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Abstract: We study the game-theoretical structure of a scenario where a decision maker has to determine locations of
stations in a transportation system. We introduce a new model on facility games, called the “shuttle facility game.” A
facility F is defined to be an interval with two stations over a transportation line. Then, the decision maker wishes to
design a mechanism that given as input a set of intervals reported by each player, where Ii represents the commuting
route of player i, determines a location for F. The profit of a facility location is defined based on the “convenience”
to each player, such as the distance to the facility. A player i may try to manipulate the output of the mechanism by
strategically misreporting Ii to get a higher profit. We formulate two shuttle facility games: the fixed-length and the
flexible-length shuttle facility game; and prove that each admits a group strategy-proof mechanism. We prove that
the social profit is also maximized by a location of F determined by our group strategy-proof mechanism, that is, a
decision maker can find a location of F so that the social profit is maximized and group strategy-proofness is attained
at the same time.
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1. Introduction

We investigate an extended model on facility games that ap-
plies to a transportation system. First we overview some existing
facility games. Next we introduce new models in order to inves-
tigate the transportation system.

1.1 Facility Games
In the facility game, a decision maker wishes to design a mech-

anism that determines a location of a facility based on the votes
of players. That is, for a set of candidate locations of a facility
and a set of players with various profits, the decision maker de-
signs a mechanism as a collective decision making system. The
most preferable candidate for a player is a candidate that achieves
the largest profit for her. Players are strategic, in the sense that
a player can vote for some candidates other than her privately
known most preferable candidate, in order to get a more prefer-
able result for her. Voting which aims to manipulate the decision
of a mechanism is called strategic voting.

To prevent strategic voting, the decision maker is interested
in a mechanism that satisfies the following properties: strategy-
proofness and group strategy-proofness. A mechanism is called
a strategy-proof mechanism if no player can benefit by strategic
voting. Moreover, a mechanism is called a group strategy-proof

mechanism if there is no coalition of players such that each mem-
ber of the coalition can simultaneously benefit by strategic vot-
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ing. It immediately follows that if a mechanism is group strategy-
proof, then it is also strategy-proof.

The decision maker wishes to design a mechanism which out-
puts a candidate such that the social benefit, i.e., the sum of in-
dividual profits is as large as possible. However, a strategy-proof
mechanism does not necessarily output a candidate which max-
imizes the social benefit. The benefit ratio of a mechanism is
defined to be the ratio between the largest social benefit and the
social benefit obtainable by the mechanism.

In the desirable facility game, the most preferable location of
the facility for any player is the location of the player, and her
profit decreases with the distance between herself and the facil-
ity. The obnoxious facility game is a facility game where a mech-
anism determines a location of a facility that is undesirable for
the players, for example, a waste treatment plant. For any player
the least preferable location of the facility is the location of the
player, and her profit increases with the distance between herself
and the facility.

It is common in the literature that each player has a “benefit”
or “utility” as her profit, their difference being that utility func-
tions depend only on the decided facility location, whereas ben-
efit functions also depend on the players’ reports. Moulin [14]
studied the desirable facility game in the line space under the con-
dition that all players’ utilities are single-peaked functions, gave
necessary and sufficient conditions of strategy-proofness under
such conditions, and designed a group strategy-proof mechanism
with benefit ratio one. Subsequent studies gave characterizations
of the desirable facility game in the multi-dimensional Euclidean
space [3] and tree metrics [18]. Hakimi [7] showed that when the
candidate space is defined to be the set of all points on a simple
undirected graph G = (V, E), including points on edges, the op-
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timal solution of this problem is a point on a vertex of the graph
G, and an optimal solution can be found in O(|V |) time. Several
studies [1], [10], [11], [17] have been made on mechanisms for
the desirable facility game, and Alon et al. [1] gave an analysis
on the benefit ratios of group strategy-proof mechanisms on arbi-
trary undirected graphs.

Cheng et al. [5] first introduced and studied the obnoxious fa-
cility game, and designed a group strategy-proof mechanism for
the obnoxious facility game in a line segment such that can-
didates are the two endpoints, with benefit ratio 3. Ibara and
Nagamochi [8] showed that there exists no group strategy-proof
mechanism in the line metric that has three or more distinct can-
didates. Ibara and Nagamochi [8] also characterized 2-candidate
strategy-proof mechanisms in the line metric. Oomine and Nag-
amochi [15] showed that for the obnoxious facility game in the
tree metric, there exists group strategy-proof mechanism if and
only if there exists a special point such that each candidate is at
the same distance from this point. It is known that finding an op-
timal location that maximizes the sum of all players’ benefits is
NP-hard in the space defined by all points on a simple graph [19].

There are several studies on the two-facility game where the
locations for two desirable facilities are to be determined, and the
profit decreases with respect to the distance between a player’s
location and the nearest facility location. Procaccia and Ten-
nenholtz [17] designed a group strategy-proof mechanism for the
two-facility game in the line space. Lu et al. [10] studied the two-
facility game in the line, the circle, and general spaces.

Dekel et al. [6] showed that there exists a group strategy-proof
mechanism with benefit ratio 3 for the desirable facility game
where player i reports a given number wi of locations. Mei et
al. [13] investigated the obnoxious facility game with multiple re-
ports per player in the line space.

Several studies propose possible relaxations of strategy-
proofness [2], [4], [9], [16]. Oomine et al. [16] studied the follow-
ing relaxation of strategy-proofness by introducing a parameter
λ ≥ 1. A mechanism is called λ-strategy-proof mechanism if no
player can gain more than λ times her primary benefit by strategi-
cally misreporting her location. Moreover, a mechanism is called
a λ-group strategy-proof mechanism if there is no coalition of
players such that each member of the coalition can simultane-
ously gain more than λ times her primary benefit by strategically
misreporting their locations. A 1-group strategy-proof mecha-
nism is equivalent to the previously defined group strategy-proof
mechanism. Oomine et al. [16] characterized λ-strategy-proof
mechanisms in the line metric with two candidates, and they in-
vestigated the trade-off between λ-group strategy-proofness and
the benefit ratio. They designed a λ-group strategy-proof mecha-
nism whose benefit ratio is 1 + 2/λ, where the benefit ratio ap-
proaches 1 as the parameter λ tends to infinity. Further, they
showed lower bounds on the benefit ratio obtainable by any λ-
strategy-proof mechanisms. These lower bounds are almost tight,
in the sense that for odd number of players, as the number of play-
ers gets larger, the value approaches the benefit ratio of 1 + 2/λ
obtainable by the proposed λ-group strategy-proof mechanism,
and exactly match when the number of players is even.

Fig. 1 The visit-distance and the intersection distance in the line space. In-
terval [xi, yi] is the report of player i. (a) The points p, q are near-
est stations from xi, yi, respectively. The dashed arrows illustrate
the visit-distance. (b) Interval [p, q] is the interval of stations. The
dashed arrow illustrates the intersection distance.

1.2 The Shuttle Facility Game
We investigate a scenario where an extended modeling on fa-

cility games is necessary. Suppose that a policy planner has to
determine the stations in a transportation system, for example
the distribution of bus stops or railway stations that serve a com-
munity of individuals living in a given area. A certain number
of individuals use the transportation system daily for commuting
between their home and their destinations such as work place or
school. Each individual uses the stations that are nearest to her
home and destination. If the locations of the stations are not ef-
ficient for her, then she walks from her home to her destination
directly. Each individual wishes that there are stations as near as
possible to her home and her destination. We define
• the visit-distance for an individual to be the sum of distances

from her home and her destination to the nearest respective
stations,

• the walking distance for an individual to be the minimum of
the visit-distance and the direct distance between her home
and her destination, and,

• the intersection distance for an individual to be the mini-
mum distance between a point in the interval of stations and
a point in her interval.

To locate some number of stations, the planner asks all individ-
uals to report two locations, namely, the end points of their com-
muting route. The planner determines the locations of stations
based on the reports from individuals, considering the walking
distances over all individuals.

We model the above scenario as a new model of a facility game.
Let Ω be a set of locations. Let N be a set of players which rep-
resents all the individuals residing in the area Ω, and each player
i ∈ N has two major points of interest xi, yi ∈ Ω, which repre-
sent her home location and her destination. Each player i wishes
to minimize her walking distance. The decision maker wishes
to design a mechanism that given as input a set of pairs of loca-
tions {xi, yi} reported by each player i ∈ N, determines the loca-
tions of the stations. A group S ⊆ N of players may collude and
collectively report locations different from their privately known
points of interest in order to decrease the walking distance for
each player in the group S . The main objective is to propose
a mechanism that will counteract such strategic behavior (group
strategy-proofness), while respecting the collective votes of play-
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ers (with a low benefit ratio).
We introduce two “shuttle facility games.” First, we introduce

the facility game whereΩ is the one-dimensional space, the num-
ber of stations to be selected is two, the distance between the two
stations is flexible, and the profit of player i is measured by certain
functions including the walking distance and the intersection dis-
tance. A mechanism determines two locations of stations, based
on pairs of locations {xi, yi} reported by each player i ∈ N. We
call the game the flexible-length shuttle facility game. This game
is described as follows.
Designing a Mechanism for the Flexible-length Shuttle Facil-
ity game
Input: A set N = {1, 2, . . . , n} of players,

a set of candidate intervals with flexible length for the facil-
ity location,
a set of intervals that are candidates for reports of players,
and
a set of profit functions pi for each player i ∈ N.

Output: A mechanism that outputs a facility location based on
the reports of players.

Second, we introduce the facility game where Ω is the one-
dimensional space, the number of stations to be selected is two,
the distance between the two stations is a given real k ≥ 0, and
the profit of a player i is measured by certain functions including
the walking distance and the intersection distance. A mechanism
determines two locations of stations, based on pairs of locations
{xi, yi} reported by each player i ∈ N. We call the game the fixed-

length shuttle facility game and the special case with k = 0, the
pit-stop facility game. These games are described as follows.
Designing a Mechanism for the Fixed-length Shuttle Facility
Game
Input: A set N = {1, 2, . . . , n} of players,

a set of candidate intervals with fixed length k ≥ 0 for the
facility location,
a set of intervals that are candidates for reports of players,
and
a set of profit functions pi for each player i ∈ N.

Output: A mechanism that outputs a facility location based on
the reports of players.

Designing a Mechanism for the Pit-stop Facility Game
Input: A set N = {1, 2, . . . , n} of players,

a set of candidate points for the facility location,
a set of intervals that are candidates for reports of players,
and
a set of profit functions pi for each player i ∈ N.

Output: A mechanism that outputs a facility location based on
the reports of players.

We investigate two types of profit functions for players that are
common in the literature of facility games, namely, benefit func-
tions and utility functions, and define strategy-proofness in terms
of both benefit functions and utility functions in Section 2.2. We
define interval-peaked benefit functions and interval-peaked util-
ity functions as a generalization of the walking distance and in-
tersection distance.

The fixed-length shuttle facility game with profits based on
intersection-distance also applies to different scenarios, for in-

Fig. 2 A scheduling scenario. The interval [p, q] is the opening time for a
shop, and interval [xi, yi] is the report of customer i of her preferred
time to visit the shop. Customers 1 and 3 are satisfied since their
reports intersect with the opening interval [p, q], but customer 2 is
dissatisfied since her reported interval does not intersect the opening
interval [p, q].

stance, scheduling. For example, a planner asks to determine the
opening time for her shop based on time intervals reported by
customers, and each customer prefers that the opening time inter-
sects the time interval reported by her, as illustrated in Fig. 2.

1.3 Our Results
In this research, we prove that
• there exists a group strategy-proof mechanism for the pit-

stop facility game with interval-peaked profit functions in
the line space, and we design such a mechanism,

• this mechanism is optimal, in the sense that it has benefit ra-
tio one for the pit-stop facility game in the line space with
benefit functions based on visit-distances,

• the mechanism can be adopted to obtain a group strategy-
proof mechanism for the fixed-length shuttle facility game
with interval-peaked profit functions, and,

• there exists a group strategy-proof mechanism for the
flexible-length shuttle facility game in the line space with
profit functions based on walking distances.

In Section 2, we define the notions of strategy-proofness and
group strategy-proofness both with a benefit measure and a utility
measure. In Section 3, we consider the pit-stop facility game, the
fixed-length shuttle facility game, and the flexible-length shuttle
facility game with a benefit measure. In Section 4, we consider
the pit-stop facility game, the fixed-length shuttle facility game,
and the flexible-length shuttle facility game with a utility mea-
sure. In Section 5, we summarize our results and propose some
directions for future work.

2. Preliminaries

In this section, we define some notation pertaining to models
of facility games.

2.1 Facility Games
Let R denote the set of real numbers. For two real numbers

x, y ∈ R, let [x, y] denote the closed interval {z ∈ R | x ≤ z ≤ y}.
Let R denote the family of closed intervals [x, y] such that x, y ∈
R. For convenience, for functions whose arguments are from the
family of closed intervals R, such as g : R×R→ R, we explicitly
write the arguments, for example g(x, y, t) denotes g([x, y], t).

For a set A, let |A| denote the number of elements of A, and
for a positive integer m, let A〈m〉 denote the family of all mul-
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Fig. 3 The pit-stop facility game in the line space. Point t is the location of
the facility. Interval [xi, yi] is the report of player i.

tisets {a1, a2, . . . , am} such that ai ∈ A, i = 1, 2, . . . ,m. Let
N = {1, 2, . . . , n} be a set of players. For a subset S ⊆ N, let S de-
note N \ S . Similarly, for a player i ∈ N, let i denote N \ {i}. For a
fixed non-negative real number k, define Kk � {[x, x + k] | x ∈ R}
to be the set of all closed intervals of length k.

We introduce mechanisms for facility games with one facility.
Let Ωfacility be a set of candidates of facility locations. Let Ωplayer

be a set of candidates for reports of players. To decide a location
of the desirable facility in the set Ωfacility, each player reports one
element of Ωplayer. Let χi ∈ Ωplayer be the report of player i. We
call the multiset χ = {χ1, χ2, . . . , χn} a profile. For a profile χ and
a subset S ⊆ N, let χS denote the multiset {χi | i ∈ S }. A mecha-

nism is defined to be a function f : Ω〈n〉player → Ωfacility that outputs
a location of the facility based on a given profile.

Next, we formalize the concept of a facility game. We con-
sider two types of profit functions for facility locations in order
to evaluate mechanisms. A higher value of an evaluation function
implies that the output of the mechanism is more preferable.

First, we introduce the concept of benefit as an evaluation func-
tion. The benefit βi : Ωplayer × Ωfacility → R of player i is defined
as an evaluation function over the set of facility locations and re-
ports of players, and its value increases with the preference of the
facility’s location for player i. A player can strategically report
a candidate that is not most preferable for her in order to get a
more preferable output from a mechanism. Our aim is to design a
mechanism that outputs a more preferable location if each player
reports her most preferable candidate. We formulate the follow-
ing problem of designing a mechanism for the facility game with
a benefit measure, which we call FG-BM.
FG-BM(N,Ωfacility,Ωplayer,B)
Input: A set N = {1, 2, . . . , n} of players,

a set Ωfacility of candidates for the facility location,
a set Ωplayer of candidates for reports of players, and
a set B =

{
βi : Ωplayer ×Ωfacility → R | i ∈ N

}
of benefit func-

tions for each player i ∈ N.
Output: A mechanism f : Ω〈n〉player → Ωfacility.

When the facility location is a point in the line and reports
of players are intervals in the line, we call the special case FG-
BM(N,R,R,B) of the FG-BM the pit-stop facility game with ben-

efit measure, PFG-BM. Figure 3 illustrates the pit-stop facility
game in the line space. When the facility location is an interval
with a fixed length k ≥ 0 in the line and reports of players are
intervals in the line, we call the special case FG-BM(N,Kk,R,B)
of the FG-BM the fixed-length shuttle facility game with benefit

measure, FL-SFG-BM. Figure 4 (a) illustrates the fixed-length

Fig. 4 Shuttle facility games. An interval [xi, yi] is the report of player i. (a)
The fixed-length shuttle facility game; Interval [t, t+k] is the location
of the facility. (b) The flexible-length shuttle facility game; Interval
[p, q] is the location of the facility.

shuttle facility game in the line space. When the facility lo-
cation is an interval with flexible length in the line and reports
of players are intervals in the line, we call the special case FG-
BM(N,R,R,B) of the FG-BM the flexible-length shuttle facility

game with benefit measure, SFG-BM. Figure 4 (b) illustrates the
flexible-length shuttle facility game in the line space.

Next, we introduce the concept of utility as an evaluation func-
tion. The utility ui : Ωfacility → R of player i is defined to be an
evaluation function over the set of facility locations, and its value
increases with the preference of the facility’s location for player
i. We formulate the following problem of designing a mecha-
nism for the facility game with a utility measure, which we call
FG-UM.
FG-UM(N,Ωfacility,Ωplayer,U)
Input: A set N = {1, 2, . . . , n} of players,

a set Ωfacility of candidates for the facility location,
a set Ωplayer of candidates for the reports of players, and
a set U =

{
ui : Ω facility → R | i ∈ N

}
of utility functions for

each player i ∈ N.
Output: A mechanism f : Ω〈n〉player → Ωfacility.

When the facility location is a point in the line and reports of
players are intervals in the line, we call the special case FG-
UM(N,R,R,U) of the FG-UM the pit-stop facility game with

utility measure, PFG-UM. When the facility location is an inter-
val with fixed length k ≥ 0 in the line and reports of players are
intervals in the line, we call the special case FG-UM(N,Kk,R,U)
of the FG-UM the fixed-length shuttle facility game with utility

measure, FL-SFG-UM. When the facility location is an interval
with flexible length in the line and reports of players are inter-
vals in the line, we call the special case FG-UM(N,R,R,U) of
the FG-UM the flexible-length shuttle facility game with utility

measure, SFG-UM.
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2.2 Strategy-proofness and Group Strategy-proofness
Strategy-proof and group strategy-proof mechanisms do not

provide any incentive for players to report any candidates other
than their truly most preferable ones. In this section, we for-
mally define the notions of strategy-proof and group strategy-
proof mechanisms.

Given a set N of players, a set Ωfacility of candidates for
facility locations, a set Ωplayer of candidates for reports of
players and a set B of benefit functions βi, for the FG-
BM(N,Ωfacility,Ωplayer,B), a mechanism f : Ω〈n〉player → Ωfacility

is said to be group strategy-proof (GSP for short) if for any non-
empty subset S ⊆ N of players and two profiles χ, χ′ ∈ Ω〈n〉player

such that χS = χ
′
S

, there exists a player i ∈ S satisfying

βi(χi, f (χ)) ≥ βi(χi, f (χ′)). (1)

In essence, assuming a profile χ to be a truthful one and profile χ′

to be strategically reported one where a set S of players collude
and report strategically, Eq. (1) states that there exists at least one
player in the set S such that the benefit obtained using the truth-
ful report and the output f (χ) of the mechanism using the truthful
report, is at least as high as the benefit hypothetically obtained by
using the truthful report of the player and the output f (χ′) of the
mechanism resulting from the strategic report.

With weaker constraints, a mechanism f : Ω〈n〉player → Ωfacility

is said to be strategy-proof (SP for short) if Eq. (1) holds for all
singleton sets S ⊆ N i.e., with |S | = 1.

For a profile χ and a point t ∈ Ωfacility, the social benefit is
defined to be the total benefit

∑n
i=1 βi(χi, t) of all players.

Given a mechanism f : Ω〈n〉player → Ωfacility, the benefit ratio of
the mechanism f is defined to be

sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup
{∑n

i=1 βi(χi, t) | t ∈ Ωfacility

}
∑n

i=1 βi(χi, f (χ))
| χ ∈ Ω〈n〉player

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Strategy-proofness and group strategy-proofness are similarly
defined for the facility game with a utility measure, except that
utility measures by definition do not depend on the players’ pro-
file, but only on the mechanism’s outcome, and hence we omit
stating them explicitly here.

2.3 Function Peakedness
For a function g : Ωfacility → R, an inclusion-wise maximal set

Ω(g) ∈ Ωfacility is called the peak of g if for any y ∈ Ω(g), z ∈
Ωfacility \Ω(g) it holds that g(y) > g(z).

We follow the definition of Moulin [14] for single-peakedness.
A function g : R → R is called single-peaked if there ex-
ists a real number a ∈ R that for any x1, x2, x3, x4 ∈ R with
x1 < x2 < a < x3 < x4, satisfies

g(x1) ≤ g(x2) < g(a) > g(x3) ≥ g(x4).

Further, a function g : R → R is called interval-peaked if there
exist two numbers a, b ∈ R, a ≤ b, that for any x1, x2, x3, x4, x5 ∈
R with x1 < x2 < a ≤ x3 ≤ b < x4 < x5, satisfy

g(x1) ≤ g(x2) < g(a) = g(x3) = g(b) > g(x4) ≥ g(x5).

Fig. 5 The left set N�(χ, t) and the right set Nr(χ, t) of a point t ∈ R, enclosed
by dashed lines.

2.4 The Lowest Balanced Mechanism and the Respective
Median Mechanism

Before introducing our mechanism, we define some notation.
For a profile χ = {[x1, y1], [x2, y2], . . . , [xn, yn]}, we define the left

set N� ⊆ N and the right set Nr ⊆ N of a point t ∈ R to be

N�(χ, t) � {i ∈ N | t > yi} and Nr(χ, t) � {i ∈ N | t < xi} ,

as illustrated in Fig. 5.
We call the infimum p∗ ∈ R of the set {p ∈ R | |Nr(χ, p)| ≤

|N�(χ, p)|} the lowest balanced point of χ.
A mechanism f (χ) is called the lowest balanced mechanism if

for a given profile χ the mechanism outputs the lowest balanced
point of χ.

For a profile χ and a mechanism f , let [ fx(χ), fy(χ)] denote the
output of mechanism f . First, we define a median function. For
a finite set H of real numbers, med(H) � z ∈ H such that

|{w ∈ H | w ≤ z}| ≥ |H| /2 and |{w ∈ H | w ≥ z}| > |H| /2.
(2)

A mechanism f : R〈n〉 → R is called the respective median

mechanism if for a profile χ = {[x1, y1], . . . , [xn, yn]}, it holds that

f (χ) = [med({xi | i = 1, . . . , n}),med({yi | i = 1, . . . , n})].

3. Mechanisms for the Shuttle Facility Game
with a Benefit Measure

In this section, we consider three facility games, the flexible-
length shuttle facility game with a benefit measure, i.e., SFG-BM,
the fixed-length shuttle facility game with a benefit measure, i.e.,
FL-SFG-BM, and as its special case, the pit-stop facility game
with a benefit measure, i.e., PFG-BM. We start with the PFG-
BM first, before considering the more general FL-SFG-BM.

3.1 The Pit-stop Facility Game (PFG-BM)
First, we design a GSP mechanism for the PFG-BM with

interval-peaked benefit functions.
We define the concept of interval-peakedness. A function

g : R × R→ R is interval-peaked if and only if for any [x, y] ∈ R
and t1, t2, t3, t4, t5 ∈ R such that t1 < t2 < x ≤ t3 ≤ y < t4 < t5, it
holds that

g(x, y, t1) ≤ g(x, y, t2) < g(x, y, x) = g(x, y, t3)

= g(x, y, y) > g(x, y, t4) ≥ g(x, y, t5).

Theorem 1 The lowest balanced mechanism is GSP for the
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PFG-BM with interval-peaked benefit functions.
Proof. To derive a contradiction, assume that the mechanism f is
not GSP.

Then, there exist a non-empty subset S ⊆ N and two profiles
χ = {χ1 = [x1, y1], . . . , χn = [xn, yn]}, χ′ ∈ R〈n〉 such that

χS = χ
′
S
, (3)

βi(χi, f (χ)) < βi(χi, f (χ′)), ∀i ∈ S . (4)

For any i ∈ S , since the benefit function βi is interval-peaked,
from Eq. (4) it follows that exactly one of Eqs. (5) and (6) is sat-
isfied

f (χ) < f (χ′) and f (χ) < xi, (5)

f (χ) > f (χ′) and yi < f (χ). (6)

Case 1. Assume that Eq. (5) holds. Let t ∈ R be a real number
such that f (χ) < t < f (χ′) and t < xi, ∀i ∈ S . From the definition
of Nr, we get that

S ⊆ Nr(χ, t).

From Eq. (3), only players in S (⊆ Nr(χ, t)) change their reports
between χ and χ′. The cardinality of the right set Nr(χ, t) does
not increase if players in S change their reports from χ to χ′, and
therefore Nr(χ, t) ⊇ Nr(χ′, t). Hence, it holds that

|Nr(χ, t)| ≥
∣∣∣Nr(χ

′, t)
∣∣∣ . (7)

Similarly, the cardinality of the left set N�(χ, t) does not decrease
if players in S change their reports from χ to χ′. Therefore,
N�(χ, t) ⊆ N�(χ′, t). Hence, it holds that

∣∣∣N�(χ′, t)∣∣∣ ≥ |N�(χ, t)| . (8)

Since f (χ′) is the lowest balanced point of χ′ and t < f (χ′), we
get that

∣∣∣Nr(χ
′, t)
∣∣∣ > ∣∣∣N�(χ′, t)∣∣∣ . (9)

From Eqs. (7)–(9), it follows that

|Nr(χ, t)| > |N�(χ, t)| .

Since the size |Nr(χ, z)| of the set Nr(χ, z) (resp., |N�(χ, z)| of
N�(χ, z)) is monotonically nonincreasing (resp., nondecreasing)
with respect to z, from f (χ) < t, it follows that

|Nr(χ, f (χ))| ≥ |Nr(χ, t)| > |N�(χ, t)| ≥ |N�(χ, f (χ))| .

However, this contradicts the fact that f (χ) is the lowest balanced
point of χ.
Case 2. Assume that Eq. (6) holds true. The proof is similar
to that of Case 1. First, let t ∈ R be a real number such that
f (χ′) < t < f (χ) and yi < t, ∀i ∈ S . From the definition of
N�, it holds that S ⊆ N�(χ, t). We have |Nr(χ′, t)| ≥ |Nr(χ, t)| and
|N�(χ, t)| ≥ |N�(χ′, t)|. Since f (χ) is the lowest balanced point of χ
and t < f (χ), we get that |Nr(χ, t)| > |N�(χ, t)|. Therefore, it holds
that |Nr(χ′, t)| > |N�(χ′, t)|. From the monotonicity of |Nr(χ′, z)|
and f (χ′) < t, we have |Nr(χ′, f (χ′))| ≥ |Nr(χ′, t)| > |N�(χ′, t)| ≥
|N�(χ′, f (χ′))|. This contradicts the fact that f (χ′) is the lowest

balanced point of χ′. �
Theorem 2 The lowest balanced mechanism maximizes the

social benefit for the PFG-BM with benefit functions βi(xi, yi, t) =
−(|t − xi| + |t − yi|), i ∈ N.
Proof. Let sb(χ, t) denote the social benefit

∑
i∈N βi(xi, yi, t). We

show that the social benefit takes the maximum at the lowest bal-
anced point.

Since the benefit functions βi, i ∈ N, are continuous, the so-
cial benefit is also continuous. The benefit function βi(xi, yi, t)
for player i is piecewise linear and is not differentiable at t =

xi, yi. Since the social benefit is the sum of the benefit func-
tions, the social benefit sb(χ, t) is also piecewise linear and is
not differentiable at t ∈ {xi, yi | (xi, yi) ∈ χ}. We find the gra-
dients of the social benefit at t ∈ R \ {xi, yi | (xi, yi) ∈ χ}. For
t ∈ R \ {xi, yi | (xi, yi) ∈ χ}, let gr(χ, t) be the gradient of sb(χ, t)
with respect to t.

For facility location t, the player set N is partitioned into three
sets: Nr(χ, t), N�(χ, t), and N̄(χ, t) � N \ (Nr(χ, t) ∪ N�(χ, t)).

For i ∈ Nr(χ, t), by t < xi ≤ yi it holds that βi(xi, yi, t) =
−(xi−t+yi−t) = 2t−xi−yi. For i ∈ N�(χ, t), by xi ≤ yi < t it holds
that βi(xi, yi, t) = −(t − xi + t − yi) = −2t + xi + yi. For i ∈ N̄(χ, t),
by xi ≤ t ≤ yi it holds that βi(xi, yi, t) = −(t− xi + yi − t) = xi − yi.
Therefore

sb(χ, t) =
∑
i∈N
βi(xi, yi, t)

=
∑

i∈Nr(χ,t)

βi(xi, yi, t) +
∑

i∈N�(χ,t)
βi(xi, yi, t) +

∑
i∈N̄(χ,t)

βi(xi, yi, t)

=
∑

i∈Nr(χ,t)

(2t − xi − yi) +
∑

i∈N�(χ,t)
(−2t + xi + yi) +

∑
i∈N̄(χ,t)

(xi − yi).

Hence

gr(χ, t) =
∑

i∈Nr(χ,t)

2 +
∑

i∈N�(χ,t)
(−2) +

∑
i∈N̄(χ,t)

0

= 2 |Nr(χ, t)| − 2 |N�(χ, t)| .

From the monotonicity of |Nr(χ, t)| and |N�(χ, t)|, and the defini-
tion of the lowest balanced mechanism, for the lowest balanced
point p∗, it holds that

gr(χ, t) > 0 if t < p∗,

gr(χ, t) ≤ 0 if t ≥ p∗.

Therefore the social benefit sb(χ, t) is a function with a global
maximum at its lowest balanced point. �

3.2 The Fixed-length Shuttle Facility Game (FL-SFG-BM)
We design a GSP mechanism for the fixed-length shuttle fa-

cility game where the benefit function of each player is interval-
peaked with respect to the leftmost of the candidate facility loca-
tions.

We illustrate two examples. First, for a facility location
[t, t + k] ∈ R and a player’s report [x, y] ∈ R, the benefit func-
tion β(x, y, t, t+ k) = −(|t − x|+ |t + k − y|) is interval-peaked with
peak at the interval [x, y − k], and decreases with respect to the
walking distance.

Next, for a facility location [t, t + k] ∈ R and a player’s report

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 6 The fixed-length shuttle facility game with interval-peaked benefit
functions that decrease with respect to the intersection distance.

[x, y] ∈ R, we focus on interval-peaked functions that take a max-
imum if the intersection of the two intervals [t, t + k] and [x, y] is
not empty. Such functions, for example

β(x, y, t, t + k) = −min{|p − z| | p ∈ [t, t + k], z ∈ [x, y]},

are interval-peaked with peak at the interval [x − k, y], and de-
crease with respect to the intersection distance, as illustrated in
Fig. 6.

In both cases, the peak of the benefit function is easily deter-
mined from the facility length k and a player’s report [x, y].

Theorem 3 Let Ik = (N,Kk,R,B) be an instance of the
FL-SFG-BM. Assume that there exist interval-peaked bene-
fit functions β̃i : R × R → R, i ∈ N, and a mapping h :
R → R such that β̃i(h([x, y]), t) = βi(x, y, t, t + k). For a
profile χ = {[x1, y1], . . . , [xn, yn]}, let h(χ) denote the profile
{h([x1, y1]), . . . , h([xn, yn])}. Let Ĩ = (N,R,R, B̃ = {̃βi | i ∈ N})
be an instance of the PFG-BM, and let f̃ be any GSP mecha-
nism for Ĩ with benefit ratio ρ f̃ . Then, the mechanism f (χ) �[
f̃ (h(χ)), f̃ (h(χ)) + k

]
is a GSP mechanism for Ik with benefit ra-

tio at most ρ f̃ .
Proof. We show that for any non-empty subset S ⊆ N and two
profiles χ, χ′ ∈ R〈n〉 of Ik satisfying χS = χ

′
S

, there exists a player
i such that βi(χi, f (χ)) ≥ βi(χi, f (χ′)).

From χS = χ
′
S

for the two profiles h(χ) and h(χ′) it holds that

h(χ)S = h(χ′)S . Since the mechanism f̃ is GSP, we get that

β̃i(h([xi, yi]), f̃ (h(χ))) ≥ β̃i(h([xi, yi]), f̃ (h(χ′))).

From the definition of the benefit function β̃i, we get that

βi(xi, yi, f̃ (h(χ)), f̃ (h(χ)) + k)

≥ βi(xi, yi, f̃ (h(χ′)), f̃ (h(χ′)) + k).

From the definition of the mechanism f , it follows that

βi(xi, yi, f (χ)) ≥ βi(xi, yi, f (χ′)),

and therefore, the mechanism f is GSP.
We show that the benefit ratio of f is at most ρ f̃ . Note that the

image of the mapping h is included in R. From the definition, the
benefit ratio of f is

sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup
{∑n

i=1 βi(χi, t, t + k) | t ∈ R
}

∑n
i=1 βi(χi, f (χ))

| χ ∈ R〈n〉
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

From the definition of β̃i and f̃ , we get that

sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup
{∑n

i=1 βi(χi, t, t + k) | t ∈ R
}

∑n
i=1 βi(χi, f (χ))

| χ ∈ R〈n〉
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup
{∑n

i=1 βi(χi, t, t + k) | t ∈ R
}

∑n
i=1 βi(χi, f̃ (h(χ)), f̃ (h(χ)) + k)

| χ ∈ R〈n〉
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup
{∑n

i=1 β̃i(h(χi), t) | t ∈ R
}

∑n
i=1 β̃i(h(χi), f̃ (h(χ)))

| χ ∈ R〈n〉
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup
{∑n

i=1 β̃i(χi, t) | t ∈ R
}

∑n
i=1 β̃i(χi, f̃ (χ))

| χ ∈ R〈n〉
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= ρ f̃ ,

and thus proving the theorem. �
Observe that due to Theorem 2 it is possible to define a benefit

function for the FL-SFG-BM such that the mechanism defined in
Theorem 3 achieves benefit ratio 1.

3.3 The Flexible-length Shuttle Facility Game (SFG-BM)
We show that there exists a GSP mechanism for the flexible-

length shuttle facility game FG-BM(N,R,R,B) with benefit
functions based on walking distances.

Theorem 4 The respective median mechanism for the SFG-
BM(N,R,R,B), with benefit functions βi([xi, yi], [p, q]) =

−min(yi − xi, |xi − p| + |yi − q|), i ∈ N, is GSP.
Proof. To derive a contradiction, assume that the respective me-
dian mechanism f is not GSP. Then, there exist a non-empty
subset S ⊆ N and two profiles χ = {χ1 = [x1, y1], . . . , χn =

[xn, yn]}, χ′ = {χ′1 = [x′1, y
′
1], . . . , χ′n = [x′n, y′n]} ∈ R〈n〉 such that

χS = χ
′
S
, (10)

βi(χi, f (χ)) < βi(χi, f (χ′)), ∀i ∈ S . (11)

For any i ∈ S , since the benefit function βi([xi, yi], [p, q]) is
−min(yi−xi, |xi − p|+|yi − q|), from Eq. (11) it holds that yi−xi >

|xi − fx(χ′)| +
∣∣∣yi − fy(χ′)

∣∣∣, and therefore
∣∣∣xi − fx(χ′)

∣∣∣ + ∣∣∣yi − fy(χ
′)
∣∣∣ < |xi − fx(χ)| +

∣∣∣yi − fy(χ)
∣∣∣ . (12)

There are four cases:

fx(χ) < fx(χ′) and
∣∣∣ fx(χ) − fx(χ′)

∣∣∣ ≥ ∣∣∣ fy(χ) − fy(χ
′)
∣∣∣ , (13)

fy(χ) < fy(χ
′) and

∣∣∣ fx(χ) − fx(χ′)
∣∣∣ < ∣∣∣ fy(χ) − fy(χ

′)
∣∣∣ , (14)

fx(χ) > fx(χ′) and
∣∣∣ fx(χ) − fx(χ′)

∣∣∣ ≥ ∣∣∣ fy(χ) − fy(χ
′)
∣∣∣ , (15)

fy(χ) > fy(χ
′) and

∣∣∣ fx(χ) − fx(χ′)
∣∣∣ < ∣∣∣ fy(χ) − fy(χ

′)
∣∣∣ . (16)

Case 1. Assume that Eq. (13) is satisfied.
To show that for any i ∈ S , xi > fx(χ), assume that for some

i ∈ S , it holds that xi ≤ fx(χ) < fx(χ′). From Eq. (13) and the
triangle inequality, it holds that
∣∣∣xi − fx(χ′)

∣∣∣ + ∣∣∣yi − fy(χ
′)
∣∣∣

= fx(χ) − xi + fx(χ′) − fx(χ) +
∣∣∣yi − fy(χ

′)
∣∣∣

= | fx(χ) − xi| +
∣∣∣ fx(χ′) − fx(χ)

∣∣∣ + ∣∣∣yi − fy(χ
′)
∣∣∣

≥ | fx(χ) − xi| +
∣∣∣ fy(χ′) − fy(χ)

∣∣∣ + ∣∣∣yi − fy(χ
′)
∣∣∣

≥ | fx(χ) − xi| +
∣∣∣yi − fy(χ)

∣∣∣ .
This contradicts Eq. (12). Hence, for any i ∈ S it holds that

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

xi > fx(χ).
From Eq. (10) only players in S change their reports between

χ and χ′. The cardinality of the set {i ∈ N | xi > fx(χ)} does not
increase if players in S change their reports from χ to χ′, that is,

|{i ∈ N | xi > fx(χ)}| ≥
∣∣∣{i ∈ N | x′i > fx(χ)

}∣∣∣ .
From Eq. (13) we get
∣∣∣{i ∈ N | x′i > fx(χ)

}∣∣∣ ≥ ∣∣∣{i ∈ N | x′i ≥ fx(χ′)
}∣∣∣ .

From the definition of the mechanism f and Eq. (2), we get

|{i ∈ N | xi > fx(χ)}| ≤ n/2.

Therefore it holds that
∣∣∣{i ∈ N | x′i ≥ fx(χ′)

}∣∣∣ ≤ n/2,

which contradicts the definition of the mechanism f .
Case 2. Assume that Eq. (14) is satisfied. Similarly, for any
i ∈ S , it holds that yi > fy(χ). From Eq. (10) only players in S

change their reports between χ and χ′. The cardinality of the set{
i ∈ N | yi > fy(χ)

}
does not increase if players in S change their

reports from χ to χ′, that is,∣∣∣∣{i ∈ N | yi > fy(χ)
}∣∣∣∣ ≥
∣∣∣∣{i ∈ N | y′i > fy(χ)

}∣∣∣∣ .
From Eq. (14) we get

∣∣∣∣{i ∈ N | y′i > fy(χ)
}∣∣∣∣ ≥∣∣∣∣{i ∈ N | y′i ≥ fy(χ′)

}∣∣∣∣. From the definition of the mecha-

nism f , we get
∣∣∣∣{i ∈ N | yi > fy(χ)

}∣∣∣∣ ≤ n/2. Therefore it holds

that
∣∣∣∣{i ∈ N | y′i ≥ fy(χ′)

}∣∣∣∣ ≤ n/2, which contradicts the definition
of the mechanism f .
Case 3. Assume that Eq. (15) is satisfied. Similarly, for any
i ∈ S , it holds that xi < fx(χ). From Eq. (10) only players in S

change their reports between χ and χ′. The cardinality of the set
{i ∈ N | xi < fx(χ)} does not increase if players in S change their
reports from χ to χ′, that is,

|{i ∈ N | xi < fx(χ)}| ≥
∣∣∣{i ∈ N | x′i < fx(χ)

}∣∣∣ .
From Eq. (15) we get

∣∣∣∣{i ∈ N | x′i < fx(χ)
}∣∣∣∣ ≥∣∣∣∣{i ∈ N | x′i ≤ fx(χ′)

}∣∣∣∣. From the definition of the mecha-
nism f , we get |{i ∈ N | xi < fx(χ)}| < n/2. Therefore it holds
that
∣∣∣∣{i ∈ N | x′i ≤ fx(χ′)

}∣∣∣∣ < n/2, which contradicts the definition
of the mechanism f .
Case 4. Assume that Eq. (16) is satisfied. Similarly, for any
i ∈ S , it holds that yi < fy(χ). From Eq. (10) only players in S

change their reports between χ and χ′. The cardinality of the set{
i ∈ N | yi < fy(χ)

}
does not increase if players in S change their

reports from χ to χ′, that is,∣∣∣∣{i ∈ N | yi < fy(χ)
}∣∣∣∣ ≥
∣∣∣∣{i ∈ N | y′i < fy(χ)

}∣∣∣∣ .
From Eq. (16) we get

∣∣∣∣{i ∈ N | y′i < fy(χ)
}∣∣∣∣ ≥∣∣∣∣{i ∈ N | y′i ≤ fy(χ′)

}∣∣∣∣. From the definition of the mecha-

nism f , we get
∣∣∣∣{i ∈ N | yi < fy(χ)

}∣∣∣∣ < n/2. Therefore it holds

that
∣∣∣∣{i ∈ N | y′i ≤ fy(χ′)

}∣∣∣∣ < n/2, which contradicts the definition
of the mechanism f . �

4. Mechanisms for the Shuttle Facility Game
with a Utility Measure

In this section, we consider three facility games, the flexible-
length shuttle facility game with a utility measure, i.e. SFG-UM,
the fixed-length shuttle facility game with a utility measure, i.e.
FL-SFG-UM, and as its special case, the pit-stop facility game
with a utility measure, i.e. PFG-UM. We start with the PFG-UM
first, before considering the more general FL-SFG-UM.

4.1 The Pit-stop Facility Game (PFG-UM)
First, we design a GSP mechanism for the PFG-UM with

interval-peaked utility functions.
Recall that the lowest balanced mechanism is a mechanism that

given a profile χ, outputs the lowest balanced point of χ, namely,
the infimum of the set {p ∈ R | |Nr(χ, p)| ≤ |N�(χ, p)|} (see Fig. 5).

Theorem 5 The lowest balanced mechanism is GSP for the
PFG-UM with interval-peaked utility functions.
Proof. Let Ω(ui) = [ai, bi] be the peak of the utility function ui of
player i ∈ N. Let A be the profile {[a1, b1], [a2, b2], . . . , [an, bn]} ∈
R〈n〉.

To derive a contradiction, we assume that the lowest balanced
mechanism f is not GSP. Then, there exist a non-empty subset
S ⊆ N and two profiles χ = {χ1 = [x1, y1], . . . , χn = [xn, yn]}, χ′ ∈
R〈n〉 such that

χS = χ
′
S
, (17)

χS = AS , namely, χi = [xi, yi] = [ai, bi], ∀i ∈ S (18)

ui( f (χ)) < ui( f (χ′)), ∀i ∈ S . (19)

Since the interval [ai, bi] is the peak of the interval-peaked util-
ity ui, for any i ∈ S , from Eq. (19) it follows that exactly one of
Eqs. (20) and (21) is satisfied.

f (χ) < f (χ′) and f (χ) < ai = xi, ∀i ∈ S , (20)

f (χ′) < f (χ) and yi = bi < f (χ), ∀i ∈ S . (21)

Case 1. Assume that Eq. (20) holds true. Let t ∈ R be a real num-
ber such that f (χ) < t < f (χ′) and t < xi, ∀i ∈ S . From the defini-
tion of Nr, we get that S ⊆ Nr(χ, t). From Eq. (17), only players in
S (⊆ Nr(χ, t)) change their reports between χ and χ′. The cardi-
nality of the right set Nr(χ, t) does not increase by changing their
reports from χ to χ′. Therefore it holds that Nr(χ, t) ⊇ Nr(χ′, t).
Hence, we get that

|Nr(χ, t)| ≥
∣∣∣Nr(χ

′, t)
∣∣∣ . (22)

Similarly, the cardinality of the left set N�(χ, t) does not decrease
by changing reports of players in S from χ to χ′, and therefore it
holds that N�(χ, t) ⊆ N�(χ′, t). Hence, we get that
∣∣∣N�(χ′, t)∣∣∣ ≥ |N�(χ, t)| . (23)

Since f (χ′) is the lowest balanced point of χ′ and t < f (χ′), it
holds that
∣∣∣Nr(χ

′, t)
∣∣∣ > ∣∣∣N�(χ′, t)∣∣∣ . (24)

From Eqs. (22)-(24), it follows that
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|Nr(χ, t)| > |N�(χ, t)| .

Since the size |Nr(χ, z)| of the set Nr(χ, t) (resp,. |N�(χ, z)|) is
monotonically nonincreasing (resp,. nondecreasing) with respect
to z, from f (χ) < t, it follows that

|Nr(χ, f (χ))| ≥ |Nr(χ, t)| > |N�(χ, t)| ≥ |N�(χ, f (χ))| .

However, this contradicts the fact that f (χ) is the lowest balanced
point of χ.
Case 2. We assume that Eq. (21) holds true. The proof is sim-
ilar to that of Case 1. First, let t ∈ R be a real number such
that f (χ′) < t < f (χ) and yi < t, ∀i ∈ S . From the definition
of N�, it holds that S ⊆ N�(χ, t). We have |Nr(χ′, t)| ≥ |Nr(χ, t)|,
|N�(χ, t)| ≥ |N�(χ′, t)|. Since f (χ) is the lowest balanced point of χ
and t < f (χ), we get that |Nr(χ, t)| > |N�(χ, t)|. Therefore, it holds
that |Nr(χ′, t)| > |N�(χ′, t)|. From the monotonicity of |Nr(χ′, z)|
and f (χ′) < t, we have |Nr(χ′, f (χ′))| ≥ |Nr(χ′, t)| > |N�(χ′, t)| ≥
|N�(χ′, f (χ′))|. This contradicts the fact that f (χ′) is the lowest
balanced point of χ′, from where the claim follows. �

4.2 The Fixed-length Shuttle Facility Game (FL-SFG-UM)
Next, we design a GSP mechanism for the FL-SFG-UM with

interval-peaked utility functions.
Theorem 6 Let Ik = (N,Kk,R,U) be an instance of the FL-

SFG-UM such that ũi(t) � ui(t, t + k) is an interval-peaked utility
function ũi : R→ R, i ∈ N. Let Ĩ = (N,R,R, Ũ = {̃ui | i ∈ N}) be
an instance of the PFG-UM. For any GSP mechanism f̃ for Ĩ, the
mechanism f (χ) �

[
f̃ (χ), f̃ (χ) + k

]
is a GSP mechanism for Ik.

Proof. Let [ai, bi] be the peak of utility function ui. Let A be the
profile
{[a1, b1], [a2, b2], . . . , [an, bn]}. We show that for any non-empty
subset S ⊆ N and two profiles χ, χ′ ∈ R〈n〉 of Ik such that χS = χ

′
S

and χS = AS , there exists a player i such that ui( f (χ)) ≥ ui( f (χ′)).
Since the mechanism f̃ is GSP, we get that ũi( f̃ (χ)) ≥ ũi( f̃ (χ′)).
From the definition of the utility function ũi, we get that

ui( f̃ (χ), f̃ (χ) + k) ≥ ui( f̃ (χ′), f̃ (χ′) + k).

From the definition of the mechanism f , it follows that

ui( f (χ)) ≥ ui( f (χ′)),

and therefore, the mechanism f is GSP. �

4.3 The Flexible-length Shuttle Facility Game (SFG-UM)
We show that there exists a GSP mechanism for the flexible-

length shuttle facility game FG-UM(N,R,R,U) with utility func-
tions based on walking distances.

Theorem 7 The respective median mechanism is GSP for
the SFG-UM(N,R,R,U) with utility functions defined to be
ui([p, q]) = −min(bi − ai, |ai − p| + |bi − q|), ai, bi ∈ R, for each
i ∈ N.
Proof. Let Ω(ui) = [ai, bi] be the peak of the utility function ui of
player i ∈ N. Let A be the profile {[a1, b1], [a2, b2], . . . , [an, bn]} ∈
R〈n〉.

To derive a contradiction, we assume that the respective me-
dian mechanism f is not GSP. Then, there exist a non-empty

subset S ⊆ N and two profiles χ = {χ1 = [x1, y1], . . . , χn =

[xn, yn]}, χ′ = {χ′1 = [x′1, y
′
1], . . . , χ′n = [x′n, y′n]} ∈ R〈n〉 such that

χS = χ
′
S
, (25)

χS = AS , namely, χi = [xi, yi] = [ai, bi], ∀i ∈ S (26)

ui( f (χ)) < ui( f (χ′)), ∀i ∈ S . (27)

For any i ∈ S , since the utility function ui([p, q]) is −min(bi −
ai, |ai − p| + |bi − q|), from Eq. (27) it holds that yi − xi >

|xi − fx(χ′)| +
∣∣∣yi − fy(χ′)

∣∣∣, and therefore

∣∣∣xi − fx(χ′)
∣∣∣ + ∣∣∣yi − fy(χ

′)
∣∣∣ < |xi − fx(χ)| +

∣∣∣yi − fy(χ)
∣∣∣ . (28)

There are four cases:

fx(χ) < fx(χ′) and
∣∣∣ fx(χ) − fx(χ′)

∣∣∣ ≥ ∣∣∣ fy(χ) − fy(χ
′)
∣∣∣ , (29)

fy(χ) < fy(χ
′) and

∣∣∣ fx(χ) − fx(χ′)
∣∣∣ < ∣∣∣ fy(χ) − fy(χ

′)
∣∣∣ , (30)

fx(χ) > fx(χ′) and
∣∣∣ fx(χ) − fx(χ′)

∣∣∣ ≥ ∣∣∣ fy(χ) − fy(χ
′)
∣∣∣ , (31)

fy(χ) > fy(χ
′) and

∣∣∣ fx(χ) − fx(χ′)
∣∣∣ < ∣∣∣ fy(χ) − fy(χ

′)
∣∣∣ . (32)

Case 1. Assume that Eq. (29) is satisfied.
To show that for any i ∈ S , xi > fx(χ), assume that for some

i ∈ S , it holds that xi ≤ fx(χ) < fx(χ′). From Eq. (29) and the
triangle inequality, it holds that
∣∣∣xi − fx(χ′)

∣∣∣ + ∣∣∣yi − fy(χ
′)
∣∣∣

= fx(χ) − xi + fx(χ′) − fx(χ) +
∣∣∣yi − fy(χ

′)
∣∣∣

= | fx(χ) − xi| +
∣∣∣ fx(χ′) − fx(χ)

∣∣∣ + ∣∣∣yi − fy(χ
′)
∣∣∣

≥ | fx(χ) − xi| +
∣∣∣ fy(χ′) − fy(χ)

∣∣∣ + ∣∣∣yi − fy(χ
′)
∣∣∣

≥ | fx(χ) − xi| +
∣∣∣yi − fy(χ)

∣∣∣ .
This contradicts Eq. (28). Hence, for any i ∈ S it holds that
xi > fx(χ).

From Eq. (25) only players in S change their reports between
χ and χ′. The cardinality of the set {i ∈ N | xi > fx(χ)} does not
increase if players in S change their reports from χ to χ′, that is,

|{i ∈ N | xi > fx(χ)}| ≥
∣∣∣{i ∈ N | x′i > fx(χ)

}∣∣∣ .
From Eq. (29) we get

∣∣∣{i ∈ N | x′i > fx(χ)
}∣∣∣ ≥ ∣∣∣{i ∈ N | x′i ≥ fx(χ′)

}∣∣∣ .
From the definition of the mechanism f , we get

|{i ∈ N | xi > fx(χ)}| ≤ n/2.

Therefore it holds that

∣∣∣{i ∈ N | x′i ≥ fx(χ′)
}∣∣∣ ≤ n/2,

which contradicts the definition of the mechanism f .
Case 2. Assume that Eq. (30) is satisfied. Similarly, for any
i ∈ S , it holds that yi > fy(χ). From Eq. (25) only players in S

change their reports between χ and χ′. The cardinality of the set{
i ∈ N | yi > fy(χ)

}
does not increase if players in S change their

reports from χ to χ′, that is,
∣∣∣∣{i ∈ N | yi > fy(χ)

}∣∣∣∣ ≥
∣∣∣∣{i ∈ N | y′i > fy(χ)

}∣∣∣∣ .
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From Eq. (30) we get
∣∣∣∣{i ∈ N | y′i > fy(χ)

}∣∣∣∣ ≥∣∣∣∣{i ∈ N | y′i ≥ fy(χ′)
}∣∣∣∣. From the definition of the mecha-

nism f , we get
∣∣∣∣{i ∈ N | yi > fy(χ)

}∣∣∣∣ ≤ n/2. Therefore it holds

that
∣∣∣∣{i ∈ N | y′i ≥ fy(χ′)

}∣∣∣∣ ≤ n/2. This contradicts the definition
of the mechanism f .
Case 3. Assume that Eq. (31) is satisfied. Similarly, for any
i ∈ S , it holds that xi < fx(χ). From Eq. (25) only players in S

change their reports between χ and χ′. The cardinality of the set
{i ∈ N | xi < fx(χ)} does not increase if players in S change their
reports from χ to χ′, that is,

|{i ∈ N | xi < fx(χ)}| ≥
∣∣∣{i ∈ N | x′i < fx(χ)

}∣∣∣ .
From Eq. (31) we get

∣∣∣∣{i ∈ N | x′i < fx(χ)
}∣∣∣∣ ≥∣∣∣∣{i ∈ N | x′i ≤ fx(χ′)

}∣∣∣∣. From the definition of the mecha-
nism f , we get |{i ∈ N | xi < fx(χ)}| < n/2. Therefore it holds
that
∣∣∣∣{i ∈ N | x′i ≤ fx(χ′)

}∣∣∣∣ < n/2. This contradicts the definition
of the mechanism f .
Case 4. Assume that Eq. (32) is satisfied. Similarly, for any
i ∈ S , it holds that yi < fy(χ). From Eq. (25) only players in S

change their reports between χ and χ′. The cardinality of the set{
i ∈ N | yi < fy(χ)

}
does not increase if players in S change their

reports from χ to χ′, that is,
∣∣∣∣{i ∈ N | yi < fy(χ)

}∣∣∣∣ ≥
∣∣∣∣{i ∈ N | y′i < fy(χ)

}∣∣∣∣ .
From Eq. (31) we get
∣∣∣∣{i ∈ N | y′i < fy(χ)

}∣∣∣∣ ≥
∣∣∣∣{i ∈ N | y′i ≤ fy(χ

′)
}∣∣∣∣ .

From the definition of the mechanism f , we get∣∣∣∣{i ∈ N | yi < fy(χ)
}∣∣∣∣ < n/2. Therefore it holds that∣∣∣∣{i ∈ N | y′i ≤ fy(χ′)
}∣∣∣∣ < n/2, which contradicts the defini-

tion of the mechanism f . �

5. Conclusion

We introduced two shuttle facility games, the fixed-length shut-
tle facility game and the flexible-length shuttle facility game, as
well as a special case of the above problems, the pit-stop facil-
ity game. We investigated two types of players’ profits, benefit
functions that take a facility location and a player’s report as ar-
guments, and utility functions that only take a facility location as
an argument. We proved that each of the game problems admits
a group strategy-proof mechanism:
• the lowest balanced mechanism for the pit-stop facility game

in the line space with interval-peaked profit functions,
• the lowest balanced mechanism for the fixed-length shuttle

facility game in the line space with interval-peaked profit
functions, and,

• the respective median mechanism for the flexible-length
shuttle facility game in the line space with profit functions
based on the walking distances.

We also investigated the benefit ratio and proved that for the
pit-stop facility game in the line space with benefit functions
based on the visit-distance, the benefit ratio of the lowest bal-
anced mechanism is one. In our models, we showed that there

exists a group strategy-proof mechanism for the pit-stop facil-
ity game in the line space and a group strategy-proof mechanism
for the fixed-length shuttle facility game with interval-peaked
profit functions and that the lowest balanced mechanism is group
strategy-proof. We also showed that when the players’ benefit
functions are defined to be the negative of the visit-distance, the
benefit ratio of the lowest balanced mechanism for the pit-stop fa-
cility game is one. Finally, we prove that when the players’ ben-
efit functions decrease with respect to the walking distance, there
exists a group strategy-proof mechanism for the flexible-length
shuttle facility game.

For future work, it remains to investigate whether the respec-
tive median mechanism is group strategy-proof or not for the
flexible-length shuttle facility game with other benefit functions.
Furthermore it remains to investigate the benefit ratio for the
flexible-length shuttle facility game, that is, whether the respec-
tive median mechanism is optimal or not and if not, what is the
lower bound on benefit ratio of strategy-proof mechanisms for the
flexible-length shuttle facility game in the line space. Next, it re-
mains to investigate whether there exists a group strategy-proof
mechanism for the shuttle facility game in the different spaces,
such as a tree or a circle.

Also, we are interested in the facility game related to the design
of transportation systems. For example, it is interesting to inves-
tigate the time for commuting as a player’s profit, instead of the
distance. The time for commuting includes two types of the time,
the walking time between player’s locations and stations and time
in the transportation between the stations. Since there are many
stations in a real transportation system, it also remains to investi-
gate the facility game to determine more than two stations in the
line, a tree or a simple graph space.
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