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Abstract: Consider a simple undirected graph G = (V, E) with vertex set V and edge set E. The distance δG(x, y) is
defined as the length of the shortest path between vertices x and y in G. The vertex u ∈ V is a hinge vertex if there
exist two vertices x, y ∈ V − {u} such that δG−u(x, y) > δG(x, y). Let U be a set consisting of all hinge vertices of G,
and let AVS (u) denote the set of pairs of vertices (x, y)s to which a path between x and y becomes longer after removal
of a hinge vertex u from G. The influential hinge vertex problem aims to determine the hinge vertex u that maximizes
|AVS (u)| in G. In this study, we propose an algorithm that runs in O(n2) time to solve the influential hinge vertex
problem on an interval graph.
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1. Introduction

Consider a simple undirected graph G = (V, E) with vertex set
V and edge set E. Let G − u be a subgraph induced by the vertex
set V − {u}. The distance δG(x, y) is defined as the length (i.e., the
number of edges) of the shortest path between vertices x and y in
G. Chang et al. [4] defined u ∈ V to be a hinge vertex if there exist
two vertices x, y ∈ V−{u} such that δG−u(x, y) > δG(x, y). In other
words, a hinge vertex is a vertex in an undirected graph such that
there exist two vertices whose removal makes the distance be-
tween them longer than before. Identifying all hinge vertices of
a given graph is called the hinge vertex problem. It is worth not-
ing that an articulation vertex is a special case of a hinge vertex
in the sense that its removal changes the finite distance of some
nonadjacent vertices x, y to infinity.

The following Lemma 1, proved by Chang et al. [4], charac-
terizes the hinge vertices of a simple graph G. The hinge vertex
problem can be solved in O(n3) time according to the Lemma.

Lemma 1 (Ref. [4]) For a simple graph G, a vertex u is a
hinge vertex of G if and only if there exist two nonadjacent ver-
tices x, y such that u is the only vertex adjacent to both x and y in
G.

A number of studies concerning hinge vertices have been re-
ported in recent years. For instance, Ho et al. [7] presented an
O(n) time algorithm for the hinge vertex problem on permutation
graphs. Some minor errors in their approach were corrected by
Ref. [8]. Furthermore, Honma and Masuyama [9] presented an
O(n log n) time algorithm for the hinge vertex problem on inter-
val graphs. Their algorithm was later improved to O(n) time by
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Hsu et al. [11]. The class of circular-arc graphs is a superclass of
interval graphs, for which Honma and Masuyama [10] developed
an O(n) time algorithm for the hinge vertex problem. The class of
trapezoid graphs properly contains both interval graphs and per-
mutation graphs, and an O(n log n) time algorithm for the hinge
vertex problem on such graphs was developed by Bera et al. [1].

In this study, we introduce a new concept regarding hinge ver-
tices. Let U be a hinge vertex set of G. We define AVS(u) =
{(x, y) | δG−u(x, y) > δG(x, y)} for u ∈ U as the affected pair ver-

tex sets of u; that is, AVS (u) denotes the set of pairs of vertices
(x, y)s for which a path between x and y becomes longer after re-
moval of a hinge vertex u from G. Furthermore, we define the
influential degree in f (u) = |AVS (u)|. The influential hinge ver-

tex problem aims to determine the hinge vertex u that maximizes
in f (u) in G.

The hinge vertex problem can be applied to improving the sta-
bility and robustness in communication network systems [9]. If
some terminal corresponding to a hinge vertex fails, the efficiency
of communication across the network will decrease because of
the increase in the number of hops between a pair of terminals.
Finding the set of hinge vertices in a graph is useful for iden-
tifying critical nodes in an actual network. In particular, it is
important to find the hinge vertex that renders a serious effect
especially when it breaks down. Therefore, the influential hinge
vertex problem is motivated by practical applications such as net-
work stabilization under a limited cost [9].

In this study, we propose an algorithm to solve the influential
hinge vertex problem on interval graphs. The class of interval
graphs is an important subclass of perfect graphs and it frequently
appears in problem settings in fields such as archaeology [15],
molecular biology [14], bioinformatics [17], genetics [13], VLSI
design [6], circuit routing [16], and scheduling [3]. An extensive
discussion of interval graphs also appears in Ref. [5]. Thus, in-
terval graphs have been studied extensively from both theoretical
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and algorithmic viewpoints.

2. Definitions and Notation

We first illustrate the interval model before defining the interval
graph. The interval model is a set of n horizontal line segments,
called intervals. Each interval Ii = {k | ai ≤ k ≤ bi}, where
ai < bi, has two terminal points, ai and bi. Without loss of gen-
erality, we assume that all terminal points are distinct. Let n be
the number of intervals, where the terminal points of each inter-
val are labeled from left to right with consecutive integer values
1, 2, . . . , 2n. We assume that an interval number is assigned to
each interval in increasing order of their right terminal points bi,
i.e., Ii < I j if bi < b j. The geometric representation described
above is called an interval model and is denoted by M. Fig-
ure 1 (a) shows an interval model M consisting of 10 intervals.

A graph G = (V, E) is an interval graph if its vertices can be
assigned in a one-to-one correspondence with the intervals in M

such that two vertices are adjacent in G if and only if their cor-
responding intervals have a non-empty intersection in M. The
interval graph G corresponding to the interval model M is shown
in Fig. 1 (b). Booth and Lueker [2] have given a linear time al-
gorithm for recognizing interval graphs. Their algorithm relies
on maximal cliques and also produces an interval model if the
graph is indeed an interval graph. Later, Hsu [12] also gave an
algorithm for recognizing interval graphs without using maximal
cliques.

Fig. 1 Interval model M and graph G.

Table 2 Details of mr(i), smr(i),D(i), ml(i), dr(i), and dl(i).

i 1 2 3 4 5 6 7 8 9 10
a 2 3 5 1 7 11 9 15 13 17
b 4 6 8 10 12 14 16 18 19 20

mr(i) 4 4 5 7 7 9 9 10 10 10
smr(i) 2 3 4 5 6 7 8 9 9 10
ml(i) 4 4 4 4 4 5 4 7 7 9
D(i) {7,8,9} {9} {11} {13,14,15} {15} {17,18} ∅ ∅ ∅ ∅
dr(i) 1 1 1 3 2 1 6 1 8 10
dl(i) 1 1 1 10 2 1 4 1 2 1

In the example of Fig. 1, vertices 4, 5, 7, and 9 are hinge ver-
tices in G. Table 1 shows AVS (u) and in f (u) in the example G

of Fig. 1 (b). The most influential hinge vertex is 7.
Notation that forms the basis of the algorithm described in Sec-

tion 5 is defined as follows. Let M be an interval model consisting
of n intervals I1, I2, . . . , In. Then, mr(i) is the largest j, satisfying
that Ii intersects with I j and bi < b j. Here, smr(i) is the second-
largest j, satisfying that Ii intersects with I j and bi < b j. Also,
ml(i) is k such that ak is the smallest value among Ik that intersects
Ii and ak < ai. Note that mr(i) = i, smr(i) = i, and ml(i) = i when
such an interval does not exist. These are formally described as
follows. Here, the set of all intervals that intersect Ii in M is de-
noted by N(i). In addition, N[i] = N(i) ∪ {i}.
• mr(i) = max{ j | j ∈ N[i]},
• smr(i) = max{ j | j ∈ (N[i] − mr(i)) ∪ {i}},
• ml(i) = k where ak = min{a j | j ∈ N[i]}.
We define D(i) = {k | bsmr(i) < k < bmr(i)}. Table 2 provides the

details of mr(i), smr(i), ml(i), and D(i) for the interval model M

shown in Fig. 1.
Suppose U is the hinge vertex set of an interval graph G. We

can obtain U in O(n) time in G by applying Hsu et al’s algo-
rithm [11]. In the example of Fig. 1, we have U = {4, 5, 7, 9}.
Next, we define Vu = {i | mr(i) = u} for u ∈ U. For ex-
ample, V4 = {1, 2}, V5 = {3}, V7 = {4, 5}, and V9 = {6, 7}
for U = {4, 5, 7, 9}. Furthermore, the representative vertex set

(RVS ) is defined as RVS = {min(Vu) | u ∈ U}. We have
RVS = {1, 3, 4, 6}.

In the following, we define an mr-tree and ml-tree for an in-
terval graph G. An mr-tree is a tree constructed by assigning an
edge from i to mr(i) for each vertex i (i � mr(i)). Furthermore,
dr(i) is the number (including i) of descendants of i in the mr-
tree. Similarly, an ml-tree is a tree constructed by assigning an
edge from i to ml(i) for each vertex i (i � ml(i)). Furthermore,
dl(i) is the number (including i) of descendants of i in the ml-tree.
By the property of interval graphs, both an mr-tree and ml-tree
construct shortest path trees from all other vertices to a root ver-
tex. Figure 2 shows an mr-tree and ml-tree of the interval graph
G illustrated in Fig. 1. The details of dr(i) and dl(i) are shown in
Table 2.

Table 1 AVS (u) and in f (u).

u ∈ U AVS (u) in f (u)

4
(1,5), (1,6), (1,7), (1,8), (1,9),

10
(1,10), (2,7), (2,8), (2,9), (2,10)

5 (3,6) 1

7
(1,8), (1,9), (1,10), (2,8), (2,9),

11
(2,10), (3,8), (4,8), (4,9), (4,10), (5,8)

9 (6,10) 1
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Fig. 2 An mr-tree and ml-tree.

3. Properties of a Hinge Vertex for Interval
Graphs

In this section, we demonstrate some properties useful for com-
puting in f (u) of a hinge vertex u on a given interval graph. For
simplicity, we assume u is the hinge vertex for x and y when
δG−u(x, y) > δG(x, y) holds. Furthermore, we assume x and y are
affected pair vertices for u.

Lemmas 2 to 4 provide useful results on hinge vertices in in-
terval graphs presented by Honma and Masuyama [9].

Lemma 2 (Ref. [9]) Let G be an interval graph correspond-
ing to an interval model M. A vertex u is a hinge vertex for
x < y ∈ N(u) in G if and only if there exist two nonintersect-
ing intervals Ix and Iy such that Iu is the only interval intersecting
both Ix and Iy in M.

Lemma 3 (Ref. [9]) Let G be an interval graph correspond-
ing to an interval model M. A vertex u is a hinge vertex for
x < y ∈ N(u) in G if and only if u = mr(x) and ay ∈ D(x)
hold.

Figure 3 gives an example of the hypothesis of Lemma 3. The
following Lemma 4 is required in order to reduce the time com-
plexity of the hinge vertex problem on interval graphs.

Lemma 4 (Ref. [9]) Let G be an interval graph correspond-
ing to an interval model M. Let RVS be a representative vertex
set of G. A vertex u = mr(x) is a hinge vertex for x < y ∈ N(u) if
and only if there exists such ay ∈ D(x) for x ∈ RVS . �

In the example of Fig. 1, for x = 4 (x ∈ RVS = {1, 3, 4, 6}) and
y = 9, we have D(x) = D(4) = {13, 14, 15} and ay = a9 = 13 ∈
D(x). Therefore, u = mr(x) = mr(4) = 7 is recognized as a hinge
vertex by Lemma 4.

All hinge vertices of an interval graph can be obtained in O(n)
time by applying the algorithm of Hsu et al. [11] which is also
based on Lemma 4.

Lemma 5 Let G be an interval graph corresponding to an in-
terval model M. Assume that u is a hinge vertex for two vertices

Fig. 3 Illustration of Lemma 3.

Fig. 4 Illustration of Lemmas 5 and 6.

x and y (x < y) in G. Then, for x′ satisfying mr(x′) = x, u is also
a hinge vertex for x′ and y. �
Proof: For simplicity, consider the case where u is a hinge ver-
tex for x, y ∈ N(u). By Lemma 1, x is not adjacent to y, and u

is the only vertex adjacent to both x and y in G. Thus, we have
δG(x, y) = 2 by x, y ∈ N(u). Moreover, for x′ satisfying that
mr(x′) = x, x′ is adjacent to x, but not to u. If bx′ > au, u in-
tersects with x′ and mr(x′) cannot be x (see Fig. 4 (a)). That is,
δG(x′, y) = 3.

We prove that u is a hinge vertex of x′ and y by contradiction.
We assume that u is not a hinge vertex for x′ and y. The distance
between x′ and y does not increase by removing u because u is
not a hinge vertex for x′ and y, i.e., we have δG−u(x′, y) = 3. This
means that there exists a shortest path of length 3 〈x′, i1, i2, y〉
from x′ to y (see Fig. 4 (a)).

In this case, i1 intersects both x′ and i2, and i2 intersects both
i1 and y. Then, we have ai2 < bi1 and ay < bi2 because i2 inter-
sects both i1 and y. Moreover, bi1 � bx holds by the assumption
x = mr(x′). Therefore, we have ai2 < bx and ay < bi2 . This means
that i2 intersects both x and y (see Fig. 4 (a)). This, however, con-
tradicts the fact that u is the only vertex adjacent to both x and y
in G. Thus, u is a hinge vertex of x′ and y. �.

Lemma 6 Let G be an interval graph corresponding to an in-
terval model M. Assume that u is a hinge vertex for two vertices
x and y (x < y) in G. Then, for y′ satisfying ml(y′) = y, u is also
a hinge vertex for x and y′.
Proof: The hypothesis of Lemma 6 is symmetric with respect
to Lemma 5. Thus, this lemma can be proved using a reasoning
similar to the proof of Lemma 5. �

Lemma 7 Let G be an interval graph corresponding to an in-
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Table 3 Details of r(k) and l(k).

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
r 0 0 0 0 0 0 1 1 2 0 1 0 3 3 5 0 1 1 0 0
l 1 1 1 0 10 0 2 0 4 0 1 0 2 0 1 0 1 0 0 0

r × l 0 0 0 0 0 0 2 0 8 0 1 0 6 0 5 0 1 0 0 0

terval model M. Assume that u is a hinge vertex for two vertices
x and y (x < y) in G. Then u is also a hinge vertex for two vertices
x′, y′ satisfying x = mr(x′) and y = ml(y′).
Proof: This is obvious from Lemmas 5 and 6. �

Lemma 8 Let G be an interval graph corresponding to an in-
terval model M. Assume that u is a hinge vertex for a pair of
vertices x and y (x < y ∈ N(u)) in G. Suppose both an mr-tree
and ml-tree are trees constructed from M, and dr(i) and dl(i) are
the number (including i) of descendants of i in the mr-tree and
ml-tree, respectively. Then the number of affected pair vertices
by removing hinge vertex u is dr(x) × dl(y).
Proof: By Lemma 7, if u is a hinge vertex for two vertices x and
y (x < y) in G, then u is also a hinge vertex for two vertices x′, y′

satisfying x = mr(x′) and y = ml(y′).
From the mr-tree construction method, there are p (including

x) vertices connected to x through the mr value of each vertex if
dr(x) = p. Similarly, from the ml-tree construction method, there
are q (including y) vertices connected to y through the ml value
of each vertex if dl(y) = q.

Therefore, the number of affected pair vertices by removing
hinge vertex u is dr(x) × dl(y). �

Lemma 9 Let G be an interval graph corresponding to an in-
terval model M. Assume that u is a hinge vertex and there are ver-
tices x1 < x2 < · · · < xp that satisfy u = mr(x1) = mr(x2) = · · · =
mr(xp) and y1, y2, . . . , yq that satisfy ay1 , ay2 , . . . , ayq ∈ D(x1).
Then the influential degree in f (u) of a hinge vertex u in G is ob-
tained as follows:

in f (u) =
p∑

i=1

q∑

j=1

dr(xi) × dl(y j).

Lemma 9 is a generalization of Lemma 8. We can efficiently
obtain in f (u) for all hinge vertices u ∈ U by applying Lemma 9.

4. Algorithm IHV and Its Analysis

In this section, we present an algorithm IHV for the influential
hinge vertex problem on an interval graph. The algorithm IHV
is based on Lemma 9. Now, we concisely describe the outline
of our algorithm and analyze its complexity. We use the interval
graph G shown in Fig. 1 to illustrate this algorithm.

In Step 1, we obtain a hinge vertex set U = {4, 5, 7, 9} by ap-
plying Hsu et al.’s algorithm [11]. In this process, mr(i), smr(i),
ml(i), and D(i) are computed for 1 � i � n.

In Step 2, the mr-tree and ml-tree are constructed from an in-
terval model M. Moreover, for each vertex i of the mr-tree and
ml-tree, the number of descendants dr(i) and dl(i) are computed.
In the example of Fig. 2, we have dr = [1, 1, 1, 3, 2, 1, 6, 1, 8, 10]
and dl = [1, 1, 1, 10, 2, 1, 4, 1, 2, 1].

In Step 3, we construct auxiliary arrays r( j) and l( j), 1 � j �
2n using dr(i) and dl(i). These arrays r( j) and l( j) are used to effi-
ciently obtain the influential degree in f (u), u ∈ U. The examples

Algorithm 1: Algorithm IHV
Input: All terminal points ai, bi for n intervals in the interval model M of

interval graph G.
Output: The maximum influential hinge vertex of an interval graph G.

(Step 1) /* Computation of hinge vertex set U */
Compute a hinge vertex set U of G using Hsu et al.’s algorithm [11] ;
In the above process, mr(i), smr(i), ml(i), and D(i) are obtained for 1 � i � n.

(Step 2) /* Construction of an mr-tree and ml-tree and compute the number
of descendants dr(i) and dl(i) */
Construct an mr-tree and ml-tree;
for each 1 � i � n do

Compute dr(i) and dl(i) ;
end

(Step 3) /* Construction of arrays r( j) and l( j) */
/* Initialization */
for each 1 � j � 2n do

r( j) := 0, l( j) := 0 ;
end
/* Construction of r( j) */
for each 1 � i � n do

for each j ∈ D(i)(� ∅) do
r( j) := r( j) + dr(i) ;

end
end
/* Construction of l( j) */
for each 1 � i � n do

l(ai) := dl(i) ;
end

(Step 4)/* Computation of influential degree
for each i ∈ RVS do

for each j ∈ D(i) do
in f (mr(i)) = in f (mr(i)) + (r( j) × l( j))

end
end

(Step 5)
The maximum influential hinge vertex is u such that
in f (u) = max{in f (i) | i ∈ U}

of r( j) and l( j) obtained from an interval model M in Fig. 1 are
shown in Table 3.

In Step 4, based on Lemma 9, we compute the influential de-
gree in f (u) for each hinge vertex u ∈ U. For example, for
i = 4 ∈ RVS = {1, 3, 4, 6}, we have D(4) = {13, 14, 15}.
in f (mr(4)) = in f (7) =

∑
j∈D(4) r( j)×l( j) = 3×2+3×0+5×1 = 11.

In a similar manner, for i = 1, 3, and 6 ∈ RVS , we have
D(1) = {7, 8, 9}, D(3) = {11}, and D(6) = {17, 18}. Thus, we ob-
tain in f (mr(1)) = in f (4) = 1×2+1×0+2×4 = 10, in f (mr(3)) =
in f (5) = 1 × 1 = 5, and in f (mr(6)) = in f (9) = 1 × 1 + 1 × 0 = 1,
respectively.

In Step 5, we obtain the maximum influential hinge vertex. In
the above example, the maximum influential hinge vertex is 7 and
in f (7) = 11.

In the following, we analyze the complexity of Algorithm IHV.
In Step 1, we can obtain all hinge vertices of an interval graph G

in O(n) time using Hsu et al.’s algorithm [11]. However, we re-
quire O(n2) time to compute D(i) because the size of

∑n
i=1 |D(i)| is

proportional to n2. Thus, Step 1 can be performed in O(n2) time.
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In Step 2, we construct an mr-tree and ml-tree, and compute dr(i)
and dl(i). Step 2 can be executed in O(n) time. In Step 3, we
construct auxiliary arrays r( j) and l( j). Step 3 runs in O(n) time.
In Step 4, we obtain the influential degree for each hinge ver-
tex. Step 4 can be executed in O(n2) time because the size of∑n

i=1 |D(i)| is proportional to n2. Hence, we have the following
theorem.

Theorem 1 Given an interval model M, algorithm IHV finds
a maximum influential hinge vertex of an interval graph G in
O(n2) time.

5. Conclusion

In this study, we propose an O(n2) time algorithm to solve the
influential hinge vertex problem of an interval graph. Algorithm
IHV uses Hsu et al.’s algorithm [11] to find all hinge vertices. Re-
ducing the complexity of the algorithm and extending the results
to other graphs will be considered as topics for future research.
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