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Abstract: To improve the performance of deep learning tasks, the models of Deep Neural Network (DNN) could be
trained in a distributed way. That means, the DNN models are trained in a cluster environment, where the parameters
for the models are refined by multiple nodes in the cluster parallelly. A number of previous works that studied dis-
tributed learning focus on improvement of one single task. In such a situation, the whole hardware resources can be
fully utilized for that task. However, in a real system, it is usual to have several learning tasks running in the same
cluster. So in this paper, we propose an adaptive allocation of computing resources for multiple learning tasks, with
the knowledge of current learning phase for each task. In experiments we train two deep learning tasks with VGG16
networks using CIFAR10 dataset on a GPU cluster. The younger task is set to begin 200 seconds later than the start
of the older task. The results show that with an adaptive adjustment for computing resources, the training time can
be reduced by 4.70% with an unchanged per task batch size, and 12.76% and 7.26% for the older and younger task,

separately.

1. Introduction

For the past decade, Deep Learning has become a significant
tool to solve once unsolvable problems. Since training a deep
learning model is a time-consuming task, it is usual that a DL task
be solved distributedly using GPU clusters. Distributing a Deep
Learning task over multiple GPUs on multiple nodes can accel-
erate the learning outstandingly compared to using CPUs on one
node. However, it is still extremely hard to train a large dataset
like ImageNet [1] using limited GPU resources, unless one can
utilize tens of hundreds of GPUs [2]. Therefore, it is still mean-
ingful to devise good algorithms to accelerate the training speed.

With distributed learning, the computational resources can be
fully utilized, although the network cost will be incurred due to
the necessity of averaging the models over nodes. Many fac-
tors about deep learning will affect the eventual performance of
learning tasks, such as batch size [3] [4] [5] [6] and learning
rate [9] [10].

Previous works mostly focus on one simple learning task op-
erating in a cluster, attempting to adjust some hyper-parameters
like batch size or learning rate to speed up the convergence of that
task. In this paper, we found that when multiple learning tasks are
at different learning phases, it is possible to accelerate the conver-
gence of all the tasks by adjusting computing resources allocated
to each task. Besides, we developed an allocator to adjust the
computational resources dynamically.

The remainder of this paper will be organized as follows. Re-
lated work is discussed in Section 2. In Section 3, we introduce
the background of this paper. In Section 4, we give an overview of
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the impact of multiple learning tasks executed in a system in the
same time. And dynamic adjustment of process number will be
discussed in Section 5. In Section 6, we present the experiments
and results. Conclusions and future work are given in Section 7.

2. Related work

There are several existed studies about the acceleration of the
learning process of deep learning.

Learning rate decay (IrDecay) is a technique for training deep
neural networks. An initial large learning rate is set, and then it
will be decayed by a certain factor after certain epochs. Mod-
ern DNN models are trained by SGD with IrDecay, such as
ResNet [9] and DenseNet [10].

Another popular approach to accelerate deep learning is to dy-
namically change the batch size during the learning process. De-
varakonda et al. [5] propose that with varying batch size, the
learning process can achieve a speedup of 6.25x to reach almost
the same test error, compared to the approach which uses fixed
batch size for the whole training.

When the DNN is trained distributedly, network communica-
tion will be a factor that must be taken into account. Linetal. [11]
propose a method that before communication is conducted in all
the workers across the deep learning cluster, several parameter
updates on the local neural networks can attain efficiency gains.
In a computational heterogeneous cluster, Chen et al. [12] show
that a batch size fitting which considers the heterogeneity across
the workers in real time, can achieve a speedup of training time.

3. Background

First of all, we provide an introduction to the overview of dis-
tributed deep learning. Then, the concept of learning phase will
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be discussed. Lastly, we change the number of processes allo-
cated for one single learning tasks, and present the impact on per-
formance.

3.1 Distributed deep learning

Image classification is one of the problems that were consid-
ered unsolvable by computer programs until the birth of deep neu-
ral networks. In a discriminative way, we use a training dataset to
feed the deep neural network model, updating the parameters for
the network gradually based on the loss rate, and aim to obtain a
network model that could achieve high accuracy on a test set.

The update of parameters is performed by Gradient Decent
(GD) method to find the optimal parameters. The traditional way
to utilize the GD method is to make the model traverse all the
dataset, then compute the prediction label for each image sample.
At last, the gap between computed labels and real labels will be
measured using a loss function, and the parameters of the model
will be updated using the GD method based on the loss function.

Since the huge number of data samples in datasets like CI-
FAR10 and Imagenet, it is unfeasible to compute the loss function
for the entire dataset in one round of parameter update. Therefore,
the mini-batch Stochastic Gradient Decent (mini-batch SGD) is a
more fashionable way to train models on big datasets.

In mini-batch SGD, the objective is to minimize an loss func-
tion F(6) with respect to model parameters, which is denoted
by 6. The training set will be divided into several components:
S = {Sl, S0y eeny

batch |s;] is called batch size. In one iteration of deep learning, a

sn}, where each s; is one batch, and the size of the

mini-batch &, will be sampled from training set, then the model
parameters are updating using the rule:

O — Oker —1- VF(6)

where 7 denotes the learning rate, and VF(6) denotes the first-
order gradient of loss function.

In distributed deep learning, the computation is parallelized
across multiple processors in parallel computing environments.
There are two different ways to parallelize the learning task: data
parallelism and model parallelism. Data parallelism is the paral-
lelism where the dataset is distributed across different nodes. On
the other hand, the neural network model itself will be distributed
in a model parallelism way. We focus on data parallelism in this
paper.

Distributed deep learning is different from traditional deep
learning in that each node in a cluster is only responsible for a
part of the dataset, the models on different nodes must be shared
with other nodes. The common way is that each node sends the
gradient of the model of itself using all-reduce, meanwhile re-
ceive the gradients of the models on other nodes. Then the gra-
dients will be averaged, and be used to update the parameters.
Although some researchers have shown that before communicat-
ing with other nodes, updating the local model several times will
reduce the total time, we choose to do the all-reduce at each end
of iteration for the sake of simplicity.

3.2 Learning stages
Liu et al. [6] presented adapting different batch sizes for dif-
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Fig.1 Comparison of training speed of Gloo and NCCL, sampled by every
epoch.
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Fig. 2 Accuracy of training time with varying number of processes.

ferent period in the learning task can result in faster convergence.
The reason is that at the begining of training, the value of loss for
the model is quite large, so the descent of loss could be sharply
no matter how many batch size is used in one round of update.
Thus, because of the smaller batch size, the time spent to finish
the same number of iterations could be reduced.

On the contrary, when the training process lasts for a certain
period, the descent of loss function becomes smaller and smaller,
the correct update of parameters is demanded, comparing to the
time consumed in one iteration. That means although the time
for one update could be speeded up, due to the lack of general-
ization incurred by the selection of small batch size, updating the
parameter to the optimal would become very hard. As a result,
reaching the convergence state would take more time conversely.
Therefore, switching to a larger batch size helps to alleviate this
problem.

3.3 Number of processeses for single task

When training a deep learning model on a GPU cluster, the
number of processes is usually set to the same number of GPUs.
However, under certain conditions, the number of total processes
being trained can exceed that of the GPUs.

To do all-reduce across all the processes of the same learning
task, we need some library to do all the low-level communication
and data transfer. Deep learning frameworks provide several such
libraries. For example, Gloo and Ncel are two communication li-
braries prepared in Pytorch [7], which are called backends in the



IPSJ SIG Technical Report

2.5 —— 4 processes
—— 2 processes

—— 1 process

2.0 1

1.0

0.5 1

0 20 4|0 6I0 80 160 léO 1210
Training time (seconds)

Fig. 3 Loss rate of training time with varying number of processes.
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Fig. 4 Single task when trained by 4 GPUs.

Pytorch context.

The main difference is that Nccl is highly optimized for direct
GPU communication, so it currently provides the best distributed
GPU training performance. While Gloo is available to be utilized
in GPU training too, the current implementation in PyTorch does
not utilize all the computational ability of GPU cards, and that
results in the slower speed of Gloo compared to NCCL. In exper-
iments, with 4 processes on 4 GPUs, each process only use about
30% of the power of one single GPU card. Fig. 1 shows the learn-
ing curve of Gloo and NCCL in which a VGG16 [8] network is
trained on a 4-GPU cluster using CIFAR10 dataset and the task
was parallelized by 4 processes. The batch size for each process
is set to 128.

4. Multiple Learning Tasks

As Liu et al. [6] revealed, for two tasks which are in different
learning stages, the task at the early stages could use a smaller
batch size to reduce the time for one iteration, while a larger batch
size is needed for the task at late stages to perform an accurate up-
date of parameters.

Based on this thought, we make two deep learning tasks start
at different times, and change the number of allocated processes
for each task when the younger task starts training. we assume
that the cluster has 4 GPUs and there will be 4 processes. Fig. 4
shows the loss rate of the VGG16 network when training using 4
GPUs.

The gap between the younger task and the older task is set to
the time of 200 seconds. Besides, we set the criterion of the con-
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Fig.5 Two tasks when trained by 4 GPUs, each task is allocated 2 GPUs
when they are being trained simultaneously. Batch size for each pro-
cess is set to 128.

vergence of models to the loss rate achieved when the model has
been trained for 300 seconds. When the younger task begins its
training process, since the GPU resources are necessary, the older
task has to release some GPU cards. At first the system will make
an effort to split up the GPU cards between each learning task.
In this scenario, each task will be allocated 2 GPUs, respectively.
Since the available GPUs for each task has reduced, the learning
processes suffer performance degradation to some extent. After
the older task finished, the younger one can make use of all the
GPU cards to continue the remaining learning process. The loss
rate with time consumption is displayed in Fig. 5.

5. Adaptive adjustment of number of pro-
cesses

Adjustment of the number of the process for each task effec-
tively changes the respective usage of GPU resources. In this
section, we propose a naive adjustment method for the number of
processes, which automatically determine the adequate number
applied to each task. The basic idea of automatic adjustment is
that the need for computational resources varies when the learn-
ing process goes on. As concluded in Section 2, the learning task
which is at the later stage tends to utilize more data samples to
complete one update of the parameters. This will be verified in
experiments where the batch size for each process remains a con-
stant number. Furthermore, by varying per process batch size,
but keep total batch sizes equal for all the tasks, we can acceler-
ate the convergence of tasks which begin its training process ear-
lier. Then the trade-oft occurs to shorten the overall training time.
Therefore, we aim to design a GPU resource allocator that has ac-
cess to the information of the ongoing tasks and make decisions
on the number of processes based on the collected information.

The motivation to overlap the execution of multiple learning
tasks instead of finishing the training one after another is from
the assumption that when lesser GPUs are used for training, the
overhead of communication among the processes will be reduced.

To figure out at which stage the current task is, the allocator
will use information about the delta of loss rate. According to
Fig. 4, the delta of loss rate differs across different phases in the
learning process. Generally, the delta of loss tends to decrease
while the training continues. In the gradient descent method, the
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Fig. 6 Delta of loss rate in each iteration, number of processes is 4.
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Fig.7 Delta of loss rate in 100 iterations, number of processes is 4.
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loss rate is used to measure how far the targets of each batch data
samples computed by the neural network model is from the actual
labels. As shown in Fig. 6, the delta of loss rate in each iteration
is a random number and is not sufficient to use to determine the
learning stage. However, since the loss rate is destined to decline
after all, during a long enough time, we can observe the difference
in different periods.

When we set the period equal to 100 iterations of training, the
contrast will be more clear. Fig. 7 shows the delta of loss rate
with time consumption, while the delta is the sum of every 100
iterations.

The architecture of the allocator is displayed in Fig. 8. The
whole deep learning system is managed by the allocator, which
means that every time a new task prepares to start training, the
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Table 1 Experimental setup
CPU | Intel Xeon CPU E5-2698 v4 @ 2.20GHz

GPU Tesla V100-PCIE-32GB
oS Ubuntu 16.04 TLS Linux-4.4.0

allocator should be notified. Besides, the allocator needs to have

access to the details of the situation of each task (e.g., loss rate,

time consumption, allocated number of processes).

This brings about the first limitation of our research. As a con-
sequence of the necessity that the allocator should obtain all the
information of the ongoing tasks, an outside task which is not
under the charge of the allocator will fail the system, since there
exists the possibility that different tasks use the same GPU card.
Another limitation is that we only concern about the scenario that
a new task using non-pre-trained models while the ongoing task
is about to converge.

Actually the proposed method in this paper is only able to han-
dle 2 learning tasks at most. The method consists of a couple of
steps.

(1) When a new task is about to begin training, the allocator is
notified.

(2) The allocator continues the training process of each task for
100 iterations, and calculates the delta of loss rate.

(3) Based on the information collected, the allocator will judge
which task is older and which is younger. This determina-
tion is conducted simply by checking which task’s loss delta
is larger.

(4) The allocator will decide to allocate approriate number of
processes for all the tasks.

Regarding step 4, since the cluster we use in experiments has
4 GPU cards, therefore we can only apply the ratio of number of
processes for older-younger task of 3 to 1 and 2 to 2 to verify the
effect of accelerate the execution of older task. In fact, there are
occasions that a machine has more than 4 GPU cards attached to
itself, thus a different GPU cards ratio other than 3 vs 1 and 2
vs 2 is possible. How to determine the ratio for computational
resources is considered a future work.

6. Experiments

In this section, we will describe the experimental setup. Then,
the results will be shown with different policy for batch size. Be-
sides, the reasons for the results will be discussed.

6.1 Experimental setup

The experiment environment is described in this subsection.
Table 1 lists the hardware used in all the experiments. All the
experiments are conducted on a single server which has 4 GPU
cards attached to itself. PyTorch framework is used to implement
the system. The neural network model to be used in experiments
is VGG16. The loss function we used to calculate the loss rate
of the model is cross entropy loss function. Dataset is CIFAR10.
Since the communication between nodes does not happen, the
network configuration is omitted.

With only 4 GPUs are available in the server, there are 3 ways
to allocate the processes to older task and younger task: 1-3, 2-2,
3-1. While i-k means ratio of allocated processes to older task
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Fig.9 Learning curves with batch size set to 128 per process.
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Fig. 10 Time comparison with batch size set to 128 per process.

and younger task is set to i to j. In our experiments, we use ratio
of 3-1 and 2-2 to indicate training with or without adjustment,
respectively. The experiments of ratio of 1-3 are conducted for
completeness.

In addition to adjustment of computing resources, the dataset
will be reallocated for each process as well. more, the batch size
will also have to be adjusted if neccessary.

6.2 Batch size equal across processes

In experiments, the older task will begin training at first. Then
the younger task will start after 200 seconds. At the mean-
time, the allocator will determine which task need more GPU
resources, and allocates 3 GPUs to that one.

After the younger task joins the system, allocator will observe
the loss rate of both tasks for the first 100 iterations. Then the
allocation of GPUs is carried out by allocator based on the delta
of loss rate.

First of all, we set the batch size, which is 128, be equal across
all the processes. That means for tasks which have different num-
ber of process will have different batch size settings. Certainly,
applying the same batch size for each process leads to the fact
that adjustment of computating resources will cause adjustment
of total batch size for the tasks at the meantime, which makes it
ambiguous that which kind of adjustment contributes more to the
performance improvement.

Because the curve for loss rate is quite random, in order to de-
termine whether one task converged or not, we use the average
loss rate value for 10 iterations.
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Fig. 11 Learning curves with batch size set to 512 per task.
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Fig. 12 Time comparison with batch size set to 512 per task.
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Fig. 13 Learning curves comparison between overlap and non-overlap
training, with batch size set to 512 per task.

Fig. 9 shows the learning curves under 3 different process ra-
tio. Fig. 10 shows the time consumption in each part. During
the period when two tasks coexist, if the allocator allocates more
processes to the older task (3-1), it will reach to the convergence
point 100.82 seconds earlier, compared to the one with no adjust-
ment (2-2). As a result, the training time can achieve acceleration
of time efficiency of 2.72%. For each task, the training time is
shortened by 23.01% for older task, and 4.03% for younger task,
respectively.

This proves that our intention to enlarge the actual batch size
for older task by changing the computing resources ratio is work-
able to shorten the overall training time.
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Table 2 Experimental results of time reduction
Reduced by

Batch size 128  Batch size 512

per process per task
Total 2.72% 4.70%
Older task 23.01% 12.76%
Younger task 4.03% 7.26%

6.3 Batch size equal across tasks

In this group of experiments, we keep the batch size equal even
the numbers of processes for tasks are changed. Concretely, the
batch size will be set to 512, which is the number of batch size for
one single task. In our experiments, the batch sizes for task which
has three processes will be set to 170, 171 and 171. There are
some occasions that the batch size is not divisible by the number
of processes. In that case, the batch size for one specific process is
adjusted to assure that 512 be the sum of all the batch sizes. Thus,
the impact of batch size alteration on performance is eliminated.

Fig. 11 and 12 show the learning curve and time compari-
son when training with 3 different process ratio. The total train-
ing time is reduced 4.70% from 567.50 seconds to 540.81 sec-
onds. For each task, the training time is shortened by 12.76%
for older task, and 7.26% for younger task, respectively. Fig. 11
also shows that total training time is extended with lesser comput-
ing resources allocated to older task. Furthermore, Fig. 13 shows
that training by overlapping two learning tasks while applying
adaptive computing resources adjustment is faster than training
without overlapping.

Therefore, our assumption that the trade-off for shortening the
execution of older task could improve overall performance is
proven by the results. In addition, by overlapping the execution of
multiple tasks, the hardware is fully utilized with lower overhead.

At last, the experimental results of reduction of training time
under different settings of batch sizes, compared between train-
ing with adaptive adjustment and without adjustment, is shown in
Table 2.

7. Conclusion

We showed that in a deep learning system which have multiple
ongoing learning tasks, the tasks will affect the performance of
each other. Specifically, due to the finite number of GPUs and
the fact that one GPU cannot be shared among multiple learning
tasks, older tasks have to withdraw the occupation of some GPUs
younger tasks are able to begin its training process using GPU.
Then we showed that the training time both for two tasks and
for only the older task can be shortened by changing the num-
ber of allocated processes for each task, based on the information
of learning process. Furthermore, we proposed a naive method
to detech which phase the specific task in on. We conducted ex-
periments with batch size equal across all processes and across all
learning tasks. The results of experiments showed that with adap-
tive adjustment of number of processes, the decrease in training
time for all the tasks can be achieved.

We proved that the trade-off for shortening the execution of
older task could improve overall performance. In addition, by
overlapping the execution of multiple tasks, the hardware is fully
utilized with lower overhead.
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In this paper, we only investigate the scenario in which VGG16
networks are trained using CIFAR10 dataset. The solution for dif-
ferent models to be trained using different datasets is left for fu-
ture work. The number of learning tasks is limited to two in our
research. Actually, the number of tasks being executed simultane-
ously in a cluster may be more than that. The method to allocate
appropriate computing resources for more than two tasks is nec-
cessary. Moreover, the GPU cards used in this research reside
on the same node. For deep learning tasks which utilize mulitple
nodes connected by Ethernet, the time for network communica-
tion will also affect the performance. This is another future work.
Besides, it is also future work to consider the number of more
than 4 GPUs.
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