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Abstract: We analyze the computational complexity of several new variants of edge-matching puzzles. First we an-
alyze inequality (instead of equality) constraints between adjacent tiles, proving the problem NP-complete for strict
inequalities but polynomial-time solvable for nonstrict inequalities. Second we analyze three types of triangular edge
matching, of which one is polynomial-time solvable and the other two are NP-complete; all three are #P-complete.
Third we analyze the case where no target shape is specified and we merely want to place the (square) tiles so that
edges match exactly; this problem is NP-complete. Fourth we consider four 2-player games based on 1×n edge match-
ing, all four of which are PSPACE-complete. Most of our NP-hardness reductions are parsimonious, newly proving
#P and ASP-completeness for, e.g., 1 × n edge matching. Along the way, we prove #P- and ASP-completeness of pla-
nar 3-regular directed Hamiltonicity; we provide linear-time algorithms to find antidirected and forbidden-transition
Eulerian paths; and we characterize the complexity of new partizan variants of the Geography game on graphs.
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1. Introduction

In an edge-matching puzzle, we are given several tiles (usu-
ally identical in shape), where each tile has a label on each edge,
and the goal is to place all the tiles (usually via translation and
rotation) into a given shape such that shared edges between ad-
jacent tiles have compatible labels. In unsigned edge matching,
labels are compatible if they are identical (a matches a and noth-
ing else). In signed edge matching the labels have signs (e.g.,
+a and −a), and two labels are compatible if they are negations
of each other (+a matches −a and nothing else, and vice versa).
Physical edge-matching puzzles date back to the 1890s [26]; per-
haps the most famous example is Eternity II which offered a
US$2,000,000 prize for a solution before 2011 [29].
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1.1 Previous Work
The complexity of edge-matching puzzles has been studied

since 1966 [3]. The most relevant work to this paper is from two
past JCDCG conferences. In 2007, Demaine and Demaine [10]
proved that signed and unsigned edge-matching square-tile puz-
zles are NP-complete and equivalent to both jigsaw puzzles and
polyomino packing puzzles. In 2016, Bosboom et al. [7] proved
that signed and unsigned edge-matching square-tile puzzles are
NP-complete even when the target shape is a 1 × n rectangle,
and furthermore hard to approximate within some constant fac-
tor. Our work on 1× n triangle edge-matching puzzles is inspired
by an open problem proposed in the latter paper.

1.2 Our Results: Edge Matching
Table 1 summarizes our results in edge matching, described in

more detail below.
Inequality edge matching.

Our most complex result is an NP-hardness proof for a new “<”
compatibility condition, where edge labels are numbers, horizon-
tally adjacent edges match if the left edge’s number is less than
the right edge’s number, and vertically adjacent edges match if
the top edge’s number is less than the bottom edge’s number. Fig-
ure 1 shows an example. In Section 2, we prove NP-hardness of
<-compatible 1×n edge matching by reduction from another new
NP-hard problem, Interval-Pair Cover. The ≤-compatibility con-
dition (where equal numbers also match, or we assume all labels
are distinct) turns out to be substantially easier: even rectangular
puzzles turn out to be always solvable and we give a polynomial-
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Table 1 Our results on edge-matching puzzles. *Our proof gives ASP-completeness for 1×n edge match-
ing only when at least one boundary edge is colored; otherwise, each solution can be rotated 180
degrees to form another valid solution, so we get 2-ASP-hardness (NP-hard to find a third solu-
tion given two).

Compatibility Board Tiles Players Complexity
< 1 × n square 1-player NP-complete
≤ m × n square 1-player P
Signed/unsigned 1 × n square 1-player NP/#P-complete, (2-)ASP-hard*
Signed/unsigned 1 × n equilateral triangle 1-player NP/#P-complete, (2-)ASP-hard*
Signed/unsigned 1 × n right triangle (hypotenuse contact) 1-player NP/#P-complete, (2-)ASP-hard*

Signed/unsigned
√

2
2 × n right triangle (leg contact) 1-player ∈ P, #P-complete

Signed/unsigned O(1) × n square/triangular with O(1) colors 1-player ∈ P
Signed/unsigned shapeless square 1-player NP/#P/ASP-complete
Signed/unsigned 1 × n square impartial 2-player PSPACE-complete
Signed/unsigned 1 × n square partizan 2-player PSPACE-complete

Fig. 1 A solved 2 × 3 <-compatible edge-matching puzzle. This solution is
valid because 1 < 52 and 22 < 78 in the top row, 3 < 7 and 7 < 21
in the bottom row, and 12 < 54, 12 < 14, and 1 < 45 in the columns.

time algorithm.
ASP/#P-completeness for 1 × n edge matching.

In Section 3, we analyze edge matching for the first time from
the perspective of the number of solutions to an instance, which
is relevant to constructing puzzles with unique solutions. Specifi-
cally, we prove ASP-completeness for signed and unsigned 1 × n

edge-matching puzzles when the left boundary edge is colored (to
prevent trivial 180◦ rotation of solutions), and 2-ASP-hardness
and #P-completeness even if the boundary is colorless.

Recall the following definitions of FNP, ASP-complete, and
#P-complete. FNP is a variant of NP that actually specifies the
valid certificates/solutions for an instance (instead of just requir-
ing that they exist); that is, an FNP problem is a relation be-
tween instances and polynomial-length certificates/solutions that
can be checked in polynomial time. For edge matching problems,
the certificate we consider is a valid placement of the given tiles
within the given shape. An FNP problemΠ is ASP-complete [30]
if every FNP problem has a polynomial-time parsimonious re-
duction (preserving the number of solutions) to Π along with
a polynomial-time bijection between solutions of the two prob-
lems. ASP-completeness implies that the k-ASP version of the
FNP problem — given an instance and k solutions to it, determine
whether there is another solution — is NP-hard [30]. An FNP
problem is #P-complete [27] if counting the number of solutions
is as hard as counting the number of solutions to any FNP prob-
lem, which is implied by a reduction that is c-monious, meaning
that it multiplies the number of solutions by a computable consis-
tent factor c ≥ 1 *1. Our reductions to 1×n edge matching are the
first to be parsimonious or, when global 180◦ rotation is allowed,
2-monious.

*1 This terminology naturally generalizes “parsimonious” (c = 1), and was
introduced in an MIT class in 2014 [9].

Triangular edge matching.
The conclusion of Ref. [7] claimed that the paper’s results ex-

tended to equilateral-triangle edge matching, but the proposed
simulation of squares by triangles is incorrect because it con-
strains the orientation of the simulated squares. In Section 4.1,
we extend our 1 × n parsimonious proof to obtain NP/#P/ASP-
completeness for signed and unsigned edge matching with equi-
lateral triangles, with or without reflection.

For right isosceles triangles, there are two natural “1 × n” ar-
rangements. For clarity, we assume the legs of the triangles
have length 1. If we still want a height-1 tiling, then length-√

2 hypotenuses are forced to match, so matching is NP/#P/ASP-
complete by simulation of squares. But if we ask for a height-√

2
2 tiling, so only legs match, we show in Section 4.2 that, sur-

prisingly, both signed and unsigned edge matching can be solved
in polynomial time using an algorithm based on Eulerian paths.
Nonetheless, the latter problems are still #P-complete.
Shapeless edge matching.

In Section 5, we prove that square-tile edge-matching puzzles
remain NP/#P/ASP-complete when the goal is to connect all tiles
in any (unspecified) single connected shape, with either signed or
unsigned compatibility. For #P- and ASP-completeness, we need
to give one tile a fixed position in the plane (translation and rota-
tion) to make the number of solutions finite. The proof builds a
unique spiral frame that effectively forces a 1 × n edge-matching
puzzle with a fixed left boundary color.
2-player edge matching.

In Section 6, we consider natural 2-player variants of 1 × n

edge-matching puzzles, where the left boundary edge of the rect-
angle has a prespecified color, players alternate placing a tile in
the leftmost empty cell that matches the edge color to the left, and
the first player unable to move loses (normal play). We prove
PSPACE-completeness for four variants of this problem: both
signed and unsigned square-tile edge matching, and both when
players can play any remaining tile from a shared pool (impartial)
and when players play from separate pools of tiles (partizan).

1.3 Our Results: Not Edge Matching
Along the way to proving our results on edge matching, we

derive other results of possible independent interest in graph al-
gorithms/complexity.
Hamiltonicity parsimony.

In Section 3.1, we prove #P- and ASP-completeness of
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Table 2 Partizan geography results.

Graph Partizan Geography Complexity
undirected vertex vertex polynomial
undirected vertex edge polynomial
undirected edge vertex PSPACE-complete
undirected edge edge PSPACE-complete
directed vertex vertex PSPACE-complete
directed vertex edge PSPACE-complete
directed edge vertex PSPACE-complete
directed edge edge PSPACE-complete

the Hamiltonian cycle problem in planar 3-regular directed

graphs, by modifying the clause gadget of Plesnı́k’s NP-hardness
proof [23] and parsimoniously reducing from 1-in-3SAT instead
of 3SAT. Previous work showed the analogous undirected prob-
lem ASP-complete (and #P-complete) in planar graphs of max-
imum degree 3 [25]. We also prove #P- and ASP-completeness
of the Hamiltonian path problem with specified start and end ver-
tices in planar 3-regular directed graphs.
Antidirected Eulerian paths.

In Section 4.2.1, we characterize when a directed graph admits
an antidirected Eulerian path [4], [13], [31], that is, a path *2 that
alternates between going forward and going backward along di-
rected edges and visits every edge (in either direction) exactly
once. (Such directed graphs are called aneulerian [4], [13], [31].)
Specifically, we show how to reduce this problem to finding an
Eulerian path in a modified graph, enabling solution in linear
time. Although antidirected Eulerian paths were introduced over
50 years ago [4], their existence does not seem to have been char-
acterized before our work and a recent independent discovery [1].
Forbidden-transition Eulerian paths.

In Section 4.2.2, we give linear-time algorithms to find
Eulerian paths or antidirected Eulerian paths when certain
monochromatic edge-to-edge transitions are forbidden, extend-
ing past work by Kotzig [20] to be algorithmic (and to the antidi-
rected case). Specifically, each vertex can define a partition of its
incident edges into groups, and the problem forbids the Eulerian
path from passing through the vertex via two edges from the same
group.
Partizan Geography game.

We introduce eight new partizan variants of Geography where
the two players have different available moves, and characterize
their complexity. Specifically, in vertex-partizan geography, ver-
tices have two different colors, and each player can only move to
vertices of their color; while in edge-partizan geography, edges
have two different colors, and each player can only move along
edges of their color. We can consider either variant for both Ver-
tex and Edge Geography (where respectively vertices and edges
cannot be repeated by either player), and in directed or undirected
graphs, resulting in eight possible variants. Table 2 summarizes
our results from Section 6.1, which prove every variant either
polynomial or PSPACE-complete.

2. Edge Matching with Inequalities

In this section, we analyze the complexity of the following

*2 Throughout this paper, we follow the half-standard terminology that
paths and cycles are allowed to repeat vertices and/or edges (though we
will rarely allow repeated edges). In a different half-standard terminol-
ogy, these notions are called “walks/trails” and “circuits”. If a path or
cycle makes no such repetitions, it is called simple.

problems:
Definition 2.1. m × n <-compatible edge matching is the fol-
lowing problem:

Instance: mn unit-square tiles, where each tile is defined by

four numbers, one for each side. We use a
b
�
d

c to represent a unit-

square tile with numbers a, b, c, d.
Question: Can the mn tiles cover an m × n rectangle such that
• for every two horizontally adjacent tiles, the left tile’s right

number is strictly less than the right tile’s left number; and
• for every two vertically adjacent tiles, the top tile’s bottom

number is strictly less than the bottom tile’s top number?
The related problem ≤-compatible edge matching is defined

similarly, except that we do not require strict inequalities among
the numbers.

2.1 Polynomial-Time Algorithm for ≤-Compatible Edge
Matching

Theorem 2.1. m × n ≤-compatible edge-matching puzzles are

always solvable and a solution can be found in O(mn log(mn))
time.

Proof. Rotate each tile A
B
�
D

C such that A ≥ C and B ≥ D. Then

sort the tiles in ascending order by D and place them in the board
in row-major order. Because B ≥ D, sorting by D ensures all tiles
are vertically ≤-compatible. Then sort the tiles in each row in as-
cending order by C. Because A ≥ C, sorting by C ensures all tiles
in the row are horizontally ≤-compatible. Being both vertically
and horizontally ≤-compatible, this is a compatible tiling. This
algorithm runs in O(mn log(mn)) time from the sorting.

The following special cases of the m × n <-compatible edge-
matching puzzles are tractable:
Corollary 2.2. m × n <-compatible edge-matching puzzles in

which all edge labels are distinct are always solvable and a solu-

tion can be found in polynomial time.

Theorem 2.3. 1×n <-compatible edge-matching puzzles in which

every tile has at least one pair of parallel sides with unequal la-

bels are always solvable and a solution can be found in polyno-

mial time.

Proof. Rotate each tile A
B
�
D

C such that A > C. If there are two

pairs of unequal parallel sides, then choose arbitrarily. Now sort
all tiles in ascending order by A, breaking ties arbitrarily, and
place them in the board in row-major order. Let Ai and Ci be
the left and right numbers of tile i. From sorting, we know
that Ai ≤ Ai+1, and from our rotation of the tiles, we know that
Ci < Ai. Composing the inequalities gives Ci < Ai+1, which is
the <-compatibility condition, so this is a compatible tiling.

2.2 NP-hardness of 1 × n<-Compatible Edge Matching
To show NP-hardness of <-compatible edge matching, we start

from the known NP-hard problem N3P-3SAT-2P-E1N [11] de-
fined in Section 2.2.1. In Section 2.2.2, we reduce N3P-3SAT-
2P-E1N to a novel variant literal-matching N3P-3SAT-2P-E1N.
In Section 2.2.3, we reduce literal-matching N3P-3SAT-2P-E1N
to a new problem called Interval-Pair Cover, which implies NP-
hardness of 1 × n <-compatible edge matching.
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Fig. 2 Shared-literal graph: two examples.

2.2.1 N3P-3SAT-2P-E1N
Our starting point is the following variant of SAT (named to

follow notation from Ref. [12]):
Definition 2.2. An instance of N3P-3SAT-2P-E1N is an instance
of 3SAT, consisting of n variables x1, x2, . . . , xn and m clauses
each with at most three literals, where each literal is of the form xi

(positive) or ¬xi (negative), satisfying the following constraints:
( 1 ) N3P: Every clause has at least one negative literal (i.e., no

clause has three positive literals).
( 2 ) 2P: Every variable xi appears in at most two positive literals

xi.
( 3 ) E1N: Every variable xi appears in exactly one negative lit-

eral ¬xi.
Ding et al. [11] proved that N3P-3SAT-2P-E1N is NP-

complete. In fact, they proved NP-completeness of a slightly
more general problem, N3P-3SAT-3-1N, which constrains each
variable to appear in at most three literals, at most one of which
is negative. But any variable with zero negative occurrences can
be eliminated (setting it to true), so by repeated application of this
process, we attain the E1N property. Because each variable ap-
pears in at most three literals, at most two of them are positive, so
we also have the 2P property. Thus we reduce N3P-3SAT-3-1N
to N3P-3SAT-2P-E1N.
2.2.2 Reduction from N3P-3SAT-2P-E1N to literal-

matching N3P-3SAT-2P-E1N
Define the shared-literal graph of a 3SAT instance to have one

vertex for each clause, and connect two clauses by an edge for
each literal these share, as shown in Fig. 2. For a N3P-3SAT-2P-
E1N instance, the shared-literal graph has two additional proper-
ties. By the E1N constraint, every edge corresponds to a shared
positive literal. By the 2P property, the shared-literal graph has
maximum degree 2. We will show that we can in fact reduce the
shared-literal graph to maximum degree 1.
Definition 2.3. A literal-matching N3P-3SAT-2P-E1N instance
is an instance of N3P-3SAT-2P-E1N whose shared-literal graph
is a matching.
Theorem 2.4. Literal-matching N3P-3SAT-2P-E1N is NP-

complete.

Proof. Trivially, literal-matching N3P-3SAT-2P-E1N ∈ NP. We
reduce N3P-3SAT-2P-E1N to literal-matching N3P-3SAT-2P-

Fig. 3 Reduction from N3P-3SAT-2P-E1N to literal-matching N3P-3SAT-
2P-E1N of Theorem 2.4.

E1N to show literal-matching N3P-3SAT-2P-E1N is NP-hard.
Refer to Fig. 3.

First we orient the shared-literal graph to have maximum inde-
gree and maximum outdegree 1. Because the shared-literal graph
is maximum degree 2, every connected component is either a path
or a cycle. Direct each path from one end to the other, and direct
each cycle cyclically.

Reduction: For each edge (c, d) in the directed shared-literal
graph, corresponding to a shared literal xi, replace the occurrence
of xi in d with a new helper variable hi. Additionally, create a
new helper clause ¬hi ∨ xi, i.e., hi ⇒ xi.

This reduction conserves occurrences of the original (non-
helper) variables, and each helper variable appears positively
once (replacing some xi in an original clause) and negatively once
(in the helper clause), so the transformed formula is still N3P-
3SAT-2P-E1N.

The transformed formula is satisfiable under an augmented
truth assignment σX,H = σX ∪ σH if and only if the original for-
mula is satisfiable under σX . If hi satisfies an original clause (by
being true), the helper clause ensures that xi is also true. If xi is
false, the helper clause ensures that hi is also false, and so can-
not satisfy the original clause it is a member of. Thus if σX,H

satisfies the transformed formula, σX satisfies the original for-
mula. Variable hi can be false when xi is true, but as xi already
satisfies hi’s helper clause and hi always appears positively in its
original clause, such an assignment cannot satisfy more clauses
than if hi were true. Thus if σX satisfies the original formula,
σX,H = σX ∪ {hi = σX(xi)} satisfies the transformed formula.

After replacing the occurrence of xi in clause d, each edge
(c, d) in the original formula’s directed shared-literal graph cor-
responds to an edge between c and the helper clause containing
xi in the transformed formula’s shared-literal graph, so original
clauses have a degree of at most 1. Each helper variable appears
only once in each polarity, so helper variables do not give rise to
edges in the shared-literal graph. Thus all helper clauses have de-
gree 1. The transformed formula’s shared-literal graph thus has
maximum degree 1, meaning that it is a matching.
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Fig. 4 Interval-Pair Cover: sample input and solution. The two intervals in
the same pair are colored the same and share the same y coordinate.

2.2.3 Reduction from literal-matching N3P-3SAT-2P-E1N
to Interval-Pair Cover

To begin, we define a new problem Interval-Pair Cover; refer
to Fig. 4.
Definition 2.4. Interval-pair cover is the following problem:

Instance: A universe U = {1, 2, . . . , n} and m pairs of closed
intervals ([ai, bi], [ci, di]) for
i = 1, 2, . . . ,m. Here ai, bi, ci, di ∈ U, ai ≤ bi, and ci ≤ di.

Question: Is there a choice of one interval from each pair such
that every i ∈ U is covered by some chosen interval?
Theorem 2.5. Interval-Pair Cover is NP-complete, even when

every interval pair ([a j, b j], [c j, d j]) satisfies a j = b j and d j−c j ∈
{0, 1}.
Proof. We reduce from literal-matching N3P-3SAT-2P-E1N; re-
fer to Fig. 5. We draw the shared-literal graph on the integer
line from 1 through n, placing the vertices at integer coordinates
and using unit-length edges. This is always possible because the
shared-literal graph is a matching. Then we create an interval
pair for each variable xi. The pair’s first interval contains only
the coordinate of the vertex representing the clause where xi ap-
pears negatively; by the E1N property, there is exactly one such
vertex. The pair’s second interval contains only the coordinate(s)
of the vertex or vertices representing the clause(s) where xi ap-
pears positively; by the 2P property, there are at most two, and
they are adjacent on the line because they share an edge in the
shared-literal graph. If xi does not appear positively, we set the
second interval equal to the first interval.

The produced Interval-Pair Cover instance has a solution if and
only if the input literal-matching N3P-3SAT-2P-E1N instance is
satisfiable. Given a satisfying truth assignment, from the inter-
val pair corresponding to variable xi, we choose the first interval
if xi is assigned false and the second interval if xi is assigned
true. Each chosen interval covers the coordinate(s) of the clause
vertices satisfied by xi, so if the truth assignment satisfies the
formula, the chosen intervals cover all integers in the universe.
Given a complete interval cover, we assign true to xi if the sec-
ond interval was chosen from its corresponding pair and false if
the first interval was chosen. By the same interval-variable corre-
spondence, if the intervals cover all integers in the universe, the
constructed truth assignment satisfies the formula.

Fig. 5 Reduction from literal-matching N3P-3SAT-2P-E1N to Interval-Pair
Cover of Theorem 2.5.

2.2.4 Reduction from Interval-Pair Cover to 1 × n <-
Compatible Edge Matching

Theorem 2.6. 1×n <-compatible edge matching is NP-complete.

Proof. We reduce from Interval-Pair Cover. For each inte-
ger i in the Interval-Pair Cover universe {1, 2, . . . , n}, we cre-

ate two copies of the element tile i
i
�
i

i. For each interval pair

([a j, b j], [c j, d j]), we create an interval-pair tile a j−1
c j−1
�

d j+1
b j+1. The

edge-matching board is 1 × (2n + m), where n is the size of the
universe and m is the number of interval pairs.

Given a solution to the produced edge-matching instance, we
can construct a solution to Interval-Pair Cover by choosing each
interval tile’s horizontally-oriented interval (e.g., the interval

[a j, b j] for a tile oriented as a j−1
c j−1
�

d j+1
b j+1 or as b j+1

d j+1
�

c j−1
a j−1). Sup-

pose for contradiction that an element i is uncovered by every
chosen interval. Then in every placed tile whose left edge is at
least i + 1, its right edge is at least i, so the left edge of the next
tile is at least i + 1. In the sequence of left edges of tiles, the left

edge of the tile after the first copy of i
i
�
i

i is at least i + 1, so every

following left edge is at least i+1, leaving no place for the second

copy of i
i
�
i

i.
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Given a solution to Interval-Pair Cover, we can construct a so-
lution to the produced edge-matching instance. We will first de-

scribe a solution that uses extra copies of i
i
�
i

i. For each chosen in-

terval [a j, b j], orient the tile as b j+1
d j+1
�

c j−1
a j−1, and attach to its right

a j

a j

�
a j

a j, . . . , b j

b j

�
b j

b j to get a sequence of tiles with left edge b j + 1 and

right edge b j. For each i ∈ {1, 2, . . . , n}, place the tile i
i
�
i

i followed

by any of the above sequences of tiles with left edge i+1 and right

edge i. This solution uses as many copies of i
i
�
i

i as the number of

intervals that cover i, plus 1, which is at least two. We can remove

any i
i
�
i

i and leave a valid solution, so arbitrarily removing copies

until there are two copies of each i
i
�
i

i left leaves a solution to the

edge-matching instance.

3. 1 × n Edge Matching ASP/#P-completeness

In this section, we adapt the work of Ref. [7] to show that 1× n

edge-matching puzzles are ASP- and #P-complete. Like [7], we
reduce from Hamiltonian path in planar 3-regular directed graphs,
which we newly prove ASP- and #P-complete.

3.1 Directed Hamiltonicity ASP/#P-completeness
Seta’s thesis [25] proves ASP-completeness for Hamiltonicity

in planar maximum-degree-3 undirected graphs. Here we prove
the analogous result for directed graphs:
Theorem 3.1. Finding Hamiltonian cycles in a planar 3-regular

directed graph with maximum indegree 2 and maximum outde-

gree 2 is ASP-complete, and counting Hamiltonian cycles in those

graphs is #P-complete.

Proof. These problems are clearly in FNP and #P respectively.
To prove hardness, we give a parsimonious reduction from (pla-
nar) positive 1-in-3SAT, which is known to be ASP-complete and
#P-complete [19] *3. Our reduction is patterned after Plesnı́k’s
NP-hardness reduction from 3SAT for Hamiltonian cycle in this
class of graphs [23]. Plesnı́k’s reduction does not conserve the
number of solutions because the clause gadget admits multi-
ple solutions when multiple literals in the clause are satisfied
(Fig. 9 (a)). Reducing from 1-in-3SAT and simplifying Plesnı́k’s
clause gadget allows us to conserve the number of solutions, and
reducing from positive 1-in-3SAT (no negated literals) allows us
to simplify the clause gadget. Plesnı́k’s exclusive-or gadget and
exclusive-or crossover gadget do not give rise to additional solu-
tions, so they can be used without modification.

Figure 6 shows a full Hamiltonicity instance produced by our
reduction, with variable gadgets on the right (heading down) and
clause gadgets on the left (heading up), and variables and clauses
connected by exclusive-or lines (the green lines with hollow end-
points) which may cross. (Compare [23], Fig. 1, in which Plesnı́k
has abbreviated the clause gadgets.)
Exclusive-or line.

An exclusive-or line between two edges abbreviates the pat-

*3 Our proof does not actually use the planarity of the 1-in-3SAT instance.
To avoid the exclusive-or crossover gadget, we would need the variable-
clause graph to remain planar with a line through all of the variables and
all of the clauses, a variant not known hard [12].

Fig. 6 A full Hamiltonicity instance produced by our reduction, with vari-
able gadgets on the right (heading down) and clause gadgets on the
left (heading up). Variables and clauses are connected by exclusive-
or lines (the green lines with hollow endpoints) as defined in Fig. 7,
with crossings expanded as in Fig. 8.

tern of additional vertices and edges shown in Fig. 7. Traversing
either of the two edges covers all of the additional vertices in ex-
actly one way, excluding the other original edge from the cycle.
Traversing a path not corresponding to one of the original edges
(e.g., from the bottom left to bottom right in Fig. 7) prevents the
center four vertices from being part of any cycle (either they are
uncovered, or they are the last four vertices in the path, so the
path is not a cycle). If neither of the two original edges is used,
all of the additional vertices are uncovered.
Exclusive-or crossover.

Exclusive-or lines connecting variable gadgets to clause gad-
gets may cross, necessitating the exclusive-or crossover shown in
Fig. 8. The crossover works by splitting each crossed-over edge
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Fig. 7 Our notation for an exclusive-or line between two edges and its ex-
pansion into additional vertices and edges. (Redrawing of Ref. [23],
Fig. 4.)

Fig. 8 Expansion of an exclusive-or line that crosses another exclusive-or
line. (Based on Ref. [23], Fig. 5, simplified to show only two lines
crossing.)

between one pair of original edges into two edges and adding new
exclusive-or lines that guarantee the parity of these paired edges
is the same throughout the gadget. For example, in Fig. 8, if the
top edge is in the cycle, then the top edge of each pair is also in
the cycle and the bottom edge is not in the cycle, regardless of
which of the left or right edges are in the cycle. As before, the
expansion can be traversed in exactly one way for each pair of
original edges traversed, and a traversal not corresponding to an
original edge leaves some vertices uncovered.
Variable gadget.

The variable gadget is a pair of vertices connected by a
pair of parallel edges *4. The edge on the interior face of the
variable-clause cycle is connected by exclusive-or lines to each
clause in which the variable appears. Including this edge in the
Hamiltonian cycle represents setting the variable to true. The

*4 The graph is a simple graph, not a multigraph: If we remove any vari-
ables not used in any clauses, then for each variable, one of these edges
will be replaced by an exclusive-or gadget, leaving no parallel edges.

other edge of the variable gadget is not connected to anything
and represents setting the variable to false. The variable gadgets
are connected in sequence.

Plesnı́k’s variable gadget used two pairs of parallel edges, con-
nected on the exterior by an exclusive-or line such that they have
opposite settings, with the second pair connected to clauses where
the variable appeared as a negative literal. We reduce from pla-
nar positive 1-in-3SAT, so all literals in our clauses are positive,
making the second pair unnecessary.
Clause gadget.

Our clause gadget and its three Hamiltonian paths are shown in
Fig. 9 (b). The three rightmost edges in the clause gadget are con-
nected by exclusive-or lines to the variable gadgets corresponding
to the variables appearing in this clause. If a variable is set to true,
then the rightmost edge connected to that variable gadget cannot
be in the cycle; otherwise, the rightmost edge must be in the cy-
cle. If exactly one of the three variables is true, then the clause
gadget can be covered in exactly one way (using one of the paths
shown in Fig. 9 (b)). If a variable is true, the path must go to the
left of that hexagon, where it must enter the left loop. If the path
leaves the left loop before visiting all vertices in it, it cannot visit
the top vertex of the hexagon where it entered the loop, so the left
loop must be covered in its entirety. But then the path cannot go
left in any other hexagon, so the other variable must be false. If
all variables are false, the left loop is uncovered. Thus this gadget
simulates a 1-in-3SAT clause.

Our clause gadget differs from Plesnı́k’s by the deletion of the
“bridges” between the hexagons and the left loop. The bridges
allowed multiple literals to be simultaneously true, which was
necessary for Plesnı́k’s reduction (from 3SAT), but not desired
for our reduction from 1-in-3SAT.
Conclusion.

Figure 6 shows a full instance produced by our reduction. For
each satisfying assignment of the variables, there is one corre-
sponding Hamiltonian cycle using the corresponding configura-
tion of the variable gadgets and the unique satisfying path through
each clause gadget. Conversely, a satisfying assignment can be
uniquely read off from each Hamiltonian cycle based on the con-
figuration of the variable gadgets.
Theorem 3.2. Finding Hamiltonian paths, with or without given

start vertex s and/or end vertex t, in planar 3-regular directed

graphs with maximum indegree 2 and maximum outdegree 2 is

ASP-complete, and counting Hamiltonian paths in those graphs

is #P-complete. The same result holds when the given vertex s

has outdegree 1 and the given vertex t has indegree 1.

Proof. We prove this result via a parsimonious reduction from
Hamiltonian cycle in planar 3-regular graphs with maximum in-
degree and outdegree 2. Given a 3-regular directed graph, we find
an edge uv that must be in every Hamiltonian cycle (an outgoing
edge from a vertex with indegree 2, or an incoming edge to a
vertex with outdegree 2). We split uv, introducing two degree-1
vertices but otherwise leaving the graph 3-regular.

To restore 3-regularity we replace the degree-1 vertices with
the graphs shown in Fig. 10. The unique longest (simple) path
entering the graph in Fig. 10 (b) ends at the vertex labeled t, be-
cause the first three vertices have outdegree 1 and the other suc-

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 9 Comparison of Plesnı́k’s clause gadget and our modified clause gadget.

Fig. 10 Gadgets that replace degree-1 start or end vertices to restore
3-regularity to the overall graph while maintaining a unique
Hamiltonian path. Vertices s and t are the new start and end ver-
tices.

cessor of the fourth vertex is already in the path. By a similar ar-
gument working backwards from the outgoing edge of the graph
in Fig. 10 (a), the unique longest path leaving the graph starts at
the vertex labeled s. Thus, whether or not s and t are specified
as the start and end vertices in the Hamiltonian path instance, all
Hamiltonian paths in the transformed graph start at s and end at
t. Vertex s has outdegree 1 and t has indegree 1, as claimed in
the theorem statement. Because uv occurs in every Hamiltonian
cycle of the input graph, there is a bijection between Hamiltonian
cycles in the input instance and Hamiltonian paths in the output
instance, and this bijection can be computed in polynomial time
by replacing uv with the unique paths in the start/end gadgets or
vice versa.

3.2 Reduction from Hamiltonicity to 1 × n Edge Matching
The symmetry of 1 × n edge-matching puzzles is problematic

for ASP-hardness. Because rotating any solution by 180◦ will
give another solution, the answer to the ASP problem is always
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‘yes’. To avoid this trivial additional solution, we consider the
version of 1 × n edge-matching puzzles where the left boundary
edge’s color is specified. This breaks the rotational symmetry,
and we will show that this problem is ASP-complete through a
parsimonious reduction. Without this restriction, our reduction is
2-monious, so we show #P-hardness even for 1×n edge-matching
puzzles without any such restriction.

The reduction in Ref. [7] that establishes NP-hardness of 1 × n

edge-matching puzzles is not parsimonious because of garbage
collection. Namely, the tiles corresponding to edges which are
not part of the Hamiltonian path are placed at the end of the row
of tiles in an arbitrary order. Our reduction will instead place
these unused tiles near the corresponding vertex tiles so that there
is only one tile sequence corresponding to each Hamiltonian path.
Theorem 3.3. 1 × n signed and unsigned edge-matching puzzles

with the left boundary edge color specified are ASP-complete and

#P-complete.

Proof. Clearly this problem is in FNP and its counting problem
is in #P. To show hardness, we present a parsimonious reduction
from Hamiltonian path in 3-regular directed graphs, adapted from
the reduction in Ref. [7].

Given a 3-regular directed graph G with specified vertices s

and t, we construct a 1 × n signed edge-matching puzzle as fol-
lows. (For the unsigned case, we will simply remove all signs.)
For each edge e in G, we have a color e, and for each vertex v
we have three colors vI , vO, and vX . For each vertex v, we build
three tiles; refer to Fig. 11. In one case, v has one edge e1 com-
ing in and two edges e2 and e3 going out. Then we construct the
following tiles:

+e1

−vX
�−vX
−vI , +vO

−vO
�
+vI
−e2, and +vO

−vO
�
+vI
−e3.

In the other case, v has two edges e1 and e2 coming in and one
edge e3 going out. Then we construct the following tiles:

+e1

+vI
�−vO
−vI , +e2

+vI
�−vO
−vI , and +vO

−vX
�−vX
−e3.

Each of these tiles corresponds to one of the half-edges incident
to v. (Overall, each edge is represented by two half-edge tiles.)
We use the properties that s has outdegree 1 and t has indegree 1,
as provided by Theorem 3.2. We remove the tiles corresponding
to the half-edges entering s and the tiles corresponding to half-
edges leaving t, so s and t each have only one corresponding tile.
Finally, we specify that the left boundary edge has color −sO.

We claim that the number of solutions to this edge-matching
puzzle is the same as the number of Hamiltonian paths in G from
s to t.

First suppose that we have such a Hamiltonian path s =

v1, v2, . . . , v|V | = t. We can construct a solution to the edge-
matching puzzle by placing the three tiles for each vertex vi con-
secutively, in the order i = 1, 2, . . . , |V | that the vertices appear in
the path. As in the bottom of Fig. 11, we place the three tiles
for each vertex vi so that the tiles corresponding to the edges
ei = (vi−1, vi) and ei+1 = (vi, vi+1) that the path uses to enter and
exit v are respectively first and last so that the sequence of colors
is ei, vi,I , vi,O, ei+1. The exposed colors are +ei on the left and
−ei+1 on the right, so the these placed triples of tiles match up at

Fig. 11 The tiles in the reduction showing ASP- and #P-hardness of 1 × n
edge-matching puzzles. At the bottom we show one possible edge-
matching solution corresponding to one (blue) path through v.

their ends (because the sequence of vertices is a path). There is
only one tile for each of s and t, which we place at the beginning
and end. The left boundary color is then +sO, as required, and the
rightmost boundary color is +tI .

Next we show that every solution to the edge-matching puzzle
has this form, and thus corresponds to a Hamiltonian path. Sup-
pose we have a solution to the edge-matching puzzle. Because
the left boundary color is −sO, the tile corresponding to s must
be placed on the left oriented with +sO on the left and the out-
going edge color on the right. The only tile corresponding to t is

+e
−tX
�−tX

−tI , where e is the incoming edge. Because colors tX and tI do
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not appear on any other tiles, this tile must be placed rightmost
with color +e on the left.

Consider a vertex v other than s and t. None of the tiles corre-
sponding to v can be at either end of the solution, because those
spaces are claimed by s and t. Suppose v has indegree 1 and out-

degree 2; the other case is similar. Because +e1

−vX
�−vX
−vI is the only

tile with the color vX , it must be adjacent to other tiles on the
other two sides. The tile adjacent on the side with color −vI must
be one of the two other tiles corresponding to v. Whichever tile
it is, its orientation is fixed by matching color vI , so the opposite
side must have color −vO, and therefore the following tile must
be the third tile corresponding to v, with the color of another edge
incident to v on the side touching the next tile. In summary, the
three tiles corresponding to v must be consecutive, and the two
colors they expose to other tiles are two edges incident to v with
different orientations relative to v, with the local configuration of
the three tiles determined by those exposed colors.

Suppose the sequence of tiles corresponding to vertex u are ad-
jacent to the sequence corresponding to vertex v. Then the side
where these sequences touch must have color e, where e is ei-
ther (u, v) outgoing from u and incoming to v or (v, u) outgoing
from v and incoming to u. The other left and right edges of these
tiles must also have edge colors corresponding to edges incident
to u and v. By induction, if the solution has several consecutive
sequences of tiles corresponding to vertices, the sequence of ver-
tices must form a path in G in either direction. The entire solution
must therefore be a concatenation of sequences corresponding to
vertices starting with s and ending with t, such that adjacent ver-
tices share an edge from left to right, and using each tile exactly
once. Hence the solution must correspond to a Hamiltonian path.

For each Hamiltonian path, there is exactly one correspond-
ing solution to the edge-matching puzzle, because there is only
one way to connect the tiles corresponding to a vertex for each
pair of edges used at that vertex. So there are the same num-
ber of Hamiltonian paths in G from s to t and solutions to the
edge-matching puzzle. Because this reduction is parsimonious, it
shows that 1 × n signed edge-matching puzzles with the color of
the left boundary edge specified is ASP- and #P-complete. The
same reduction with all the signs removed proves the same result
for unsigned edge-matching puzzles.
Corollary 3.4. 1×n signed and unsigned edge-matching puzzles

are #P-complete and their 2-ASP problem is NP-hard.

Proof. Without a specified left boundary color, we cannot guar-
antee that the tile corresponding to the start vertex s is on the left
and the tile corresponding to the end vertex t is on the right; we
only know that they are at the ends. Thus each solution to the
edge-matching puzzle can be rotated 180◦ to form another solu-
tion, so the reduction is 2-monious.

4. Triangular Edge Matching

In this section, we study 1 × n edge-matching puzzles with tri-
angular tiles, specifically, equilateral and right isosceles triangles.
There is one natural interpretation of “1 × n” for equilateral tri-
angles, as shown in Fig. 12 (a). However, for right isosceles tri-
angles, there are two natural interpretations. If the triangles have

Fig. 12 Three types of triangular tiles.

legs of length 1, then to pack a 1 × n box they must have alter-
nating hypotenuse/leg contact, which we will simply refer to as
hypotenuse contact, as shown in Fig. 12 (b). On the other hand, if
the triangles have a height of 1, then they must be packed using
only leg-to-leg contacts, as shown in Fig. 12 (c).

Hypotenuse-contact right triangles can directly and parsimo-
niously simulate square tiles: for each square create two triangles
whose hypotenuses have a matching, unique color. (This idea is
mentioned in another context in the conclusion of Ref. [7].) Thus
NP-completeness, ASP-completeness (with left boundary speci-
fied), and #P-completeness of these puzzles follows directly from
results on square tiles. We devote the rest of this section to equi-
lateral triangles (Section 4.1) and right triangles with leg contact
(Section 4.2).

4.1 Equilateral-Triangle Edge Matching
In this section, we prove NP/#P/ASP-completeness of 1 × n

equilateral triangular edge-matching puzzles. We start with an
NP-completeness proof, then augment it and analyze it further to
prove #P/ASP-completeness.
Theorem 4.1. 1 × n signed and unsigned equilateral-triangle

edge-matching puzzles are NP-complete. The same results hold if

we allow tile reflection.

Proof. Clearly these problems are in NP. To show NP-
hardness, we reduce from Hamiltonian path in 3-regular undi-

rected graphs [17] (in contrast to Section 3 which considered di-
rected graphs). We describe signed tiles resulting from our re-
duction to signed edge matching; for the unsigned puzzle we will
just drop the signs. Similar to the proof of Theorem 3.3, we will
create exactly two tiles per edge; refer to Fig. 13. To assign com-
plementary signs to the edge colors, arbitrarily orient each edge
e (but paths need not follow this orientation). For every vertex v
with incident edges e1, e2, e3, construct three corresponding trian-
gular tiles:

+v�±e1

−v, +v�±e2

−v, and +v�±e3

−v,

where the sign of each ei color is positive if ei was arbitrarily ori-
ented to be incoming to v and negative otherwise. We claim that
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Fig. 13 NP-hardness of 1×n equilateral-triangle edge matching, showing one possible (blue) path through
v and the corresponding edge-matching solutions (depending on parity up to this point).

these tiles have a signed or unsigned edge-matching solution if
and only if the graph has a Hamiltonian path.

First suppose that there is a Hamiltonian path v1, v2, . . . , vn. We
can construct an edge-matching solution by arranging the three
corresponding tiles for each vertex vi so that {vi−1, vi} is on the left
boundary edge and {vi, vi+1} is on the right boundary edge, as in
Fig. 13 (right, top or bottom according to parity of i as required
by the tiling). The figure illustrates that the vertex colors match
with opposite signs, and that tiles do not need to be reflected. By
the arbitrary orientation of the edges, every edge color will match
with its negated color.

Now suppose that there is an edge-matching solution, even
without the color signs. Without the color signs, the tiles are
reflectionally symmetric, so the following argument works also
when we allow tile reflection. Each vertex color v appears in ex-
actly three tiles, so the three vertex tiles can match only with each
other, or some of them can appear as the extreme left or extreme
right tile. If any of the three tiles for v are extreme, then none of
the tiles can be placed in the middle of an edge-matching solution
(lacking the three tiles required to form an 180◦ angle), so in this
case, all three tiles for v appear at the left and right extremes of
the solution, effectively “wrapping around” the 1 × n board. For
every other vertex, the three corresponding tiles must appear to-
gether. Listing all of the vertices in the order in which their color
appears in the solution yields a Hamiltonian path of the original
graph. (If the tiles corresponding to one vertex wrap around, then
this process in fact yields a Hamiltonian cycle.)

The proof above suggests an alternate approach to proving
Theorem 3.3 about squares: unify the vI , vO, vx colors into a single
color, and reduce from undirected Hamiltonian path. However,
for unsigned colors, the change would make this reduction non-
parsimonious, because it enables the middle tile to rotate by 180◦

in the two arrangements on the bottom of Fig. 11. But equilateral
triangles lack this ambiguity, and we are able to obtain parsimony
by a more careful handling of the start and end.

First we need a slightly different form of undirected Hamil-
tonicity:
Lemma 4.2. Finding Hamiltonian paths, with or without a spec-

ified start vertex s and/or end vertex t, in maximum-degree-3 pla-

nar undirected graphs is ASP-complete, and counting Hamilto-

nian paths in those graphs is #P-complete. The same result holds

when the given vertices s, t have degree 1.

Proof. We present a parsimonious reduction from Hamiltonian
cycle in maximum-degree-3 planar undirected graphs (the same
graphs) having at least one vertex of degree 2, proved ASP-
complete by Seta [25]. Our reduction is similar to the first step
in the proof of Theorem 3.2.

Let G be a maximum-degree-3 undirected graph with a degree-
2 vertex v. Let {u, v} be one of v’s incident edges, which must be
in every Hamiltonian cycle. Construct G′ by adding two new ver-
tices s and t, and replacing the edge {u, v} with edges {s, u} and
{t, v}. Because s and t have degree 1, they are in every Hamilto-
nian path of G′. Because edge {u, v} is contained in every Hamil-
tonian cycle in G′, there is a direct bijection between Hamiltonian
cycles in G and Hamiltonian (s-t) paths in G′.
Theorem 4.3. 1 × n signed and unsigned equilateral-triangle

edge-matching puzzles with the left boundary edge color speci-

fied are ASP-complete and #P-complete.

Proof. Clearly this problem is in FNP and its counting prob-
lem is in #P. To show hardness, we present a parsimonious re-
duction from Hamiltonian s-t paths in maximum-degree-3 undi-
rected graphs where s and t have degree 1, from Lemma 4.2. Our
reduction is a modification of the NP-hardness reduction in The-
orem 4.1 that differs only for the new case of vertices with degree
< 3. For each degree-2 vertex v, we attach a half-edge {v} (with
no other endpoint), and then apply the degree-3 construction from
Fig. 13. We can assume that the only degree-1 vertices are s and
t because no other degree-1 vertices could possibly be reached
by an s-t path (so if there were such a vertex we could parsi-
moniously reduce by constructing any unsolvable edge-matching
instance). For the degree-1 vertices s and t, we construct two
corresponding tiles:

s∠ ∠
U

±e1 and ±e2∠ ∠
U

U,

where e1 and e2 represent the unique edges incident to s and t re-
spectively, with signs chosen for these edge colors based on our
arbitrary orientation of the original graph, in the same fashion as
for all other tiles (As before, for the unsigned problem, we just
drop the signs). Each occurrence of U represents a unique color
not occurring in any other tile. Finally, we specify the left bound-
ary color to be s, which is another unique color.

Because the tile corresponding to vertex s is the only one with
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Fig. 14 Reduction from antidirected Eulerian path to Eulerian path.

color s, it must be placed as the leftmost tile. Because the tile cor-
responding to t has two sides with unique colors, it must be placed
as the rightmost tile. As argued in Theorem 4.1, every triplet of
tiles corresponding to a degree-3 (or degree-2) vertex must oc-
cur consecutively, because the s and t tiles prevent “wrapping
around”. Therefore every edge-matching solution induces an or-
dering of the vertex tile triplets between the leftmost s tile and the
rightmost t tile. To guarantee a bijection between edge-matching
solutions and Hamiltonian s-t paths solutions, it only remains to
show that, given an ordering of the tile triplets, there is a unique
arrangement of the three tiles within each triplet.

Suppose the tile triplet for vertex v occurs between the triplets
for vertices u and w. The only edge colors that v’s triplet have
in common with u’s and w’s triplets are the colors representing
edges {u, v} and {v, w} in the original graph, so the two tiles in v’s
triplet containing the {u, v} and {v, w} colors must be on the left and
right respectively, with those edges exposed. The remaining tile
in the triplet has no choice but to be oriented between them with
its v-colored edges facing the two other tiles in the triplet, and its
third edge facing the 1 × n boundary. Thus the arrangement of
tiles within each triplet is uniquely defined by the ordering of tile
triplets along the box, completing the proof that our reduction is
parsimonious.
Corollary 4.4. 1 × n signed and unsigned equilateral-triangle

edge-matching puzzles are #P-complete and their 2-ASP problem

is NP-hard.

Proof. As in Corollary 3.4.

4.2 Leg-Contact Right-Isosceles-Triangle Edge Matching
In this section, we show that edge matching with right isosce-

les triangles that tile a 1 × n box by leg contact (as in Fig. 12 (c))
is closely related to finding an Eulerian path in a graph. More
precisely, we show relations to two variants, called antidirected
and forbidden-transition Eulerian paths, which we define and an-
alyze in Sections 4.2.1 and 4.2.2 respectively. We use this con-
nection to show that these puzzles can be solved in polynomial
time (Section 4.2.3), and then to show that counting solutions to
these puzzles is #P-complete (Section 4.2.4).
4.2.1 Antidirected Eulerian Path Characterization

Consider a directed graph G. Recall that a (directed) Eulerian
path is a directed path in G (respecting the edge directions in G)
that visits every edge in G exactly once. It is well-known that a
connected graph has such a path if and only if it has zero or two
vertices of odd degree [6], Corollary 4.1, and in this case the path

can be constructed in linear time [14].
Here we analyze the variant where the edge directions of G

must alternate. Precisely, an antidirected path [2], [4], [18] is a
sequence of edges where every pair of consecutive edges share an
endpoint (an undirected path) and furthermore those edges either
both point toward or both point away from that shared endpoint.
In other words, an antidirected path alternates between follow-
ing an edge of G in the “forwards” direction and following an
edge of G in the “backwards” direction, with an arbitrary starting
parity. An antidirected Eulerian path [4], [13], [31] of G is an
antidirected path of G that visits every edge (either forwards or
backwards) exactly once. Examples of past results on this topic
include that a directed graph without degree-2 vertices has an
odd number of Eulerian paths if and only if it is 4-regular and
has an antidirected Eulerian path [4], while not every connected
4-regular undirected graph with an odd cycle has an orientation
admitting an antidirected Eulerian path [31].

In the [antidirected] Eulerian path problem, we are given a
directed graph G, and want to know whether G has an [antidi-
rected] Eulerian path, and if it does, to find one. We relate these
two problems as follows:
Theorem 4.5. The antidirected Eulerian path problem can be

reduced in linear time to the Eulerian path problem.

Proof. Let G be a directed graph input for the antidirected Eu-
lerian path problem. Construct an undirected bipartite graph G′

(called the “split” of G by West [28], Definition 1.4.20) as fol-
lows; refer to Fig. 14. For each vertex v ∈ G, construct two ver-
tices v+ and v− in G′. For every directed edge e = (u, v) ∈ G, add
the undirected edge e′ = {u+, v−} to G′. Because every edge in G′

connects a plus vertex to a minus vertex, G′ is bipartite.
We claim that paths in G′ correspond to antidirected paths

in G. For any path p′ = (v±1 , v
∓
2 , v
±
3 , v
∓
4 , . . . ) in G′ (where signs

alternate by bipartiteness), consider mapping each edge of the
form {v+i , v−i+1} in p′ to the corresponding edge (vi, vi+1) of G, and
mapping each edge of the form {v−i , v+i+1} in p′ to the (backwards
traversal of) the corresponding edge (vi+1, vi) of G. Then we ob-
tain an antidirected path in G. Because the mapping between
edges of G and G′ is a bijection, so is this transformation. By the
same bijectivity, if p′ is Eulerian, then so is p. Therefore Eulerian
paths in G′ correspond to antidirected Eulerian paths in G.

A similar result was obtained independently in Ref. [1].
For our application to edge matching, we will need to solve a

slightly restricted version of the problem:
Corollary 4.6. The antidirected Eulerian path problem can be

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

solved in linear time. The same result holds if the path is further

restricted to start and/or end with a specified direction (forwards

or backwards).
Proof. The first sentence follows from the reduction of Theo-
rem 4.5 combined with linear-time algorithms for finding Eule-
rian paths [14].

Now suppose we are given the starting and ending directions
s, t ∈ {forwards, backwards} for an antidirected Eulerian path.
Applying the previous algorithm, we can detect whether G has
any antidirected Eulerian path, i.e., whether G′ from the proof of
Theorem 4.5 has any Eulerian path. If the answer is “no”, then
we know there is no path. Otherwise, by the characterization of
Eulerian paths [6], Corollary 4.1, either (1) every vertex of G′ has
even degree, or (2) exactly two vertices of G′ have odd degree.

In the first case, every Eulerian path p′ of G′ is also a cycle, so
when we translate to an antidirected Eulerian path/cycle p of G,
the starting orientation is the same as the ending orientation if
and only if G has an odd number e of edges. Thus we can an-
swer the restricted antidirected Eulerian path problem by check-
ing whether (s = t) ↔ (e odd). If s = t and e is odd, then we
find an antidirected Eulerian cycle and choose the starting parity
for a path to match s = t. If s � t and e is even, then we find any
antidirected Eulerian cycle and any starting point, and reverse the
path if s and t mismatch. Otherwise, no satisfying antidirected
Eulerian path exists.

In the second case, every Eulerian path p′ of G′ has its end-
points at the two odd-degree vertices o1, o2 of G′, so every an-
tidirected Eulerian path p in G has its extreme edge orientations
determined by whether o1 and o2 are plus or minus vertices (and
which of o1 and o2 is chosen to be the start versus end of the
path). If o1 and o2 are both plus vertices, then s = forwards and
t = backwards is the only possibility. If o1 and o2 are both mi-
nus vertices, then s = backwards and t = forwards is the only
possibility. If o1 and o2 are plus and minus vertices, then s = t

is the only constraint: if s = t = forwards, then we start at the
plus vertex; and if s = t = backwards, then we start at the minus
vertex. Otherwise, no satisfying antidirected Eulerian path exists.

Therefore we can solve the restricted form of the antidirected
Eulerian path problem.
4.2.2 Forbidden-Transition Eulerian Path Characterization

In the forbidden-transition Eulerian path problem [20], we
are given an undirected graph G = (V, E) and, for every ver-
tex v ∈ V , a partition of the edges Ev incident to v into
groups Pv,1, Pv,2, . . . , Pv,kv . The goal is to find an Eulerian path
v0, v1, . . . , v|E| of G such that, for every vertex visit vi where
0 < i < |E|, the incident edges (vi−1, vi) and (vi, vi+1) belong to
different groups among Pvi ,1, Pvi ,2, . . . , Pvi,kvi . In other words, we
forbid use of the subpath (vi−1, vi, vi+1) when (vi−1, vi) and (vi, vi+1)
belong to a common group Pvi, j *5. In a forbidden-transition Eu-
lerian cycle, we similarly restrict the subpath (v|E|−1, v|E| = v0, v1).

*5 It is tempting to think that antidirected Eulerian path in a directed graph
is a special case of forbidden-transition Eulerian path in an undirected
graph, using two groups at each vertex to represent the outgoing vs.
incoming edges. However, the antidirected constraint requires repeat-
ing the incoming/outgoing nature at each vertex, while the forbidden-
transition constraint prevents repeating the incoming/outgoing nature at
each vertex.

Kotzig [20] showed (in a slightly more general scenario) that
the natural necessary conditions for this problem are in fact suf-
ficient. We repeat Kotzig’s mathematical argument here in order
to verify that it also yields an efficient algorithm.
Theorem 4.7 (Ref. [20]). An undirected graph G and partition

system P has a forbidden-transition Eulerian path if and only

if G has an Eulerian path and every group Pv,i has |Pv,i| ≤
�degree(v)/2�. If furthermore G has an Eulerian cycle, then

(G, P) has a forbidden-transition Eulerian cycle. When such a

path/cycle exists, it can be found in linear time.

Proof. By the characterization of Eulerian paths [6], Corol-
lary 4.1, G must have exactly zero or two vertices of odd de-
gree. We can reduce to the case of zero odd-degree vertices as
follows. If G has two odd-degree vertices, then add an edge be-
tween them, which increases their degrees to even but does not
change �degree(vi)/2�. Now apply the zero-odd-degree-vertices
case of the present theorem (proved below) to obtain an Eulerian
cycle with the desired property. Removing the added edge re-
sults in an Eulerian path with the desired property. Therefore we
can assume every vertex has even degree, so we can ignore the
ceilings.

Next we prove that the conditions are necessary. Clearly G

having an Eulerian path is necessary for it to have a forbidden-
transition Eulerian path. If any |Pv,i| > degree(v)/2, then we claim
that (G, P) cannot have a forbidden-transition Eulerian path. Any
Eulerian path in G is a cycle, and thus its traversal order pairs
up the edges Ev incident to v into degree(v)/2 pairs. By the
Pigeonhole Principle, some pair has both its edges in Pv,i, which
is a forbidden transition.

Now suppose G has an Eulerian path and every group Pv,i sat-
isfies |Pv,i| ≤ degree(v)/2. For each vertex v, order its incident
edges Ev = {e1, e2, . . . , edegree(v)} so that all edges from group Pv,i
appear consecutively in the ordering, for all 1 ≤ i ≤ kv. Now pair
each edge e j with e j+degree(v)/2, for 1 ≤ j ≤ degree(v)/2. Because
each |Pv,i| ≤ degree(v)/2, this pairing has no forbidden pairs. The
perfect pairing at each vertex partitions the graph’s edges into
edge-disjoint cycles.

To merge these cycles into one Eulerian cycle, take any two
cycles C, C′ that share a vertex v (which exist because G has
an Eulerian path so its edges are connected). Suppose one cycle
pairs edges (e1, e2) at v, while the other cycle pairs edges (e′1, e

′
2)

at v. Suppose e1, e2, e′1, e′2 are in groups i1, i2, i′1, i′2. If we change
the local pairing to (e1, e′2) and (e′1, e2), then we merge the cycles,
and avoid forbidden pairs provided i1 � i′2 and i′1 � i2. If we
change the local pairing to (e1, e′1) and (e′2, e2) (and reverse one
of the cycles), then we again merge the cycles, this time avoid-
ing forbidden pairs provided i1 � i′1 and i′2 � i2. Because the
cycles have no forbidden pairs, i1 � i2 and i′1 � i′2. Thus we can
have at most two equalities among the four possible comparisons
between {i1, i2} and {i′1, i′2}. Therefore one of the two merging
strategies works.

We can implement this algorithm in linear time by construct-
ing the pairing locally as linked pointers, representing each cycle
as a doubly linked list on its edges, where each edge stores its
two neighboring edges in the cycle in no particular order. Num-
ber the cycles 1, 2, . . . , k, and iterate over the cycles to mark each
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vertex with each of the cycles it belongs to, along with one edge
pairing from that cycle. Label cycle 1 as “merged” and the rest
as “unmerged”. Perform a depth-first search in G from any ver-
tex that is in cycle 1. At each vertex v visited, iterate through
the cycles that v belongs to (via v’s marks); if any cycle i has not
yet been merged, then merge it into cycle 1 by adjusting O(1)
pointers among v’s marked edge pairings for cycles 1 and i, la-
beling cycle i as “merged”. By induction, every vertex visited by
the depth-first search will have already been merged into cycle 1.
The running time beyond the linear cost of depth-first search is
proportional to the number of marks, which (by the Handshaking
Lemma) is twice the number of edges. This algorithm is essen-
tially the efficient implementation of Hierholzer’s Algorithm for
Eulerian tours from Ref. [14].

Next we combine this result with the results of Section 4.2.1
about antidirected Eulerian paths. For a directed graph G and
a partition system P, define a forbidden-transition antidirected
Eulerian path in (G, P) to be an antidirected Eulerian path
e1, e2, . . . , e|E| of G such that no two edges ei and ei+1 belong to a
common group Pv, j where v is the shared vertex of ei and ei+1.
Corollary 4.8. The forbidden-transition antidirected Eulerian

path problem can be solved in linear time. The same result holds

if the path is further restricted to start and/or end with a specified

direction (forwards or backwards).
Proof. Apply the reduction of Theorem 4.5 to obtain an undi-
rected graph G′ with the property that Eulerian paths in G′ cor-
respond to antidirected Eulerian paths in G. For each vertex v±

of G′ and each 1 ≤ i ≤ kv, define P′v± ,i to be the set of edges
of G′ incident to v± that correspond to edges of G in Pv,i. Then
apply Theorem 4.7 to decide whether (G′, P′) has a forbidden-
transition Eulerian path, which is equivalent to whether (G, P)
has a forbidden-transition antidirected Eulerian path. To handle
the start/end direction constraints, we can apply the same post-
analysis as in Corollary 4.6.
4.2.3 Linear-Time Algorithm for Leg-Contact Right-

Isosceles-Triangle Edge Matching
Now we use the algorithms we have built for antidirected

and forbidden-transition Eulerian paths to solve leg-contact right-
isosceles-triangle edge matching. The unsigned case reduces
to antidirected Eulerian paths, while the signed case reduces to
forbidden-transition antidirected Eulerian paths.
Theorem 4.9. 1 × n signed and unsigned leg-contact right-

isosceles-triangle edge-matching puzzles can be solved in linear

time.

Proof. First note that tile hypotenuses can never touch in a 1×n

box by leg contact, so we can ignore those edges’ colors com-
pletely. We treat the signed and unsigned cases separately:

Unsigned case: Our algorithm reduces unsigned edge match-
ing to the antidirected Eulerian path problem in a directed graph,
as solved in Section 4.2.1. Given an instance of unsigned 1 × n

leg-contact isosceles-right-triangle edge matching, we construct
a directed graph G as follows. Create a vertex for each unique
color that occurs on the legs of the tiles. For every triangle u∠ ∠

H

v,

create a directed edge (u, v).
Any edge-matching solution consists of some ordering of the

triangles that they pack into the 1 × n box, with triangles alter-
nating between being oriented with its hypotenuse on the top or
bottom (see Fig. 12 (c)), and consecutive triangles matching on
their shared edges. We claim that such an edge-matching solution
corresponds, by replacing each tile with its corresponding edge
in G, to an antidirected Eulerian path in G. First, the path must
be antidirected: following an edge (u, v) in the forwards direction
corresponds to placing u∠ ∠

H

v with its hypotenuse on the bottom (so

colors u and v are on the left and right, respectively), while fol-
lowing edge (u, v) in the reverse direction (v, u) corresponds to
placing the tile rotated 180◦ with its hypotenuse on the top (so
colors v and u are on the left and right, respectively). Second, the
path must be Eulerian, because an edge-matching solution must
use every tile exactly once.

The last constraint to handle is the left and right boundary con-
ditions. If the left edge of the box has an acute angle at the bottom
[top], then the first tile must be placed with its hypotenuse on the
bottom [top], so the first edge of the antidirected Eulerian path
must be forwards [backwards]. Similarly, if the right edge of the
box has an acute angle at the bottom [top], then the last tile must
be placed with its hypotenuse on the bottom [top], so the first
edge of the antidirected Eulerian path must be forwards [back-
wards]. These constraints are exactly what Corollary 4.6 handles
in polynomial time. By deciding whether G has an appropriate
antidirected Eulerian path, we decide whether the edge-matching
puzzle has a solution, and an actual solution can be converted by
the tile–edge correspondence.

Signed case: Our algorithm reduces signed edge matching to
the forbidden-transition antidirected Eulerian path problem in a
directed graph, as solved in Section 4.2.2. Given an instance of
signed 1 × n leg-contact isosceles-right-triangle edge matching,
we construct the same directed graph G as the unsigned case. To
capture the color sign constraint on adjacent tiles, we define for-
bidden transitions for the antidirected Eulerian path in G. Specifi-
cally, for each vertex corresponding to an unsigned color c, define
four groups:
( 1 ) Pc,1 consists of all edges incoming to c corresponding to tiles

of the form ∠ ∠+c;
( 2 ) Pc,2 consists of all edges incoming to c corresponding to tiles

of the form ∠ ∠−c;
( 3 ) Pc,3 consists of all edges outgoing from c corresponding to

tiles of the form +c∠ ∠; and
( 4 ) Pc,4 consists of all edges outgoing from c corresponding to

tiles of the form −c∠ ∠.
We claim that edge-matching solutions correspond to

forbidden-transition antidirected Eulerian paths in (G, P). Any
antidirected path, when visiting a vertex c not as a path endpoint,
will use either two incoming edges (groups 1 and 2) or two
outgoing edges (groups 3 and 4). The forbidden transitions thus
exactly prevent matching together two instances of c of the same
sign. Therefore Corollary 4.8, with the same start/end conditions
as the unsigned case, solves the problem.
4.2.4 #P-completeness of Leg-Contact Right-Isosceles-

Triangle Edge Matching
Even though leg-contact right-isosceles-triangle edge-
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matching puzzles are not hard to solve, counting their solutions
remains hard.
Theorem 4.10. 1 × n signed and unsigned leg-contact right-

isosceles-triangle edge-matching puzzles are #P-complete.

Proof. We reduce from counting the number of Eulerian cycles
in an undirected graph, proved #P-complete in Ref. [8]. Given
such an undirected graph G, we first add two vertices s, t and
attach them to an arbitrary vertex v of G, forming an undirected
graph G′. The number of Eulerian cycles in G is exactly twice the
number of Eulerian paths in G′ (whose endpoints are necessarily
s and t — choosing which endpoint is the start of the path incurs
the factor of 2). Thus we can reduce from counting the number
of Eulerian paths in a graph G′ with two degree-1 vertices s, t.

Unsigned case: For the endpoint vertices s, t, construct two
corresponding triangles

U1∠ ∠
H

s and U2∠ ∠
H

t,

where s and t are colors representing those vertices, H is an arbi-
trary hypotenuse color, and U1 and U2 are globally unique colors.
Because U1 and U2 appear only in these tiles, the tiles must be
placed leftmost and rightmost in the puzzle (where the rightmost
tile is rotated 180◦).

For each edge e = {u, v} in G′, construct two corresponding
triangles

e∠ ∠
H

u and e∠ ∠
H

v,

where u, v are colors representing these vertices and e is a color
representing this edge. Because color e appears only in these two
tiles, these tiles must be placed together (with one of them ro-
tated 180◦), resulting in a parallelogram with left color u and right
color v or, rotating by 180◦, the same shape with left color v and
right color u. Thus these two tiles (or the resulting parallelogram)
simulates the edge {u, v} that can be used in either direction.

It follows that edge-matching solutions correspond bijectively
to Eulerian paths in G′.

Signed case: For the endpoint vertices s, t, construct two cor-
responding triangles:

U1∠ ∠
H

+s and U2∠ ∠
H

+t,

where s and t are colors representing those vertices, H is an arbi-
trary hypotenuse color, and U1 and U2 are globally unique colors,
forcing these tiles to be placed leftmost and rightmost in the puz-
zle.

For each vertex v � {s, t} in G′, which has even degree k, con-
struct k/2 copies of two corresponding triangles:

−vX∠ ∠
H

+v and +vX∠ ∠
H

+v,

where v, vX are two colors corresponding to vertex v. Because vX
appears only in these two triangles, they must be placed together
(with one of them rotated 180◦) to match up the vX-color edges,
resulting in a parallelogram with end colors +v and +v.

For each edge e = {u, v} in G′, construct two corresponding
triangles:

−e∠ ∠
H

−u and +e∠ ∠
H

−v,

where u, v are colors representing these vertices and e is a color
representing this edge. (This construction depends slightly on
how we distinguish the endpoints of e as u and v, but the choice
can be made arbitrarily for each edge without affecting the rest
of the construction.) Because color e appears only in these two
tiles, these tiles must be placed together (with one of them ro-
tated 180◦), resulting in a parallelogram with left color −u and
right color −v or, rotating by 180◦, the same shape with left color
−v and right color −u.

By the signs of the colors, any edge-matching solution must al-
ternate between edge parallelograms and vertex parallelograms,
starting and ending with edge parallelograms, surrounded by the
s and t triangles. It follows that edge-matching solutions corre-
spond to Eulerian paths in G′.

This reduction is not parsimonious. Each vertex parallelogram
(with the same external colors of +v) can be formed in two ways,
blowing up the number of solutions by a factor of 2. If G′ has m

edges, then there are m− 1 =
∑
v�{s,t} degree(v)/2 such vertex par-

allelograms, for a total blowup of 2m−1. Furthermore, if we do not
treat copies of the vertex tiles as identical, then the k/2 copies of
each degree-k vertex tile can be permuted arbitrarily, blowing up
the number of solutions by a factor of (k/2)!2. The total blowup
is thus c = 2m−1∏

v(degree(v)/2)!2, an easy-to-compute constant,
making the reduction c-monious.

5. Shapeless Edge Matching

In this section, we analyze the complexity of the following
problems:
Definition 5.1. Signed/unsigned shapeless edge matching is the
following problem: given a set of n unit square tiles where each
edge of each tile is given a color (and a sign in the signed case),
can the tiles be laid out in any configuration in the plane such that
the overall arrangement is connected via edges, and all edge-to-
edge contacts between tiles are compatible? In the rooted variant,
the problem specifies a single tile to be fixed at the origin in a
specified orientation.

The distinguishing feature of this problem, compared to the
rectangular edge-matching problems for which hardness is al-
ready known, is that the target shape is not specified, so there
is no constraint on the spatial footprint of a solution. We will
show that shapeless edge matching is NP-complete and rooted
shapeless edge matching is ASP-complete and #P-complete, by
reduction from 1 × n edge matching with specified left bound-
ary color, which was proved NP-complete by Ref. [7] and proved
ASP/#P-complete in Section 3 of this paper (for both the signed
and unsigned cases).

5.1 Shapeless Edge Matching NP-completeness
Theorem 5.1. Signed and unsigned shapeless edge-matching

puzzles are NP-complete.

Proof. A shapeless edge-matching solution can clearly be
checked in polynomial time, so shapeless edge matching is in
NP.

To prove NP-hardness, we reduce from 1 × n edge matching
with specified left boundary color. Suppose we are given an in-
stance consisting of a set T of n tiles (signed or unsigned) and
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Fig. 15 Frame tile set, each labeled by their multiplicity.

Fig. 16 Frame tiles laid out in their forced positions for n = 5. Grey squares show regions which cannot
be occupied by further tiles because they are adjacent to U-colored edges.

a single color L denoting the color of the left boundary edge of
the 1 × n target box. We will produce a shapeless edge-matching
instance consisting of tile set T ∪ T ′, where |T ′| = O(|T |) = O(n).

We design tile set T ′ to force these tiles into a rectangular frame
structure that simulates a 1 × n box. Figure 15 lists the tiles, and
Fig. 16 shows their intended placement. We use four new col-
ors {TW,RW, BW, LW} that appear positively and negatively (or
in the unsigned case, without signs); each instance of U repre-
sents a globally unique (and hence unmatchable) color.

Next we show that the frame tiles in T ′ must be positioned
to form the frame shown in Fig. 16. Our proof mentions signed
tiles, but does not depend on these signs, and thus works equally
well in the unsigned case by dropping signs from all tiles. Con-

sider the outer cap U
U
�
U
−TW. Because the overall arrangement of

tiles must be connected but edges colored U are unmatchable, the
outer cap’s edge colored TW must be adjacent to either a top-wall

tile +TW
U
�
U
−TW or the top-right corner +TW

U
�−RW

U, as they are the only

other tiles with edges colored TW. If the top-right corner were ad-
jacent to the outer cap, it would be impossible to connect any of
the n+1 top-wall tiles, as there would be no further way to expose
an edge colored TW (of either sign). By induction, all top-wall
tiles are forced to be placed in a row adjacent to the outer cap be-
fore the top-right corner is placed, being the only remaining tile
with an edge colored TW. By the same argument, the right-wall

tiles U
+RW
�−RW

U and bottom-right corner −BW
+RW
�
U

U are the only tiles

with edges colored RW. Therefore, following the top-right cor-
ner must be the three right-wall tiles and then the bottom-right
corner, and similarly along the bottom wall and left wall, termi-

nating with the left boundary tile U
U
�
+LW

L as the final frame tile.

Thus any solution must form the frame as desired.
Finally, we show that the shapeless edge-matching puzzle

T ∪ T ′ has a solution if and only if the corresponding 1 × n edge-
matching instance T has a solution. The forced arrangement of
frame tiles only exposes edges colored with an unmatchable U

color, except for the single exposed edge colored L. Thus the in-
put tiles of T must connect to the frame through that single edge.
Figure 16 shows that the only available region in which to arrange
the tiles of T is within a 1× n box with its leftmost boundary col-
ored L.

5.2 Shapeless Edge Matching ASP/#P-completeness
Corollary 5.2. Signed and unsigned rooted shapeless edge-

matching puzzles are ASP-complete and #P-complete.

Proof. For ASP/#P-completeness, we reduce from the rooted
variant of shapeless edge matching (which specifies the posi-
tion and orientation of one tile) to avoid the infinite number of
translations as well as global rotations. We follow a similar re-
duction as the proof of Theorem 5.1, but modified so that the
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frame has a unique construction, making the reduction parsimo-
nious. By Theorem 3.3, 1 × n signed/unsigned edge matching
with specified left boundary color is ASP/#P-completeness, so
this parsimonious reduction gives us ASP/#P-completeness for
signed/unsigned shapeless edge matching.

The only degree of freedom in Theorem 5.1’s frame construc-
tion is the ordering of the wall tiles along each wall. In order
to fix their order, we create distinct tiles for each position along
the wall, and give them each unique colors only shared with their
neighbors in that ordering. For example, we modify the upper
wall to consist of n + 1 unique upper-wall tiles and a suitably
modified outer cap and upper-right corner as follows:

U
U
�
U
−TW1 +TW1

U
�
U
−TW2 · · · +TWi

U
�
U
−TWi+1 · · ·

+TWn+1

U
�
U
−TWn+2 +TWn+2

U
�−RW1

U.

Applying the same modification to the other walls and corners
gives us a frame that has a unique construction, and thus the
number of solutions to the shapeless edge-matching instance cor-
responds exactly to the number of solutions to the original 1 × n

edge-matching puzzle with specified left boundary.

6. 2-player 1 × n Edge Matching

In this section, we prove PSPACE-hardness for 2-player vari-
ants of 1×n edge matching. In Section 6.1, we introduce and ana-
lyze a new variant of geography called partizan geography. Then
in Section 6.2, we reduce from geography and our new variant to
2-player 1 × n edge matching.

6.1 Partizan Geography
Geography (also called generalized geography) is a game

played on a directed or undirected graph with a designated start
vertex. In vertex geography [15], [21], players take turns mov-
ing from the current vertex to a neighboring vertex that has not
been visited, with the player who can no longer move losing
the game. In edge geography [15], [24], revisiting vertices is al-
lowed, but each edge can be used only once. In all four variants,
directed/undirected vertex/edge geography, the decision question
is whether the first player has a winning strategy. Undirected ver-
tex geography can be solved in polynomial time [15], while all
three other versions are PSPACE-complete [15], [21], [24].

We introduce partizan versions of geography, where the avail-
able moves depend on which player is moving next. In X Y-
partizan Zgeography, with X ∈ {directed, undirected} and Y,Z ∈
{vertex, edge}, players take turns in an X graph extending a shared
path *6, playing only Ys of their color while not repeating any Z

already visited. For example, in edge-partizan vertex geography,
players can play only edges of their color that lead to a vertex
not already visited. We give a complete characterization for X

Y-partizan Z geography for all combinations of X, Y , Z, as sum-
marized in Table 2.

*6 Fraenkel and Simonson [16] analyze “path-construction games” with
two paths, with partizan and impartial variants that specify which paths
each player is allowed to extend. Tron [22] is another PSPACE-complete
two-player two-path game. By contrast, partizan geography is about two
players building a single path (like geography).

Fig. 17 Gadget simulating vertex geography in edge geography.

First we need a result about (impartial) geography that has been
widely assumed, but to the best of our knowledge, not explicitly
proved in the literature:
Theorem 6.1. Directed edge geography remains PSPACE-hard

even when restricted to bipartite planar graphs with maximum

degree 3 and maximum in/outdegree 2.

Problem GP2 in Garey and Johnson [17] is called simply “Gen-
eralized Geography”, but its decision question describes directed
edge geography, and they cite Schaefer’s paper [24] which gives a
PSPACE-hardness proof. But Garey and Johnson also cite Licht-
enstein and Sipser [21] to add the bipartite, planar, and degree
restrictions on the graph, apparently overlooking the fact that the
latter paper is about vertex geography. This claim and citation
pair have been repeated in works such as Fraenkel et al.’s paper on
undirected geography [15], though Bodlaender [5] correctly dis-
tinguishes between vetex and edge geography.
Proof. Directed vertex geography is PSPACE-hard on bipar-
tite planar graphs with maximum degree 3 and maximum
in/outdegree 2 [21]. We reduce from vertex to edge geography
by replacing each vertex (with any number of incoming and out-
going edges) with the gadget shown in Fig. 17. This gadget is
bipartite, planar, and has the same maximum indegree and outde-
gree as the vertex it replaces.

If player 1 plays any of the incoming edges to this gadget, the
next two moves are forced; then it is player 2’s turn to play one of
the outgoing edges. Once the gadget has been traversed, playing
any of the remaining incoming edges loses the game (because the
central edge has already been played). Thus this gadget correctly
simulates a vertex in the vertex geography instance.
Theorem 6.2. Vertex-partizan geography is equivalent to geog-

raphy in bipartite graphs. Specifically:

• Directed vertex-partizan vertex geography and directed

vertex-partizan edge geography are PSPACE-complete even

when restricted to bipartite planar graphs with maximum de-

gree 3 and maximum in/outdegree 2.

• Undirected vertex-partizan vertex geography and undirected

vertex-partizan edge geography can be solved in polynomial

time.

Proof. Given a bipartite geography instance, coloring the ver-
tices according to the bipartition produces a vertex-partizan game
with the same winner. Conversely, no monochromatic edges in a
vertex-partizan instance can be played because the players alter-
nate moves, so those edges can be deleted without changing the
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Fig. 18 A gadget simulating a directed edge with undirected edges (Ex-
change colors to simulate a red edge).

winner. The resulting graph is bipartite, with each partition con-
taining only vertices of a single player’s color. Thus the problems
are equivalent.

Directed vertex geography in bipartite planar maximum-
degree-3 maximum-in/outdegree-2 graphs is proved PSPACE-
complete in Ref. [21] and Theorem 6.1 extends this to directed
edge geography in the same class of graphs. Undirected vertex
geography (in all graphs) and bipartite undirected edge geography
are both polynomial [15]. All of these results carry over directly
to vertex-partizan geography.
Theorem 6.3. Edge-partizan geography (of all kinds) is

PSPACE-complete even when restricted to bipartite planar

graphs with maximum degree 3 and maximum in/outdegree 2.

Proof. Given an (impartial) bipartite directed vertex/edge geog-
raphy instance, we can color the vertices red and blue, so (by
bipartiteness) every edge is from red to blue or from blue to red.
Color the first type of edge red and the second type of edge blue.
Because every path alternates vertex colors, every path also alter-
nates edge colors, so adding the edge-partizan constraint does not
prohibit any path. Thus bipartite directed geography reduces to
directed edge-partizan geography.

We can reduce directed edge-partizan geography to undirected
edge-partizan geography using the directed-edge-simulation gad-
get in Fig. 18. When the blue player plays the left edge, the red
and blue player’s next moves are forced; then it is the red player’s
turn at the right vertex. If blue tries to play the simulated edge
backwards (starting at the right vertex), then red can immediately
win using the leaf.

Thus all edge-partizan geography games are PSPACE-
complete even when restricted to bipartite planar graphs with
maximum degree 3 and maximum in/outdegree 2, again carrying
through the results in Ref. [21] and Theorem 6.1.

6.2 Reduction from Geography to 2-player 1 × n Edge
Matching

In this section, we analyze the complexity all four variants of
the following 2-player edge-matching game:
Definition 6.1. In the 2-player signed/unsigned edge-matching
game, two players play on a 1 × n board where the left bound-
ary edge has a specified (possibly signed) color. Also given are

n square tiles, where each tile Ti = ai

bi
�
di

ci consists of four (pos-

sibly signed) edge colors. In two variants, the players draw
from a shared pool (any player can choose any tile) or from
their own pools (each player can choose a tile only from their
own pool). The players take turns making the following type of
moves: choosing an unused tile from the available pool, choosing
one of the four rotations of the tile, and placing the rotated tile
in the leftmost unoccupied position of the board. A move is valid

only if the tile’s left edge is compatible with the edge to its left (on
the right of the previously played tile or the edge of the board).
If a player has no valid move, then that player loses and the other
player wins. The decision problem is to determine whether the
first player can force a win.

First we present a proof similar to the proof of Theorem 3.3,
although its results are subsumed by the following theorem.
Theorem 6.4. If players draw from a shared pool of tiles, which

can be signed or unsigned, the 2-player edge-matching game is

PSPACE-complete.

Proof. We reduce from directed vertex geography in graphs
with maximum degree 3, which was proved PSPACE-hard in
Ref. [21]. Our reduction is the same as the reduction used in the
proof of 1-player ASP-completeness in Theorem 3.3, whose tiles
are shown in Fig. 11. In the proof of Theorem 3.3, three tiles are
placed for each vertex, so if two players alternate placing tiles,
then they alternate placing the first tile for each vertex, which
corresponds to taking that vertex in the geography game. In the
same proof, the only choices are which tile to place second for
each vertex of outdegree 2 (the first tile is fixed, and the unchosen
tile must be placed third), a choice which the player who did not
place the first tile for that vertex can make and which determines
the next visited vertex in the tile-placing game. Correspondingly,
in the geography game, when one player chooses a vertex, the
player who did not choose that vertex chooses the next visited
vertex. Finally, the winner of the tile-placing game is the last
player to place a tile. Each vertex has three tiles which are al-
ways placed in sequence, so the last player to place a tile is the
last player to place the first tile for a vertex, which corresponds
to the last player to pick a vertex in the geography game. So the
winner of the geography game is the winner of the tile-placing
game, as desired.

The same proof almost works in the case where the players
draw from their own pools of tiles if we reduce from directed
vertex-partizan vertex geography, because then we know which
player places the first tile for each vertex. However, the other
player needs to be able to choose the second tile for each vertex,
and then the original player needs to be able to choose the re-
maining third tile, meaning we do not know which pools should
have those two tiles. There is in fact an even simpler proof that
avoids this problem:
Theorem 6.5. The 2-player signed and unsigned edge-matching

games are PSPACE-complete, whether players draw from their

own pools of tiles or from a shared pool.

Proof. We reduce from a version of edge geography. For signed
edge matching, we reduce from directed edge geography. For
unsigned edge matching, we reduce from undirected edge geog-
raphy. For players drawing from their own tile pools, we reduce
from edge-partizan edge geography. For players drawing from a
shared pool, we reduce from impartial (nonpartizan) edge geog-
raphy. All four of these versions of edge geography are PSPACE-
complete by Refs. [15], [24] and Theorem 6.3.

In all cases, the reduction creates a single tile for each edge
in the graph. For a directed edge (u, v), we make a signed tile

−u
U
�
U
+v. For an undirected edge {u, v}, we make an unsigned tile
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u
U
�
U
v. Each U denotes a globally unique color, so these tiles can

be rotated only by 180◦. In the own-pool case, we put the tile
in the pool of the player that can play the corresponding edge in
edge-partizan geography. We set the left boundary edge color to
+s in the signed case and s in the unsigned case, where s is the
given start vertex. We define the board size n to be the number of
tiles (the number of edges in the input graph) so that there is no
additional limit on the number of moves.

We claim that the resulting 2-player edge matching game faith-
fully simulates the edge geography game. By the left edge color,
the first tile must have an edge colored s, and in the signed case,
the edge must be colored −s; equivalently, the first edge played in
geography must be incident to s, and in the directed case, it must
be an edge outgoing from s. In a general move, the rightmost
tile’s right edge (exposed) color v represents the vertex v most re-
cently visited by the path, and the current player must choose a
tile representing an edge incident to or outgoing from that vertex,
revealing the other endpoint of that edge. Because each tile can
be played only once, each edge can be played only once (edge ge-
ography). The last player to play a tile/edge wins the game.
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[18] Grünbaum, B.: Antidirected Hamiltonian paths in tournaments, Jour-
nal of Combinatorial Theory, Series B, Vol.11, No.3, pp.249–257 (on-
line), DOI: 10.1016/0095-8956(71)90035-9 (1971).

[19] III, H.B.H., Marathe, M.V., Radhakrishnan, V. and Stearns,
R.E.: The Complexity of Planar Counting Problems, SIAM Jour-
nal on Computing, Vol.27, No.4, pp.1142–1167 (online), DOI:
10.1137/S0097539793304601 (1998).

[20] Kotzig, A.: Moves Without Forbidden Transitions in a Graph, Matem-
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