen, X. and Jiang, K.: Optimized co-scheduling of mixed-precision neural network accelerator for real-time multitasking applications, *Journal of Systems Architecture*, Vol. 110, p. 101775 (2020).
- [13] Clark, M., Babich, R., Barros, K., Brower, R. and Rebbi, C.: Solving lattice QCD systems of equations using mixed precision solvers on GPUs, *Computer Physics Communications*, Vol. 181, No. 9, pp. 1517 – 1528 (2010).
- [14] Le Grand, S., Götz, A. W. and Walker, R. C.: SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations, *Computer Physics Communications*, Vol. 184, No. 2, pp. 374 – 380 (2013).
- [15] Walden, A., Nielsen, E., Diskin, B. and Zubair, M.: A Mixed Precision Multicolor Point-Implicit Solver for Unstructured Grids on GPUs, 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures and Algorithms (IA3), pp. 23–30 (2019).
- [16] Ooi, R., Iwashita, T., Fukaya, T., Ida, A. and Yokota, R.: Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in BEM Analysis, *Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region*, HPCAsia2020, New York, NY, USA, Association for Computing Machinery, p. 92–101 (2020).
- [17] : TensorFlow bfloat, https://github.com/ tensorflow/tensorflow/blob/master/tensorflow/ core/framework/bfloat16.h.
- [18] Yamaguchi, T.: FP21AXPY, https://github.com/ y-mag-chi/fp21axpy.