
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Detection of Malicious Tools by Monitoring DLL
Using Deep Learning

WataruMatsuda1,†1,a) Mariko Fujimoto1,†2,b) TakuhoMitsunaga2,c)

Received: April 10, 2020, Accepted: September 10, 2020

Abstract: In targeted attacks, various malicious tools are leveraged by attackers. According to the Cybersecurity
and Infrastructure Security Agency (CISA), tools such as China Chopper, Mimikatz, PowerShell Empire, and HUC
Packet Transmitter are used in targeted attacks. Standard malware detection methods include those based on file names
or hashes. However, attackers tend to avoid detection by changing the file name of malicious tools or by rebuilding
them. Therefore, detecting malicious tools used in targeted attacks is difficult. We found that the order of Windows
built-in DLLs loaded by each malicious tool has unique characteristics. In this study, we propose a detection method
of malicious tools by analyzing DLL information using deep learning, considering the DLL and its order of loading
by each process. We confirmed that even if the file names are changed or tools are rebuilt, our proposed method could
detect the mentioned four tools with high detection rates: with a recall rate of 97.45%, a precision rate of 97.29%, and
F value of 97.37% on average. Furthermore, the proposed method can detect malicious tools with more than a 90%
detection rate, even if about 10% of loaded DLLs are changed in the future.

Keywords: deep learning, long short-term memory, DLL, sysmon, targeted attacks, detection

1. Introduction

Targeted attacks have become a serious threat to computer sys-
tems. In targeted attacks, various tools are leveraged by attackers.
However, detecting targeted attacks is challenging because the
methods of the attacks are sophisticated. According to Ref. [1],
the following five tools are seen in cyber incidents worldwide.
• JBiFrost: A kind of remote access trojan. Once installed on

a victim’s computer, it allows remote administrative control.
• China Chopper: A webshell that has been in widespread use

since 2012.
• Mimikatz: Mainly used by attackers to collect the creden-

tials of other users who are logged into a targeted Windows
machine.

• PowerShell Empire: Designed for lateral movement after
gaining initial access.

• HUC Packet Transmitter: A proxy tool used to intercept and
redirect Transmission Control Protocol (TCP) connections
in order to obfuscate attackers’communications with victim
networks.

Recently, detection utilizing Endpoint Detection and Response
(EDR) *1 on each computer is becoming more common [2]. As
part of EDR, malware detection based on file name or hash is
one of the more popular methods [3]. However, attackers tend to
avoid detection by changing the file names of malicious tools or

1 The University of Tokyo, Bunkyo, Tokyo 113–8654, Japan
2 Toyo University, Kita, Tokyo 115–0053, jJapan
†1 Presently with NTT Secure Platform Laboratories
†2 Presently with NEC Solution Innovator
a) wataru.matsuda.ev@hco.ntt.co.jp
b) marikof@nec.com
c) takuho.mitsunaga@iniad.org

by rebuilding them. Therefore, detecting these malicious tools is
considered difficult [4], [5], [6]. To solve this problem, previous
research introduced detection methods using DLLs and analyz-
ing suspicious files [7], [8], [9]. DLL (Dynamic Link Library)
is a shared library used by Windows processes, and some mali-
cious tools also use legitimate DLLs. If legitimate DLLs loaded
by malicious tools have unique characteristics, it is possible to
detect malicious tools even if the file names of the tools have
changed or the source code of the tool is rebuilt. These previous
researches [7], [8], [9] are useful solutions for analyzing files that
are already identified as malicious in an isolated environment.
However they do not consider their use in the running environ-
ment, thus these methods need forensic tools and are supposed
to analyze in an isolated environment such as a sandbox envi-
ronment. This renders these methods not necessarily suitable for
detection in the production environment.

This research focuses on the detection method in the running
environment (computers used in daily works). For the detection
method using DLL information in the running environment, a de-
tection method of monitoring DLLs that are commonly loaded
by malicious tools using DLL lists [10] has been previously re-
searched. Although, the DLLs loaded by malicious tools are dif-
ferent depending on the version of Windows and the malicious
tools. The method lacks flexibility since if the loaded DLLs are
changed, it would not be able to detect the malicious tool.

We found the unique characteristics of DLLs and their order
loaded by each malicious tool. In this study, we propose a flexi-
ble detection method of malicious tools by analyzing DLL infor-

*1 Emerging technology that focuses on identifying and exploring mali-
cious activities on endpoints.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

mation using deep learning techniques. We examine four famous
malicious tools: China Chopper, Mimikatz, PowerShell Empire,
and HUC Packet Transmitter as the dataset, and evaluate the ef-
fectiveness of the proposed method. As a result, we confirmed
that the proposed method could detect these four tools with high
accuracy, even if some of the loaded DLLs are changed.

The following are the contributions of this proposed method.
• Even if DLLs that are loaded by malicious tools are changed

in the future, our proposed method would detect them. We
were able to confirm that this proposed method is capable
of detecting malicious tools with a recall rate and precision
rate of more than 90%, even when about 10% of the loaded
DLLs are changed.

• Even if attackers change the malicious tools’ filenames or re-
build the tools, our method can detect them with high accu-
racy by analyzing the characteristics of legitimate Windows
DLLs. It is because of that if attackers modify the legitimate
Windows DLLs, the system would not work correctly.

• Our method can minimize the affect system performance.
Therefore the method is suitable for detection in the running
environment.

• Our method can detect malicious tools just by their startup.
Therefore it is useful for immediate incident response.

In Section 2, we will describe the characteristics of targeted
attacks and the difficulty in the detection of malicious tools. Sec-
tion 3 describes related research. Section 4 describes the detail of
the proposed method. Section 5 describes the evaluation methods
of the proposed methods and their results.

2. Targeted Attacks Using the Malicious Tools

2.1 Malicious Tools Used in Targeted Attacks
Attackers of a targeted attack have a clear objective, such as

stealing a specific organization’s information. Attackers who can
intrude into the organization tend to expand infections until they
accomplish their goal. Although it is difficult to prevent intru-
sions, it is possible to minimize the damages if it is possible to
detect attack activities in the early stage. According to Ref. [1],
the following five tools are widely used in targeted attacks.
• JBiFrost: A cross-platform and multifunctional remote ac-

cess trojan. It poses a threat to several different operating
systems, including Windows, Linux, MAC OS X and An-
droid. Once installed on a victim’s computer, it allows re-
mote administrative control.

• China Chopper: A web based remote shell tool that has been
in widespread use since 2012.

• Mimikatz: Widely used Windows hacking tool. it is mainly
used by attackers to collect the credentials of users, creat-
ing malicious authentication tickets, remote access leverag-
ing legitimate credentials, etc.

• PowerShell Empire: A pure PowerShell post-exploitation
agent. Empire implements the ability to run PowerShell
agents without needing powershell.exe, rapidly deploy-
able post-exploitation modules ranging from key loggers to
Mimikatz, and adaptable communications to evade network
detection, all wrapped up in a usability-focused framework.

• HUC Packet Transmitter: A proxy tool used to intercept and

Table 1 The number of DLLs of each malicious tool.

Tool name common DLLs All Dlls
China Chopper 23 110
Mimikatz 20 63
PowerShell Empire 49 135
HUC Packet Transmitter 8 42

redirect Transmission Control Protocol (TCP) connections
in order to obfuscate attackers’ communications with victim
networks.

2.2 Difficulty in Detecting Malicious Tools
It is difficult to detect malicious tools used for targeted at-

tacks. Usually, attackers try to avoid detection, by such methods
as changing the file name of the malicious tools, rebuilding them,
and so forth. For example, since the source code of Mimikatz is
published on the internet, attackers can rebuild it to create their
own tools. According to the result of scanning services such as
VirusTotal [11] detection rate is poor after rebuilding [5], [12].
The detection rate of Mimikatz without modification was 100%.
After the trivial modification of replacing the word “Mimikatz”
with other words such as “kitikatz,” the detection rate was only
7.2% (4 out of 54) [12]. It is clear that for security products that
use the file name or hash value for detection, detection is difficult
if attackers customize malicious tools.

2.3 Detection Using DLL Loaded by Malicious Tools
To solve the problem shown in Section 2.2, some researchers

have introduced detection methods using DLLs loaded by ma-
licious tools [7], [8], [10], [13]. If legitimate Windows DLLs
loaded by malicious tools have unique characteristics, the method
could detect the tools even if the file names are changed or the
tools themselves are rebuilt. According to previous research [10],
DLLs loaded by malicious tools are dependent on the version of
Windows and the malicious tools. We investigated unique DLLs
loaded by malicious tools in the evaluation environments (several
malicious tools versions * 9 Windows version) based on the re-
search [10]. Table 1 shows the number of DLLs that are loaded
by each malicious tool. According to the result, the number of
DLLs that were loaded regardless of the environment (common
DLLs) is quite few. For instance, mimikatz loads 63 unique DLLs
in total. On the other hand, there were only 20 common DLLs
that were loaded regardless of the mimikatz and Windows ver-
sion. These results indicate that a scalable method is necessary
since DLLs loaded by malicious tools could change in future up-
dates.

3. Previous Research

Several studies have proposed methods of detecting attacks us-
ing DLL information. In addition, there are several studies that
have focused on detecting malware using Windows API calls. In
this section, we introduce related research that uses DLL infor-
mation and Windows API call for detection. Table 2 shows the
outline of the previous research. “Detection performance” in Ta-
ble 2 shows the best detection performance of each research.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 2 Previous research.

Environment Research Analysis target Method Detection performance

Running
environment

[19] System call API Hooking Stop Unknown Malicious Code, attacks
and intrusion through heap overflow

[20] System call Dependency Structure Matrix Accuracy 95%
[21] DLL Support Vector Machine(SVN) Binary

Decision Tree Discriminant Analysis
Accuracy 88.45%

[10] DLL Signature-based (DLL list) 4 tools:100% accuracy, 1 tool:FP 0.55%
proposed
method

DLL Long short-term memory(LSTM) Accuracy 99.82%

Sandbox

[7] DLL Random Forest Accuracy 95.02%
[8] DLL SVM -
[14] System call Pattern matching of certain functions or

API call sequence
Accuracy 99.89%

[9] System call API hooking and DLL injection -
[15] System call 10 machine learning algorithm such as

Resilient Backpropagation, Levenberg-
Marquardt ,etc.

The best average accuracy 89.25%

[13] DLL Random Forest 100% DR with only 0.3% FP rate (It de-
pends on the dataset)

[16] DLL, System call AdaBoost, Gradient Classifier, Logistic
Regression

Accuracy 94.64%

[17] System call SVM,IBL,Decision Tree Precision 78.38% average where 3 types
of machine learning were combined

[18] DLL DBSCAN Correctness 94.12%

3.1 Detection in the Sandbox Analysis Environment
This section describes the analysis or classifying method of

malware for computer forensics purposes. These methods are use
in the sandbox analysis environment.

Several works analyze DLLs using the Cuckoo Sandbox [7],
[8]. The Cuckoo Sandbox is a solution for analyzing files that
are already identified as malicious in an isolated environment.
Ki et al. [14] and Willems [9] introduce malware analysis meth-
ods using Windows API call sequences. This research, similar
to that utilizing the Cuckoo Sandbox, focused on closely ana-
lyzing programs that had already been identified as malicious.
Gonzalez et al. introduce a malware classification method using
information regarding the number of Windows API calls made
from a DLL [15]. Narouei et al. propose a malware detection
method based on static analysis that extracted behavioral fea-
tures from a unique structure in portable executables called the
“DLL dependency tree” [13]. Ijaz et al. evaluated several ex-
isting static and dynamic malware analysis methods using sev-
eral features including API calls and DLLs with machine learn-
ing [16]. Reference [17] presents a method to classify malware
codes in static analysis using several features including Windows
API calls. Reference [18] proposes a malware classifying method
using DLL information in memory forensic.

From the above research, it can be said that DLLs and Win-
dows API called from processes are useful to detect or classify
malicious tools.

3.2 Detection in the Running Environment
This section describes the detection method of previous re-

search in the running environment. These researches focus on
the detection on computers used in daily works.

Sun et al. propose a method for detecting malicious shellcodes
injection by monitoring Windows API calls [19]. Reference [20]
proposes the detection method of persistence activities by mal-
ware such as manipulation of the registry through a monitoring
system call. References [19] and [20] focus on detecting attack

activities by malwares.
On the other hand, the following research focuses on DLL it-

self loaded by processes. Gong et al. propose a malware classi-
fication method that analyzed the DLLs loaded by the program
with the Bag of Words model. The order in which the DLLs are
loaded is not taken into consideration [21]. Matsuda et al. pro-
pose a detection method of startup of malicious tools by monitor-
ing DLLs that are commonly loaded by malicious tools using the
DLL lists [10].

3.3 Issues of Previous Research
This section describes issues of previous research.

3.3.1 Detection in the Sandbox Analysis Environment
These researches are useful solutions for analyzing files that

are already identified as malicious in an isolated environment.
However they do not consider use in the running environment,
thus these methods need forensic tools such as IDA Pro, Depen-
dency Walker etc. [13], [15]. In addition, they are supposed to
analyze in the isolated environment such as the sandbox envi-
ronment [7], [8], [9]. This renders these methods not necessarily
suitable for detection in the production environment.
3.3.2 Detection in the Running Environment

Reference [19] monitors Windows API calls, it affects system
performance. Authors have reported that their methods experi-
ence an 8%–9% performance drop.

Reference [20] detects malware’s persistence activities such as
modifying the registry key. Persistence activities mean attack-
ers have already gotten complete administrative privileges on the
computer, thus more immediate detection is desirable.

Reference [10] proposed a detection method of startup of ma-
licious tools. This research uses the “common DLL list” [22] to
monitor DLLs that are commonly loaded by malicious tools re-
gardless of their execution environment. This method lacks flexi-
bility since loaded DLLs depend on which version the malicious
tools are. This means that if one of the DLLs in the DLL list
loaded by a certain malicious tool is removed in a future update,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

the method would not be able to correctly detect the software. We
refer to this research and expand upon this detection method to be
more flexible.

4. Proposed Method

We propose a method that detects malicious tools by analyzing
DLL information using deep learning.

The novelty of our method is that we have analyzed both the
name of DLLs and the order of DLL loading using deep learning
and have presented a flexible detection method that is suitable for
the production environment. To evaluate the contribution of the
order of DLL loading, we also evaluate the performance of the
method which does not consider the DLL order consideration in
Section 4.6. We examine four malicious tools used in targeted at-
tacks: Mimikatz, China Chopper, PowerShell Empire, and HUC
Packet Transmitter to evaluate the effectiveness of our method.
Note that JBiFrost is excluded from our research since the tool
requires the payment of a subscriber fee [23]. We should not con-
tribute to attackers.

4.1 Summary of the Proposed Method
Figure 1 shows an overview of the proposed method. Our pro-

posed method consists of a learning phase and a detection phase.
• Learning phase: The dataset is created by simultaneously

running malicious tools and normal processes on Windows
computers and using Sysmon [24] to extract information
about loaded DLLs. Information about the order in which
each DLL is loaded is also monitored and added to the
dataset. The dataset is then analyzed using deep learning
and a classification model is created.

• Detection phase: Collect information on DLLs loaded by
each process on the production environment using Sys-
mon. The classification model created in the Learning phase
is used to identify each process as a “China Chopper”,
“Mimikatz”, “PowerShell Empire”, “HUC Packet Transmit-
ter”, or a normal process.

The details of each technique are explained in sections shown
in Table 3.

4.2 Solution for Issues of Previous Research
This section describes how to solve the issues of previous re-

search in the proposed method.
• Our method only uses Sysmon in the running environment,

and analyses Sysmon logs exported from the running envi-
ronment. Thus it can minimize the effect on system per-
formance (only A few percent increase in memory and disk
usage). Therefore the method is suitable for detection in the
running environment.

• Our method detects malicious tools just by their startup be-
fore malicious activities such as memory dump or persis-
tence activities are conducted. Therefore it is useful for im-
mediate incident response.

• Our method provides a scalable detection method by mon-
itoring the order of DLL loading loaded by malicious tools
using deep learning. Our method solves the problem in pre-
vious research such as Ref. [10] that malicious tools are over-

Fig. 1 Overview of the proposed method.

Table 3 Sections of the proposed method.

Phase Overview Section
1 Learning Collect DLL information using Sys-

mon
4.3

2 Learning Create the dataset 4.4
3-1 Learning Learn collected DLLs with LSTM

and create the model
4.5

3-2 Learning Learn collected DLLs with SVM
and Random Forest and create the
model

4.6

4 Detection Collect DLL information using Sys-
mon

4.3

5 Detection Classify each process into each ma-
licious tool or normal process using
the model

4.7

Fig. 2 An example of Event ID 7.

looked if the use of any of the DLLs in the common DLL list
is discontinued.

4.3 Collecting DLL Information Using Sysmon
This section describes how to collect DLL information. The

proposed method needs to install Sysmon on the target comput-
ers to collect DLL information. In this research, we use Sysmon
v6.03. Sysmon is a Windows service that monitors and logs sys-
tem activity to the Windows Event Log and is useful for recording
detailed traces of Windows OS. The Windows OS records activi-
ties in the Event Log. However, detailed information on processes
including DLL information is not recorded under the default con-
figuration. By using Sysmon, it is possible to record detailed
information about the executed processes and loaded DLLs in
Event ID 7. Figure 2 shows an example of Event ID 7. The “Im-
age” field indicates the parent process name. The “ImageLoaded”
field indicates the child process including DLLs. In this example,
we find out that Mimikatz.exe loads wintrust.dll.

4.4 Creating the Dataset
This section describes how to create the dataset from the DLL

information that was collected. The dataset consists of the names

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 3 Method for creating dataset.

Table 4 Windows versions.

Windows version
Windows Server 2016 (x64)
Windows 10 (x64)
Windows Server 2012 (x64)
Windows 8.1 (x64)
Windows Server 2008 R2 (x64)
Windows 7 (x64)

of DLLs loaded by each process extracted from Sysmon logs.
The names of DLLs should be kept in the order in which they
were loaded. Specifically, the following preprocessing is needed
to extract DLLs from event logs and create the dataset.
(1) Export Sysmon logs as text files.
(2) Extract loaded DLLs from the “Image loaded” field in Event

ID 7.
(3) Group extracted DLLs by the parent process name (“Image”

field).
(4) Concat the name of DLLs loaded by each process in the or-

der of loading.
(5) Extracted DLLs are tagged for supervised learning. DLLs

loaded by malicious tools are tagged with each attack tool’s
process name (“China Chopper,” “Mimikatz,” “PowerShell
Empire” and “HUC Packet Transmitter”). Other DLLs are
tagged as “normal.” (Fig. 3)

In this study, our test environment consists of 5 operators and
computers shown in Table 4 which exemplifies a small organi-
zation. We conduct the following operations to collect a training
dataset for five days.
• Conduct typical office work is shown in Table 5. The same

number of “operation order” means that the corresponding
operations were operated in random order.

• Run malicious tools shown in Table 6. We use different ver-
sions of malicious tools for the test data and training data.
Several old versions of tools are used for the training data
and newer versions are used for test data.

Table 7 shows an example of the dataset. The number of
dataset(process) is shown in Table 8. The number of unique
DLLs is 2324 in the training dataset.

4.5 Learning with the DLL Order Consideration
This section describes the learning algorithm of the proposed

method. This method analyzes the DLL name and the order
in which they were loaded by each process using deep learn-

Table 5 Operations for creating normal dataset.

Operation
order

Executed works OS

1 Power on
Client and
Server OS

2 Log on
Client and
Server OS

3 Start and use Outlook (send e-mail) Client OS
3 Start and use Microsoft Word Client OS
3 Start and use Microsoft Excel Client OS
3 Start and use Microsoft PowerPoint Client OS

3
Access to the file on the file
server with explorer

Client and
Server OS

3

Browse the Internet with
Internet Explorer and Google Chrome
(Google Chrome is used only for
evaluation)

Client OS

3 Start and use the command prompt
Client and
Server OS

3 Start and use the PowerShell
Client and
Server OS

3 Windows Update
Client and
Server OS

3
Connected from another computer
with remote desktop service

Client and
Server OS

4 Log off
Client and
Server OS

5 Power off
Client and
Server OS

Table 6 Dataset of malicious tools for training.

Tool name Version
China Chopper 20141213

20111116
Mimikatz 2.1.1 (Aug. 1, 2017)

2.1 (May 1, 2016)
2.0 alpha (May 2, 2015)

PowerShell Empire 2.0
2.3

HUC Packet Transmitter 2003-10-20

Table 7 Example of the dataset.

DLLs Tags
EppManifest.dll EppManifest.dll send-
mail.dll sendmail.dll mydocs.dll audiodev.dll
...

normal

ntdll.dll kernel32.dll kernelbase.dll ad-
vapi32.dll msvcrt.dll sechost.dll rpcrt4.dll
user32.dll ...

normal

ntdll.dll kernel32.dll kernelbase.dll ap-
phelp.dll advapi32.dll msvcrt.dll sechost.dll
...

mimikatz

ntdll.dll kernel32.dll kernelbase.dll ad-
vapi32.dll msvcrt.dll sechost.dll rpcrt4.dll
user32.dll ...

normal

ntdll.dll ntdll.dll wow64.dll wow64win.dll
wow64cpu.dll kernel32.dll kernel32.dll ...

China Chop-
per

Table 8 The number of process for training.

The number of process
China Chopper 14
Mimikatz 27
PowerShell Empire 12
HUC Packet Transmitter 20
Normal data 5246

ing. One of the methods of learning the dataset while consid-
ering the order of words is Recurrent Neural Network (RNN)
and Long short-term memory (LSTM) [25]. They consider the
order of the word sequences. It is also used for detecting anoma-
lies or suspicious activities from time-series data such as logs,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 4 LSTM flow diagram.

Fig. 5 BoW with SVM flow diagram.

packets etc. [26], [27], [28], [29]. In many cases, LSTM achieves
higher accuracy than RNN. Ref. [28] compares them, and LSTM
showed better results than RNN. Therefore Our method learns
the DLLs and order of the DLL loading using LSTM. LSTM is
used for analyzing sequences of data, such as syntactic analysis,
and it solves the vanishing gradient problem and can analyze long
input data. The LSTM flow diagram and hyperparameters used
in the proposed method are shown in Fig. 4. We evaluate hyper-
parameters “Output dimension in LSTM layer” and “Epoch” us-
ing grid search. Described hyperparameters in Fig. 4 are the best
value obtained from the evaluation result in Section 5.2.2. The
training dataset mentioned in Section 4.4 is the time-series DLLs
loaded by each process. The proposed method encodes them into
an integer sequence for LSTM. Encoded data is processed by the
Embedding layer to vectorize data and is connected to the LSTM
layer. Finally, the data is classified into five dimensions by the
Dense layer.

4.6 Learning without the DLL Order Consideration
To evaluate the DLL load order’s contribution, we also con-

duct a similar examination using the Bag of Words method. Bag
of Words keeps multiplicity but does not consider the order of
words. It is also used for analyzing logs [30]. One of the methods
of learning the dataset without considering the order of words is
the combination of the simple Bag of Words and machine learn-
ing such as SVM or Random Forest. Bag of Words analyzes fre-
quency of occurrence for each word and extracts word feature. In
this research, we classify the extracted feature using SVM (after
this, referred to as BoW with SVM) and Random Forest (after
this, referred to as BoW with RF). Regarding BoW with SVM,

Fig. 6 BoW with RF flow diagram.

Table 9 Dataset of Malicious Tools for Test.

Tool name Version(test data)
China Chopper 20160622
Mimikatz 2.2.0 (July 20, 2019)
PowerShell Empire 2.5
HUC Packet Transmitter 2003-10-20

Table 10 The number of process for test.

Tool name The number of process
China Chopper 14
Mimikatz 11
PowerShell Empire 8
HUC Packet Transmitter 18
Normal data 3907

the diagram is shown in Fig. 5. We specify “class weight” hy-
perparameter to “balanced” because of the imbalanced dataset.
We also evaluate hyperparameters “C” and “gamma” using grid
search. Regarding BoW with RF, the diagram is shown in Fig. 6.
We set “class weight” hyperparameter to “balanced” and evaluate
“n estimators” and “max depth” using grid search.

4.7 Detection
In the detection phase, our method collects DLLs on the pro-

duction environment in the same way with Section 4.3 the learn-
ing phase. Then collected DLLs per process is analyzed with
the learning model created in Section 4.5 or Section 4.6 and
each process is classified as four malicious tools (China Chop-
per, Mimikatz, PowerShell Empire, HUC Packet Transmitter) or
a normal process.

5. Evaluation

This chapter describes the evaluation of the effectiveness of the
proposed method.

5.1 Evaluation of Detection Rate
This section describes the evaluation metric of the proposed

method. We evaluate whether the proposed method can detect
startup of the malicious tools correctly.

The test data of malicious tools is shown in Table 9. The num-
ber of test data is shown in Table 10. For creating a normal test
dataset, operators conduct a typical operation as shown in Table 5
for five days. For creating the dataset of malicious tools, we run
newer version malicious tools shown in Table 9 which has not
been trained. Regarding HUC Packet Transmitter, only one ver-
sion is released. Thus we run the same version of HUC Packet

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 7 DLL distribution of China Chopper.

Fig. 8 DLL distribution of Mimikatz.

Transmitter on each version of Windows of different computers
from computers used in the training phase. The number of unique
DLLs is 1773 in the test dataset.

We investigated the distribution of malicious tools’ DLLs of
training dataset and test dataset. The number of loaded DLLs is
divided by the total process number to take an average of the fre-
quency of occurrence. Note that some process loads the same
DLL more than two. Therefore some DLL’s average exceeds

one. We plot DLL name in alphabetical order on the horizon-
tal axis and average of the frequency of occurrence on the verti-
cal axis. The distribution of malicious tools’ DLLs is shown in
each Figs. 7, 8, 9, and 10. The root mean square of the difference
in the frequency of occurrence between training and test data is
shown in Table 11. As a result, we found that the distribution of
malicious tools’ DLLs is different between training datasets and
test datasets because of the difference in the environment such as

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 9 DLL distribution of PowerShell Empire.

Fig. 10 DLL distribution of HUC Packet Transmitter.

tools’ version.
The decision criteria for detection metric is as follows.
• True Positive (TP): The number of processes which the pro-

posed method correctly predicts as each attack tool.
• False Positive (FP): The number of processes which the pro-

posed method incorrectly predicts as attack tools.

• True Negative (TN): The number of processes which the pro-
posed method correctly predicts as normal.

• False Positive (FN): The number of processes which the pro-
posed method incorrectly predicts as normal.

• Recall = TP/(TP + FN)
• Precision = TP/(TP + FP)

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 11 Root mean square of the difference between training and test data.

Tool name Root mean square
China Chopper 0.19
Mimikatz 0.31
PowerShell Empire 0.08
HUC Packet Transmitter 0.20

Table 12 Average of detection rate.

LSTM dimension Recall Precision F value
16 95.00% 98.67% 96.80%
32 97.45% 97.29% 97.37%
64 94.67% 93.47% 94.07%

• F value = (2 ∗ Recall ∗ Precision)/(Recall + Precision)
5.1.1 Evaluation Method with DLL Order Consideration

We evaluate the recall, precision, and F value using the LSTM
model mentioned in Section 4.5. We evaluate the following vari-
ation of hyperparameter.
• Output dimension in LSTM layer: 16, 32, 64
• Epoch: 20, 40, 60, 80, 100

5.1.2 Evaluation Method without DLL Order Considera-
tion

We evaluate the method BoW with SVM and BoW with RF ex-
plained in Section 4.6 to investigate the contribution of the order
of DLL loading. We evaluate the following variation of hyperpa-
rameter for BoW with SVM as following.
• C: 0.1, 1, 10, 100
• gamma: 0.01, 0.1, 0.5, 1.0, 5.0

We evaluate the following variation of hyperparameter for BoW
with RF as following.
• n estimators: 1, 10, 20
• max depth: 1, 5, 10, 20

5.1.3 Evaluation Result with DLL Order Consideration
We evaluated the detection rate with the proposed method men-

tioned in Section 5.1.1 using test data. Table 12 shows the aver-
age of recall, precision, and F value per every output dimension
in the LSTM layer with 60 epochs. We took ten trials average
since the detection rate fluctuated about 5%. As a result, when
the output dimension was 32, our proposed method achieved the
highest detection rate.

From the above result, we evaluated the variation of epoch with
output dimension 32. Figure 11 shows the ten trials average of
recall, precision, and F value per every epoch 20, 40, 60, 80,
100 using the same dataset. As a result, when the epoch was 60,
our proposed method achieved the highest detection rate. From
above, 32 output dimensions and 60 epochs achieved the follow-
ing highest detection rate.
• Recall: 97.45%
• Precision: 97.29%
• F value: 97.37%
The method achieved 100% recall, precision, and F value rate

once in 25 times. Although, this perfect result could fit only the
test data.

The detection rate decreased by more than 60 epochs and it
seems overfitting. One of the methods to avoid overfitting is to
use a wider variety of datasets [31].
5.1.4 Evaluation Result without DLL Order Consideration

We evaluated the detection rate with the proposed method men-

Fig. 11 The detection rate of the proposed method.

tioned in Section 5.1.2 using test data. We took an average of the
detection rate of ten trials since the detection rate fluctuated about
5%.

Regarding The BoW with SVM, when the hyperparameter
C = 100 and gamma = 0.5, the proposed method achieved the
following highest detection rate.
• Recall: 45.60%
• Precision: 100.00%
• F value: 62.64%
Regarding The BoW with RF, when the hyperparameter

n estimator = 10 and max depth = 10, the proposed method
achieved the following highest detection rate.
• Recall: 94.60%
• Precision: 100.00%
• F value: 97.23%
As a result, we found out that the detection rate of the BoW

with SVM was lower than LSTM. However, BoW with RF was
comparable to LSTM.

5.2 Evaluation of Scalability
This section describes the evaluation of the scalability of the

proposed method. DLLs loaded by parent processes, including
malicious tools, can be changed in the future. Therefore we eval-
uate whether the proposed method can detect malicious tools cor-
rectly even if loaded DLLs are changed.
5.2.1 Evaluation Method

We insert or/and remove DLLs randomly to the test data as-
suming that loaded DLLs are changed in the future. First, we
investigate the rate of change for DLLs that depend on the ver-
sion of the attack tools. The concept for the rate of change of
DLLs is shown in Fig. 12.
• China Chopper: We investigated the difference in loaded

DLLs in China Chopper 20111116, 20141213, and
20160622. As a result, the loaded DLLs were almost
100% insert and remove between 20111116 and 20141213.
However, in 20160622, almost all DLLs seem to revert to
20111116. The rate of change (insert and remove) between
20111116 and 20160622 is only 1.23%.

• mimikatz: We investigated the difference in loaded DLLs in
mimikatz 2.1.1 (Aug. 1, 2017), 2.1 (May 1, 2016), 2.0 alpha
(May 2, 2015), and 2.2.0 (July 20, 2019). As a result, about
10% insert or remove were found in a year on average.

• PowerShell Empire: We investigated the difference in loaded

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 12 Rate of change of DLL loading.

Fig. 13 The detection rate of the LSTM (inserting DLLs).

DLLs in PowerShell Empire 2.0, 2.3, and 2.5. As a result,
about 10% to 15% of DLLs were inserted or removed.

Based on the results above, we examine the following condi-
tions.
(1) Insert DLLs at random positions in the test data. The DLLs

to insert are randomly selected from the entire loaded DLLs
list.

(2) Remove random DLLs at random positions from test data.
(3) Conduct the above both 1, 2 simultaneously.

We evaluate the detection rate of the proposed method when
the percentage of changed DLLs is varied from 5% to 40% in 5%
increments. For evaluation, we use a model, whose detection rate
was Recall 98.0%, Precision 98.0%, F value 98.0%: the closest to
the average detection rate shown in Table 12. We evaluate the re-
call and precision rate by changing DLLs between rates from 5%
to 40%, then calculate the average in 100 times of measurement.
The evaluation environment is Windows 10 (x64).
5.2.2 Evaluation Result with DLL Order Consideration

We evaluated the scalability of the proposed method mentioned
in Section 4.5. Figure 13 shows the average of the recall and pre-
cision rate when DLLs were inserted. According to the result,
the recall rate decreased as the percentage of the inserted DLLs
increased. Although the proposed method kept more than a 90%
recall rate if the percentage of the inserted DLLs was 40% or less.

Figure 14 shows the average of the recall and precision rate
when DLLs were removed. According to the result, the recall
rate decreased as the percentage of the removed DLLs increased.

Fig. 14 The detection rate of the LSTM (removing DLLs).

Fig. 15 The detection rate of the LSTM (inserting and removing DLLs).

Fig. 16 The detection rate of the BoW with SVM (inserting DLLs).

The proposed method kept more than a 90% recall rate if the per-
centage of the removed DLLs was 15% or less.

Figure 15 shows the average of the recall and precision rate
when DLLs were inserted and removed. According to the result,
the recall rate decreased as the percentage of the inserted and re-
moved DLLs increased. The proposed method kept more than
a 90% recall rate if the percentage of the inserted and removed
DLLs was 10% or less.
5.2.3 Evaluation Result without DLL Order Consideration

We evaluated the scalability of the proposed method mentioned
in Section 4.6. Regarding BoW with SVM, Figs. 16, 17, and 18
show the detection rates for each DLL “inserted,” “removed,” and
“inserted and removed.” When inserting or removing any DLLs,
the number of true positive became zero, therefore Recall, Preci-
sion, and F value were calculated as 0%.

Regarding BoW with RF, Figs. 19, 20, and 21 show the detec-
tion rate for each DLL “inserted,” “removed,” and “inserted and
removed.” When the percentage of inserting/removing DLLs was

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 17 The detection rate of the BoW with SVM (removing DLLs).

Fig. 18 The detection rate of the BoW with SVM (inserting and removing
DLLs).

Fig. 19 The detection rate of the BoW with RF (inserting DLLs).

less than 15%, the detection rate was comparable with LSTM.
Although, when the percentage of inserting/removing DLLs was
15% or more, the detection rate was worse than LSTM. For in-
stance, when inserting/removing DLLs was 15%, the F value was
90.46% in LSTM and 89.96% in BoW with RF.

From these results, we found out that the proposed method us-
ing LSTM has higher robustness than BoW with SVM and BoW
with RF. However if DLLs are drastically changed in the future
release, we should recreate the dataset and re-evaluate.

5.3 Evaluation of Effect on System Performance
We evaluated the impact on system performance caused by col-

lecting DLLs using the Sysmon. The evaluation environment
is Windows server 2008 R2 with a Domain Controller feature
(about 30 users access) in our small office environment. The ef-
fect of the target computer resources by collecting DLLs using
the Sysmon is shown in Table 13.

Fig. 20 The detection rate of the BoW with RF (removing DLLs).

Fig. 21 The detection rate of the BoW with RF (inserting and removing
DLLs).

Table 13 Affection on system performance.

Memory usage increased from 21% to 24% on 8GB Memory
CPU usage Not changed
Disk usage increased 600MB per day. 95% of event log

count was Sysmon Event ID 7

5.4 Discussion on False Detection
We investigated false detections focusing on the result where

both recall and precision achieved 96% shown in Section 5.1.3.
The total number of false detections occurred in ten trials per ev-
ery epoch 20, 40, 60, 80, 100 (50 trials in total) using the same
dataset is shown in Table 14. For example, the PowerShell Em-
pire caused six false negatives out of 50 trials. We described a
breakdown of false detection in Table 15. False negatives only
occurred in the detection of the PowerShell Empire. In the case
of false positives, we described the true process name in paren-
theses.

False positives occurred in the detection of all four tools, but
especially the detection of China Chopper and mimikatz was no-
table.

The following processes were incorrectly classified as
mimikatz:
• shellexperiencehost.exe
• chrome.exe
• svchost.exe
The following processes were incorrectly classified as China

Chopper:
• shellexperiencehost.exe
• iexplore.exe
• svchost.exe
For analyzing the above process which caused false positives,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 14 The total number of false detections occurred in ten trials per every epoch.

Prediction
China Chopper PowerShellEmpire HTC PacketTransmitter Mimikatz Normal

China Chopper 0 0 0 0 0
PowerShell Empire 0 0 0 0 6

True Value HTC Packet Transmitter 0 1 0 0 0
Mimikatz 1 0 0 0 0
Normal 3 1 1 3 0

Table 15 The breakdown of the false detection.

No. Epoch Recall Precision F value True value (True Process) Prediction
1 40 100% 98.1% 99.0% Normal (svchost.exe) PowerShellEmpire
2 40 98.0% 100% 98.8% PowerShellEmpire Normal

3 40 98.0% 98.0% 98.0%
Normal (shellexperiencehost.exe) HTC PacketTransmitter
PowerShellEmpire Normal

4 60 98.0% 98.0% 98.0%
Normal (shellexperiencehost.exe) China Chopper
PowerShellEmpire Normal

5 60 100% 100% 100% - -
6 60 98.0% 100% 99.0% PowerShellEmpire Normal

7 60 98.0% 98.0% 98.0%
PowerShellEmpire Normal
Normal (shellexperiencehost.exe) Mimikatz

8 80 98.0% 98.0% 98.0%
Normal (chrome.exe) Mimikatz
PowerShellEmpire Normal

9 100 100% 96.2% 98.1%
Normal (iexplore.exe) China Chopper
Mimikatz China Chopper

10 100 100% 96.2% 98.1%
HTC PacketTransmitter PowerShellEmpire
Normal (svchost.exe) Mimikatz

11 100 100% 100% 100% - -
12 100 100% 98.1% 99.0% Normal (svchost.exe) China Chopper

Table 16 The processes that caused false positives.

Process name
The total number
of the process

The number of
false positive

svchost.exe 217 3
chrome.exe 374 1
iexplore.exe 83 1
shellexperiencehost.exe 11 3

we described the total number of each process which caused false
positives in the test dataset and the number of its false positive in
Table 16. As a result, regarding svchost.exe, chrome.exe, and
iexplore.exe, the ratio of false-positives is less than 2%. As a re-
sult, only a few percents of increase of memory usage occurred.
It can be considered that the result could be without any practical
problems.

False positives were not 100% reproducible since DLLs loaded
by each process were different depending on the situation. For in-
stance, we ran the same process (Internet Explorer) on the same
machine. However, the loaded DLLs were slightly different from
each time.

It is assumed that the frequency of occurrence of each DLL and
order of DLLs is related to the false detections, but we cannot find
concrete reasons as of yet. We will investigate it in future works.

6. Conclusion

In targeted attacks, attackers tend to avoid detection by chang-
ing file names or rebuilding tools. Therefore, detecting malicious
tools is difficult. In this research, we propose a detection method
of these malicious tools by analyzing DLL information using
deep learning, taking the order in which the DLLs were loaded
into consideration. The proposed method could detect four tools:
Mimikatz, PowerShell Empire, and HUC Packet Transmitter with
high accuracy even if the file name is changed or tools are re-

built. Furthermore, the proposed method can detect malicious
tools with more than a 90% detection rate, even if about 10% of
loaded DLLs are changed in the future release. In this research,
we evaluated four malicious tools, but our approach could be ex-
tended to other malicious tools. BoW with SVM and BoW with
RF was able to classify the malicious tools. Therefore, it can be
concluded that the DLL name itself has unique characteristics to
classify malicious tools. However, the proposed method using
LSTM has a higher robustness than BoW with SVM and BoW
with RF. Hence, we clarified that not only DLL itself but also the
order of loading DLLs are the unique characteristics to classify
the malicious tools.

For future work, we will analyze false positives, and further-
more expand the proposed method to detect other malicious ac-
tivities in targeted attacks.

Finally, we have published an implementation of this proposed
method in our Github [32].

References

[1] CISA: Publicly available tools seen in cyber incidents worldwide
(2018).

[2] Sjarif, N.N.A., Chuprat, S., Mahrin, M.N., Ahmad, N.A., Ariffin, A.,
Senan, F.M., Zamani, N.A. and Saupi, A.: Endpoint detection and
response: Why use machine learning? 2019 International Conference
on Information and Communication Technology Convergence (ICTC),
pp.283–288 (Oct. 2019).

[3] Ghafir, I. and Prenosil, V.: Malicious file hash detection and drive-
by download attacks, Proc. Second International Conference on
Computer and Communication Technologies, pp.661–669, Springer
(2016).

[4] Mulder, J.: The sans institute: Mimikatz overview, defenses and
detection (2016), available from 〈https://www.sans.org/reading-room/
whitepapers/detection/mimikatz-overview-defenses-detection-
36780〉.

[5] RenditionSec: Antivirus isn’t dead, but you need monitoring too
(2017), available from 〈https://blog.renditioninfosec.com/2017/11/
antivirus-isnt-dead-but-you-need-monitoring-too/〉.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

[6] Ussath, M., Jaeger, D., Cheng, F. and Meinel, C.: Advanced persistent
threats: Behind the scenes, 2016 Annual Conference on Information
Science and Systems (CISS), pp.181–186 (2016).

[7] Juwono, J.T., Lim, C. and Erwin, A.: A comparative study of behavior
analysis sandboxes in malware detection (2015).

[8] Kesavan, K., Bannakkotuwa, S., Wickramanayake, V.V.Y., De Silva,
M.P.D.H., Fernando, J.M.D., Sampath, K. and Rupasinghe, P.: Clus-
termal: Automated malware analysis with clustering, anomaly detec-
tion and classification of existing and new behavioral analysis (2016).

[9] Willems, C., Holz, T. and Freiling, F.: Toward automated dynamic
malware analysis using cwsandbox, IEEE Security Privacy, Vol.5,
No.2, pp.2–39 (Mar. 2007).

[10] Matsuda, W., Fujimoto, M. and Mitsunaga, T.: Real-time detection
system against malicious tools by monitoring dll on client comput-
ers, 2019 IEEE Conference on Application, Information and Network
Security (AINS), pp.36–41 (Nov. 2019).

[11] Virus total (2018), available from 〈https://www.virustotal.com〉.
[12] Active Directory Security: Unofficial guide to mimikatz & command

reference (2018), available from 〈https://adsecurity.org/?page id=
1821〉.

[13] Narouei, M., Ahmadi, M., Giacinto, G., Takabi, H. and Sami, A.:
Dllminer: Structural mining for malware detection, Sec. Commun.
Netw., Vol.8, No.18, pp.3311–3322 (Dec. 2015).

[14] Ki, Y., Kim, E. and Kim, H.K.: A novel approach to detect mal-
ware based on api call sequence analysis, International Journal of
Distributed Sensor Networks, Vol.11, No.6, p.659101 (2015).

[15] Gonzalez, L.E. and Vazquez, R.A.: Malware classification using eu-
clidean distance and artificial neural, 2013 12th Mexican International
Conference on Artificial Intelligence, pp.103–108, IEEE (2013).

[16] Ijaz, M., Durad, M.H. and Ismail, M.: Static and dynamic malware
analysis using machine learning, 2019 16th International Bhurban
Conference on Applied Sciences and Technology (IBCAST), pp.687–
691, IEEE (2019).

[17] Macı́as, M., Barrı́a, C., Acuna, A. and Cubillos, C.: Sgsi support
throught malware’s classification using a pattern analysis, 2016 IEEE
International Conference on Automatica (ICA-ACCA), pp.1–4 (2016).

[18] Duan, Y., Fu, X., Luo, B., Wang, Z., Shi, J. and Du, X.: Detective: Au-
tomatically identify and analyze malware processes in forensic scenar-
ios via dlls, 2015 IEEE International Conference on Communications
(ICC), pp.5691–5696, IEEE (2015).

[19] Sun, H.-M., Lin, Y.-H. and Wu, M.-F.: Api monitoring system for
defeating worms and exploits in ms-windows system, Information Se-
curity and Privacy, pp.159–170, Springer Berlin Heidelberg (2006).

[20] Liu, S.-T., Huang, H.-C. and Chen, Y.-M.: A system call analysis
method with mapreduce for malware detection, 2011 IEEE 17th In-
ternational Conference on Parallel and Distributed Systems, pp.631–
637, IEEE (2011).

[21] Gong, M., Girkar, U. and Xie, B.: Classifying windows malware with
static analysis (2016).

[22] sisoc tokyo, attacktooldetection sysmon (2019), available from
〈https://github.com/sisoc-tokyo/attackToolDetection Sysmon〉.

[23] Joven, R. and Paz, R.D.: Jbifrost: Yet another incarnation of the ad-
wind RAT (2016).

[24] Mavroeidis, V. and Jøsang, A.: Data-driven threat hunting using sys-
mon, Proc. 2nd International Conference on Cryptography, Security
and Privacy, pp.82–88, Association for Computing Machinery (2018).

[25] Hochreiter, S. and Schmidhuber, J.: Long short-term memory, Neural
Computation, Vol.9, No.8, pp.1735–1780 (1997).

[26] Ando, Y., Gomi, H. and Tanaka, H.: Detecting fraudulent behavior us-
ing recurrent neural networks, Computer Security Symposium (2016).

[27] Feng, C., Li, T. and Chana, D.: Multi-level anomaly detection in in-
dustrial control systems via package signatures and lstm networks,
2017 47th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pp.261–272, IEEE (2017).

[28] Malhotra, P., Vig, L., Shroff, G. and Agarwal, P.: Long short term
memory networks for anomaly detection in time series, Proc. ESANN
2015, p.89, Presses universitaires de Louvain (2015).

[29] Fujimoto, M., Matsuda, W. and Mitsunaga, T.: Deep learning wo
mochiita struts 2 wo akuyousuru kogeki no bogyo (defending attacks
leveraging struts 2 using deep learning), Digital Practice, Vol.10,
No.2, pp.381–402 (2019).

[30] Salem, M.B. and Stolfo, S.J.: Detecting masqueraders: A compar-
ison of one-class bag-of-words user behavior modeling techniques,
JoWUA, Vol.1, No.1, pp.3–13 (2010).

[31] Wang, H., Yin, J., Pei, J., Yu, P.S. and Yu, J.X.: Suppressing
model overfitting in mining concept-drifting data streams, Proc. 12th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp.736–741, Association for Computing Machin-
ery (2006).

[32] sisoc tokyo, attacktooldetection deeplearning (2019), available from
〈https://github.com/sisoc-tokyo/attackToolDetection DeepLearning〉.

Wataru Matsuda joined NTT WEST,
Ltd. in 2006. In 2015, he joined Watch
and Warning Group of JPCERT/CC,
where he has engaged in information
gathering and early warning activities.
Now as a Project Researcher of Secure
Information Society Research Group, the
University of Tokyo, he engages in re-

search on cyber security, especially log analysis for detecting tar-
geted attacks.

Mariko Fujimoto joined NEC Solution
Innovators, Ltd. in 2004 and worked
for development of software and sys-
tems for internal control. In 2015, she
joined Watch and Warning Group of
JPCERT/CC, where she was engaged in
information gathering and early warning
activities. Now as a Project Researcher of

Secure Information Society Research Group, the University of
Tokyo, she is engaged in research on cyber security especially
log analysis for detecting targeted attacks.

Takuho Mitsunaga is a Associate Pro-
fessor at Toyo University. He is also a Re-
search Fellow at Information-technology
Promotion Agency in Japan. After com-
pleting his degree at Graduate School of
Informatics, Kyoto University, He worked
at the front line of incident handling and
penetration testing at a security vendor. In

FY 2010, he led an R&D project of the Ministry of Trade, Econ-
omy and Industry (METI) for encryption data sharing system for
cloud with an efficient key managing function. He has been a
member of Watch and Warning Group of JPCERT/CC since April
2011, where he is engages in cyber attack analysis including APT
cases. He has also contributed in some cyber security related
books as coauthor or editorial supervisor including “Information
Security White Paper 2013.”

c© 2020 Information Processing Society of Japan

