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Abstract: “Slitherlink” is one of popular pencil puzzles. The purpose of the puzzle is to make a link according to the
digits written in cells. While determining the existence of a solution to a given puzzle is proved to be an NP-complete
class of problems, which means it is difficult to find an effective algorithm to solve the puzzle, solving the puzzle has
been studied and there are several previous researches for the puzzle. In this paper, we show two new methods to solve
the puzzle. One is with hardware acceleration on an FPGA and the other is based on an SMT solver. We focus on
determining inside or outside for each cell instead of making a link and propose a new formulation. With hardware
acceleration, it takes 0.1578 seconds on average for solving 10 × 10 puzzles, and with an SMT solver, our solution is
faster than previous researches in most cases.
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1. Introduction

“Slitherlink” is one of popular pencil puzzles [16], [17], [19].
The goal of the puzzle is to make one link according to digits
written in cells surrounded by lattice points. Deciding whether
solutions exist or not is proved to be in the NP-complete class in
the literature [12]. There are several previous studies to solve the
puzzle, such as the literature [3]. They showed that their method,
which applies integer programming, can solve faster than the pre-
vious researches.

In solving the puzzle, there is possibility that two or more links
are obtained with satisfying the condition of the puzzle. How-
ever, from the rule of the puzzle, two or more links cannot be a
solution. In the previous research, the solving process is iterated
until a solution with a sole link is found, whereas we show our
idea to eliminate such kind of candidates for a solution without
repeating the solving process with using Pick’s theorem [1].

In this paper, we propose two solutions for solving the puz-
zle. One is with hardware acceleration on an FPGA (Field Pro-
grammable Gate Array) and the other is with using an SMT
solver. While the goal of Slitherlink is to make a link, as one
link divides a plane into two regions, inside and outside, so we
focus on determining inside or outside for each cell according to
the digits in the puzzle. In the hardware acceleration, checking
conditions for a solution of Slitherlink is accelerated. In the solu-
tion with an SMT solver, we use Z3 [8] for the SMT solver. We
explain our new way for the formulation.

While a main idea for hardware acceleration is from our re-
search in the literature [6] and the formulation for an SMT solver
is our proposal from [7], we changed our FPGA platform and
evaluated again and the evaluation environment was changed for
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the SMT solver and we measured the data for this time. We
illustrate hardware resources and the execution time with hard-
ware acceleration and execution time comparing with the previ-
ous studies.

2. About Slitherlink

2.1 Definition
Slitherlink’s goal is to make a link (or a round/circular chain)

by drawing lines to connect lattice points, according to the fol-
lowing conditions.
( 1 ) The number of lines drawn around a cell is equal to the digit

in the cell (When the digit is 0, there are no lines around the
cell. When there is no digit in a cell, any number of lines can
be drawn around the cell).

( 2 ) Any line is a part of a link. No intersections or branches are
allowed.

( 3 ) A solution includes only one link.
Here, we call a box surrounded by four lattice points “cell”. In

this paper, when all the above conditions ( 1 ) to ( 3 ) are satisfied,
it is regarded as “satisfying Slitherlink condition”. On the other
hand, the situation in which the conditions ( 1 ) and ( 2 ) are sat-
isfied is called “satisfying partial condition” or “candidate”. If a
situation is not satisfying partial condition, it is called unsatisfy-
ing partial condition. The term “attribute” means whether a cell
is inside or outside of a link.

Figure 1 shows an example of Slitherlink puzzles. The left
figure is a given puzzle, and the right one is a solution.

Examples of wrong solutions are shown in Fig. 2 and in Fig. 3.
Figure 2 cannot be a solution since it consists of two disconnected

Fig. 1 Example of Slitherlink.
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links, which is a violation of the condition ( 3 ). The right one is
also rejected since it has nested links, which are regarded as two
links.

2.2 Strategy for Solving
While the goal of Slitherlink is to make a link, one link divides

a plane into two regions, inside and outside. That means to make
a link and to determine an inside region and an outside region are
equivalent. Therefore, our idea to solve the puzzle is to find one
connected region without a hole according to digits in cells of a
puzzle instead of making a link.

Whether a cell is in the inside or outside of a link is judged as
follows. For example, in the case of Fig. 4, there is a cell with
no digit between the cell with “3” and the cell with “2”. If the
both cells with “3” and “2” have been already decided to be in

Fig. 2 Two links.

Fig. 3 With a hole.

Fig. 4 Satisfying partial condition.

Fig. 5 Unsatisfying partial condition.

Fig. 6 Patterns corresponding to each digit and attribute.

the inside region, and the lines are to be drawn as in the figure,
the resulting situation necessarily leaves the middle cell inside so
that it does not contradict the partial condition (( 1 ) and ( 2 ) in
Section 2.1).

On the other hand, if the lines are drawn as in Fig. 5, from the
state of the left cell, the middle cell has to be inside. However,
from the state of the right cell, it has to be outside. Therefore,
drawing these lines is not allowed to be a solution (This situation
eventually leads to a violation of the condition ( 2 )).

Focusing on an inside or outside cell with a digit, the valid
combinations of the lines corresponding to its digit with the at-
tributes of the surrounding eight cells are categorized into “pat-
terns”. Figure 6 lists all of the combinations of attributes and
patterns for each possible digit in a cell.

We search for a solution of a puzzle with the steps as follows.
First, we select a cell with a digit, then we select a combination
of an attribute and a pattern, and check if Slitherlink partial con-
dition is satisfied. If the partial condition is satisfied, we go to the
next cell with a digit and we select a combination of an attribute
and a pattern, and check if the partial condition is satisfied. We
keep on these steps as long as the partial condition is satisfied. If
the partial condition is not satisfied, another combination of an
attribute and a pattern is checked. If all combinations for the cell
violate the partial condition, we go back to the previous cell and
check another combination of an attribute and a pattern.

When we finish determining attributes and patterns for all cells
with digits, that is a candidate of a solution. While the partial
condition is satisfied, we need to reject the possibility of multiple
links (See Fig. 2) or a region with a hole (Fig. 3). Confirmation
of partial condition, connectivity, and a region without a hole is
performed with the hardware we implemented. In the following
sections, we explain our method in detail.

3. Hardware Solver

3.1 Overview
We have been studying a soft processor of which instruction-

set architecture is MIPS [15] and a system development environ-
ment for integrating the processors and hardware accelerators [5].
With using this environment, we designed a hardware solver ded-
icated to Slitherlink and implemented it on an FPGA. The solver
is mapped to a part of memory space for the processor, so that
the processor can communicate with the solver by reading from
or writing to the specific addresses. Figure 7 shows the structure
of the processor (CPU core) and the solver (Slitherlink Solver).
The detailed structure of the Hardware Solver is to be described
in Section 3.2.

Fig. 7 Organization of the Solver.
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Fig. 8 Algorithm (overall).

3.1.1 Algorithm
Figure 8 shows the overall flow of solving the puzzle with the

hardware solver. First, all cells are initialized as “undecided on
inside or outside” and one of cells with a digit is picked up. A
combination of attribute and pattern is selected and temporarily
assigned to the cell. Then, it is checked whether Slitherlink par-
tial condition is satisfied or not. This checking is performed by
the solver, which is explained in Section 3.3. If it is satisfied, then
it is checked whether all the cells with digits have been traced or
not. When there is no cell left, a set of all the attributes and pat-
terns assigned form a candidate for a solution, and then it goes
to the process for checking the candidate for a solution, which is
described in Section 3.1.3. When there remain cells with digits, it
goes to another cell and, after assigning an attribute and pattern,
the partial condition checking is repeated.

On the other hand, while scanning cells, once Slitherlink par-
tial condition is not satisfied, it goes to the process for the case of
partial condition unsatisfied, where another pattern is selected or
it steps back to the previous cell. The details of this process are
explained in Section 3.1.2.
3.1.2 Procedure When the Partial Condition is Unsatisfied

As Fig. 8 shows, when Slitherlink partial condition is unsatis-
fied, it is checked whether there is another unchecked attribute
and pattern combination left for the cell. If an unchecked one
is found, it returns to the checking loop with it. Otherwise, the
current cell is given up and it goes back to the previous cell in or-
der to apply and try another combination of attribute and pattern.
When the current cell is the first one in the scanning and it has no
unchecked attribute and pattern left, the whole process finishes
without a valid solution.
3.1.3 Checking a Candidate for a Solution

Figure 9 shows how to check a candidate for a solution. First,
the procedure checks whether the obtained region is connected
or not. This connectivity checking is performed by the solver,

Fig. 9 Checking a solution candidate.

Fig. 10 Disconnected procedure.

which is described in Section 3.3.1. After confirming the region is
connected, whether the region includes a hole or not is examined
based on Pick’s theorem [1], which is performed by the solver de-
scribed in Section 3.3.2. If a hole is found, this candidate turns out
not to satisfy Slitherlink condition and therefore, with changing
an attribute and pattern combination or returning to the previous
cell, it goes to the next iteration. Otherwise, this candidate turns
to be a solution. When the region is found not to be connected, it
goes to the following “disconnected procedure.”
3.1.4 Procedure When the Region is Disconnected

Figure 10 shows the procedure when the region is discon-
nected. So far, all the cells with digits have been assigned an
attribute and a pattern. On the other hand, it is possible that no-
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Fig. 11 Framework for Slitherlink.

digit cells which have not been decided whether inside or out-
side still remain. This process assigns attributes to such cells one
by one while checking the connectivity and the hole-less condi-
tion. This attempt is repeated until a valid solution is found or all
the combinations of attributes for the cells are tried. In Fig. 10,
the connectivity checking and the hole checking are done by the
solver.

3.2 Structure of Hardware Solver
3.2.1 Hardware Structure for a Given Puzzle

We describe the hardware structure of a solver implemented
on an FPGA. For a given Slitherlink puzzle whose size is N ×
M, (N+2) × (M+2) matrix (Fig. 11) is prepared by a combination
of register arrays (For simplicity of hardware, M is equal to or
less than 32. This is enough since M≤32 is the case in almost all
Slitherlink puzzles).

The states of cells are kept in the registers x, a0, a1, s0, and s1.
x, a0 and a1 are used for input to the solver and s0, and s1 are
used for storing information generated by the solver. In advance,
the processor writes the information about a way of drawing lines
(i.e., assigned pattern) for each cell in x. The solver generates
suitable attributes in s0 and s1 for the neighboring cells that do
not have digits. The generated attributes are used for checking the
consistency of the neighbors’ attributes. Each register is prepared
as follows.

x: The size of array x is M × 4 bits × (N+2). Every four bits
keep a pattern for the corresponding cell. (From Fig. 6, the maxi-
mum number of patterns for a digit is six. While 3 bits are enough
to express the pattern, 4 bits are reserved to make the implemen-
tation simpler.) The initial value is zero. We use the notation x i j

(4 bits) for a cell in i-th row and j-th column.
a0: 32 bits × (N+2) register array. The notation a0 i j (1 bit)

corresponds to the information for a cell in i-th row and j-th col-
umn. In order to assign an attribute “outside” to a cell, the corre-
sponding bit is set to 1.

a1: 32 bits × (N+2) register array. The notation a1 i j (1 bit)
corresponds to the information for a cell in i-th row and j-th col-
umn. In order to assign an attribute “inside” to a cell, the corre-
sponding bit is set to 1.

s0: 32 bits × (N+2) register array. The notation s0 i j (1 bit)
corresponds to the information for a cell in i-th row and j-th col-
umn. This bit represents that the cell in i-th row and j-th column
should be outside. The way to set the bit is described in Sec-
tion 3.3 in detail.

Fig. 12 Around a Cell.

Fig. 13 Suitable Attribute Value b i j *[1].

Fig. 14 Suitable attribute value b i j *[0].

s1: 32 bits × (N+2) register array. The notation s1 i j (1 bit)
corresponds to the information for a cell in i-th row and j-th col-
umn. This bit represents that the cell in i-th row and j-th column
should be inside. The way to set the bit is described in Section 3.3
in detail.

p: 32 bits × N register array. p i j represents j-th bit of
p[i]. The notation p i j corresponds to the i-th row, j-th column
cell. This register array is used for checking connectivity in Sec-
tion 3.3.1.

3.3 Checking Partial Condition
As mentioned above, for each cell, the solver generates suit-

able attributes for the neighboring cells that do not have digits.
As Fig. 12 shows, there are eight neighboring cells for each cell,
from the top left one with the subscript “1” to the bottom right
with “8”. According to the digit, attribute, and pattern of the cen-
tral cell, suitable attributes of the neighbors are naturally decided.
For example, as in Fig. 13, if a cell with the digit of “3” is as-
signed an attribute of “inside” and a pattern of “Pattern0” (found
in Fig. 6), the neighbor cells of 1, 2, 4, 6, and 7 have to be outside
while the cell of 5 has to be inside. The cells of 3 and 8 can be
either inside or outside.

The suitable attributes are notated as b k[1 : 0], or b i j k[1 :
0] which explicitly indicates the indexes of the central cell. For
example, when the suitable attribute for the left cell is decided as
outside, the solver generates b 4[1 : 0] = 01 as shown in Fig. 13
and Fig. 14. Similarly, b 5[1 : 0] = 10 is generated so that the
right cell is judged to be inside. b 3[1 : 0] = 00 means the at-
tribute for the top right cell is not decided from the state of the
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Table 1 b k for out-of-bound cells.

x [a1:a0] b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
X X 00 00 00 00 00 00 00 00

X: Don’t care.

Table 2 b k for cells with no digit.

x [a1:a0] b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
X X 00 00 00 00 00 00 00 00

X: Don’t care.

Table 3 b k for cells with 0.

x [a1:a0] b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
X 00 00 00 00 00 00 00 00 00
X 01 00 01 00 01 01 00 01 00
X 10 00 10 00 10 10 00 10 00

X: Don’t care.

Table 4 b k for cells with 1.

x [a1:a0] b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
0 00 00 00 00 00 00 00 00 00
0 01 00 01 00 10 01 00 01 00
0 10 00 10 00 10 10 00 10 00
1 00 00 00 00 00 00 00 00 00
1 01 00 10 00 01 01 00 01 00
1 10 00 01 00 10 10 00 10 00
2 00 00 00 00 00 00 00 00 00
2 01 00 01 00 01 00 10 01 00
2 10 00 10 00 10 00 01 10 00
3 00 00 00 00 00 00 00 00 00
3 01 00 01 00 01 01 00 10 00
3 10 00 10 00 10 10 00 01 00

Table 5 b k for cells with 2.

x [a1:a0] b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
0 00 00 00 00 00 00 00 00 00
0 01 00 01 00 10 01 10 10 00
0 10 00 10 00 01 10 01 01 00
1 00 00 00 00 00 00 00 00 00
1 01 00 01 00 01 10 00 10 10
1 10 00 10 00 10 01 00 01 01
2 00 00 00 00 00 00 00 00 00
2 01 00 10 10 01 10 00 01 00
2 10 00 10 10 10 10 00 10 00
3 00 00 00 00 00 00 00 00 00
3 01 10 10 00 10 01 00 01 00
3 10 01 01 00 01 10 00 10 00
4 00 00 00 00 00 00 00 00 00
4 01 00 01 00 10 10 00 01 00
4 10 00 10 00 01 01 00 10 00
5 00 00 00 00 00 00 00 00 00
5 01 00 10 00 01 01 00 10 00
5 10 00 01 00 10 10 00 01 00

central cell.
For each digit in a cell, the combination of pattern (x) and at-

tribute (a1, a0) decides the value of b k[1 : 0]. Table 1, Table 2,
Table 3, Table 4, Table 5 and Table 6 show all possible values
for b k[1 : 0]. The solver includes the logic circuit to generate
b k[1 : 0] for all cells.

Whether each cell satisfies Slitherlink partial condition is
judged by referring to b k generated by the neighboring cells.

For a cell in i-th row, j-th column, s0 i j is set by:

b (i − 1) ( j − 1) 8[0] or b (i − 1) j 7[0]

or b (i − 1) ( j + 1) 6[0]

or b i ( j − 1) 5[0] or b i ( j + 1) 4[0]

or b (i + 1) ( j − 1) 3[0] or b (i + 1) j 2[0]

or b (i + 1) ( j + 1) 1[0].

Table 6 b k for cells with 3.

x [a1:a0] b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8
0 00 00 00 00 00 00 00 00 00
0 01 10 10 00 10 01 10 10 00
0 10 01 01 00 01 10 01 01 00
1 00 00 00 00 00 00 00 00 00
1 01 10 10 10 10 10 00 01 00
1 10 01 01 01 01 01 00 10 00
2 00 00 00 00 00 00 00 00 00
2 01 00 10 10 01 10 00 10 10
2 10 00 01 01 10 01 00 01 01
3 00 00 00 00 00 00 00 00 00
3 01 00 01 00 10 10 10 10 10
3 10 00 10 00 01 01 01 01 01

Fig. 15 Checker pattern.

If s0 i j = 1, this cell is required to be outside by the neighbor
cells. Similarly, s1 i j is set by:

b (i − 1) ( j − 1) 8[1] or b (i − 1) j 7[1]

or b (i − 1) ( j + 1) 6[1]

or b i ( j − 1) 5[1] or b i ( j + 1) 4[1]

or b (i + 1) ( j − 1) 3[1] or b (i + 1) j 2[1]

or b (i + 1) ( j + 1) 1[1].

If s1 i j = 1, this cell is required to be inside by the neighbor
cells. If both s0 i j and s1 i j are 1, this cell is required to be
inside and outside at the same time, which means this cell does
not satisfy Slitherlink partial condition. When this kind of cell
exists, the current assignments of attributes and patterns cannot
lead to a solution of the puzzle. On the other hand, if both are 0,
the current assignments may be valid as a candidate of a solution.

Additionally, checker patterns as in Fig. 15 are not allowed for
being a solution due to intersected lines. (The gray cells and the
dotted cells represent inside and outside, respectively.) That is, if
there exists i and j such that:

( s1 i j xor s1 (i + 1) ( j + 1) ) or

( s1 i ( j + 1) xor s1 (i + 1) j ) or

not ( s1 i j xor s1 i ( j + 1) ) or

( s0 i j xor s0 (i + 1) ( j + 1) ) or

( s0 i ( j + 1) xor s0 (i + 1) j ) or

not ( s0 i j xor s0 i ( j + 1) ) or

not ( s1 i j xor s0 i j )

is 0, the current assignments are rejected.
3.3.1 Checking Connectivity

Connectivity of a region for given assignments is judged as fol-
lows. In the checking process, if p i j = 1, this cell is regarded
as a “connected cell”. The following procedure is performed.
1. At the first step, an “inside” cell in the 1st (i=1) row is se-

lected. (If there is no inside cell in the 1st row, the assign-
ment should be N-1 rows instead of N rows, so we can as-
sume implicitly there is at least one inside cell in the 1st row.
If there are two or more inside cells in the row, the right most
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Fig. 16 Surrounded by inside cells.

Fig. 17 Lines between inside and outside cells.

one is selected.) p 1 j of the selected cell is set to 1.
2. For a cell of i-th row and j-th column, if the cell is inside, it

is examined whether there is an adjacent cell which is con-
nected. If it is found, p i j of the cell is set to 1 in the fol-
lowing way: p i j or ((p (i − 1) j or p i ( j − 1) or p i ( j +

1) or p (i + 1) j) and s1 i j), for all i and j. It goes to the
third step.

3. The value of p i j is summed up to obtain the number of 1s
in p. If the number of 1s is greater than that in the previous
clock cycle, it returns to the second step in the next clock
cycle. Otherwise, it goes to the final step.

4. The number of 1s in p is compared to the number of 1s in
s1 i j. If they are equal, it turns out that the region is con-
nected. Otherwise, there are two or more disconnected re-
gions.

The number of 1s in 32-bit register p[i] can be acquired within
one clock cycle by using the following formula [11]. In the fol-
lowing, p5 is the result.

p1 = (p[i] & 0x55555555) + ((p[i] >> 1) & 0x55555555);

p2 = (p1 & 0x33333333) + ((p1 >> 2) & 0x33333333);

p3 = (p2 & 0x0f0f0f0f) + ((p2 >> 4) & 0x0f0f0f0f);

p4 = (p3 & 0x00ff00ff) + ((p3 >> 8) & 0x00ff00ff);

p5 = (p4 & 0x0000ffff) + ((p4 >>16) & 0x0000ffff);

The sum of p[1] to p[N] gives the size of the connected region
in the procedure above.
3.3.2 Checking a Hole

Using Pick’s theorem [1], the size “S” of a connected polygon
without a hole, where every vertex is at a lattice point, is given as
follows.

S = i + b/2 − 1
i : The number of vertices which are inside the

polygon
b : The number of vertices which are on the boundary

of the polygon

In the case of Slitherlink, as Fig. 16 shows, i is equal to the
number of vertices surrounded by inside cells. b is equal to the
number of lines which are drawn between an inside cell and an
outside cell as Fig. 17.

To count i, we assign a wire wi i ( j+1) to (s1 i j and s1 i ( j+

1) and s1 (i + 1) j and s1 (i + 1) ( j + 1)), then count 1s of wi i j

with using the formula in the previous subsection. Similarly, to
count b, we assign a wire wbhorizontal i j to (s1 i j xor s1 i ( j+

1)), and wbvertical i j to (s1 i j xor s1 (i+1) j), then count 1s of
wbhorizontal i j and wbvertical i j with using the formula in the
previous subsection. As the size S is obtained in the previous sub-
section with counting the number of 1s of s1 i j, S is compared
with the right hand of the Pick’s theorem, so that when they are
equal, the region turns out not to include a hole.

4. Solution with SMT Solver

In the following subsections, we show another method for solv-
ing Slitherlink with using an SMT Solver. To solve the puzzle,
we give constraints to the SMT solver with formulation so that
the solution which satisfies the constraints becomes the desired
one. We explain how to formulate the constraints in detail. For
SMT solver, we used Z3 [8], which was developed by Microsoft
Research.

4.1 Variables
For an instance of the puzzle of N × M matrix, we consider

(N+2) × (M+2) matrix including the outside of the puzzle. We
consider an integer variable array ans[i][ j] which shows a solu-
tion of the puzzle, while we assign constraints to the array. As we
illustrated in Section 2.2, a link divides an area into two regions.
We give constraints for the SMT solver that ans[i][ j] shows “in-
side” if ans[i][ j] > 0 for a cell in i-th row and j-th column. When
a solution satisfying the constraints is given, the boundary of the
inside region should be the desired solution, or the resulting link,
for the given puzzle. In addition, we set a variable array element
problem[i][ j] for a cell in i-th row and j-th column as follows.

problem[i][ j] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n (if there is a digit in the cell)
−1 (no digit in the cell)
−2 (out of the cell)

(1)

n : the digit in i-th row, j-th column

4.2 Constraints for the Partial Condition
In this section, we describe how the constraints are given to

satisfy the Slitherlink partial condition.
For a cell with a digit “0”, as shown in Fig. 6, if the cell is in-

side, the upper, left, right and lower cells have to be also inside,
and if the cell is outside, the upper, left, right and lower cells have
to be also outside, that is, if problem[i][ j] == 0, then

( (ans[i − 1][ j] == 0) and (ans[i][ j − 1] == 0)

and (ans[i][ j] == 0) and (ans[i][ j + 1] == 0)

and (ans[i + 1][ j] == 0))

or ( (ans[i − 1][ j] > 0) and (ans[i][ j − 1] > 0)

and (ans[i][ j] > 0) and (ans[i][ j + 1] > 0)

and (ans[i + 1][ j] > 0))

This condition is described in Z3 with Python API as follows.
Here, SIZEROW and SIZECOLUMN are the sizes of the row and the
column including the outside of the puzzle , respectively.
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0 is written in a cell� �
cellnumber0 = [

Or(

Not(problem[i][j] == 0),

And(

(problem[i][j] == 0),

(ans[i-1][j] == 0), (ans[i][j-1] == 0),

(ans[i][j] == 0), (ans[i][j+1] == 0),

(ans[i+1][j] == 0)

),

And(

(problem[i][j] == 0),

(ans[i-1][j] > 0), (ans[i][j-1] > 0),

(ans[i][j] > 0), (ans[i][j+1] > 0),

(ans[i+1][j] > 0)

)

)

for i in range(1, SIZEROW-1)

for j in range(1, SIZECOLUMN-1)

]

� �
In the case of a cell in which 1 is written, as shown in Fig. 6,

there are eight combinations of patterns and attributes, of which
constraints are given as follows.
�1 is written in a cell �

cellnumber1 = [

Or(

Not(problem[i][j] == 1),

And(

(ans[i-1][j] > 0), (ans[i][j-1] == 0), (ans[i][j]

== 0), (ans[i][j+1] == 0), (ans[i+1][j] == 0)

),

And(

(ans[i-1][j] == 0), (ans[i][j-1] > 0), (ans[i][j]

== 0), (ans[i][j+1] == 0), (ans[i+1][j] == 0)

),

And(

(ans[i-1][j] == 0), (ans[i][j-1] == 0), (ans[i][j]

== 0), (ans[i][j+1] > 0), (ans[i+1][j] == 0)

),

And(

(ans[i-1][j] == 0), (ans[i][j-1] == 0), (ans[i][j]

== 0), (ans[i][j+1] == 0), (ans[i+1][j] > 0)

),

And(

(ans[i-1][j] == 0), (ans[i][j-1] > 0), (ans[i][j]

> 0), (ans[i][j+1] > 0), (ans[i+1][j] > 0)

),

And(

(ans[i-1][j] > 0), (ans[i][j-1] == 0), (ans[i][j]

> 0), (ans[i][j+1] > 0), (ans[i+1][j] > 0)

),

And(

(ans[i-1][j] > 0), (ans[i][j-1] > 0), (ans[i][j]

> 0), (ans[i][j+1] == 0), (ans[i+1][j] > 0)

),

And(

(ans[i-1][j] > 0), (ans[i][j-1] > 0), (ans[i][j]

> 0), (ans[i][j+1] > 0), (ans[i+1][j] == 0)

)

)

for i in range(1, SIZEROW-1)

for j in range(1, SIZECOLUMN-1)

]

� �
Similarly, in the case of a cell in which 2 is written, as shown

in Fig. 6, there are twelve combinations of patterns and attributes,
of which constraints are given as follows (For the limitation of

pages, we show a part of the code, but the omitted ones would be
easily constructed).
�2 is written in a cell �

cellnumber2 = [

Or(

Not(problem[i][j] == 2),

And(

(ans[i-1][j] > 0),

(ans[i][j-1] == 0), (ans[i][j] > 0),

(ans[i][j+1] > 0),

(ans[i+1][j] == 0), (ans[i+1][j-1] == 0)

),

And(

(ans[i-1][j] > 0),

(ans[i][j-1] > 0), (ans[i][j] > 0),

(ans[i][j+1] == 0), (ans[i+1][j] == 0),

(ans[i+1][j+1] == 0)

),

And(

(ans[i-1][j] == 0),

(ans[i][j-1] > 0), (ans[i][j] > 0),

(ans[i][j+1] == 0),

(ans[i+1][j] > 0), (ans[i-1][j+1] == 0)

),

And(

(ans[i-1][j] == 0),

(ans[i][j-1] == 0), (ans[i][j] > 0),

(ans[i][j+1] > 0),

(ans[i+1][j] > 0), (ans[i-1][j-1] == 0)

),

And(

#Omit other cases

)

)

for i in range(1, SIZEROW-1)

for j in range(1, SIZECOLUMN-1)

]

� �
Similarly, the case of a cell in which 3 is written is shown as

follows.�3 is written in a cell �

cellnumber3 = [

Or(

Not(problem[i][j] == 3),

And(

(ans[i-1][j] == 0),

(ans[i][j-1] == 0), (ans[i][j] > 0),

(ans[i][j+1] > 0), (ans[i+1][j] == 0),

(ans[i-1][j-1] == 0),

(ans[i+1][j-1] == 0)

),

And(

(ans[i-1][j] == 0),

(ans[i][j-1] == 0), (ans[i][j] > 0),

(ans[i][j+1] == 0),

(ans[i+1][j] > 0),

ans[i-1][j-1] == 0), (ans[i-1][j+1] == 0)

),

And(

(ans[i-1][j] == 0),

(ans[i][j-1] > 0), (ans[i][j] > 0),

(ans[i][j+1] == 0),

(ans[i+1][j] == 0), (ans[i-1][j+1] == 0),

(ans[i+1][j+1] == 0)
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),

And(

(ans[i-1][j] > 0),

(ans[i][j-1] == 0), (ans[i][j] > 0),

(ans[i][j+1] == 0),

(ans[i+1][j] == 0), (ans[i+1][j-1] == 0),

(ans[i+1][j+1] == 0)

),

And(

#Omit other cases

)

for i in range(1, SIZEROW-1)

for j in range(1, SIZECOLUMN-1)

]

� �
4.3 Rejecting Checker Pattern

We add constraints so that checker patterns such as in Fig. 15
are rejected. These constraints are described in Z3 with Python
API as follows.
�Reject Checker patterns �

checkerpattern1 = [

Not(

And((ans[i][j] == 0), (ans[i][j+1] > 0),

(ans[i+1][j] > 0), (ans[i+1][j+1] == 0)

)

)

for i in range(1, SIZEROW-2)

for j in range(1, SIZECOLUMN-2)

]

checkerpattern2 = [

Not(

And((ans[i][j] > 0), (ans[i][j+1] == 0),

(ans[i+1][j] == 0), (ans[i+1][j+1] > 0)

)

)

for i in range(1, SIZEROW-2)

for j in range(1, SIZECOLUMN-2)

]

� �
4.4 Checking Connectivity

Constraints for checking connectivity are provided as follows.
We assume there is at least one inside cell in the 1st row as de-
scribed in Section 3.3.1. In addition, we assign a constraint that
only one element among ans[1][ j] for j = 1 to M is “1”. When
the region is connected, all inside cells are connected to the cell
of which digit is 1. Therefore, we can assign to all inside cells, if
connected, ans values as follows. Any inside cell, c, has at least
one adjacent cell which has an ans value greater than c’s ans or
equal to 1.

Figure 18 shows an example of the values of ans[i][ j]. As

Fig. 18 Example values of ans[i][j].

shown in Fig. 18 (a), any inside cell has an adjacent cell of which
value of ans is greater than the cell’s ans value or equal to 1.
Whereas, Fig. 18 (b) illustrates the cell of “?” cannot be assigned
a value which satisfies the constraint above.

In summary, we give constraints for connectivity as follows.
Here, the value means the cell’s ans value.
( 1 ) Only one cell in the 1st row has the value of 1.
( 2 ) Any cell from the 2nd row to N-th row does not have the

value of 1.
( 3 ) Outside of the puzzle has the value of 0.
( 4 ) When a cell is inside, there is an adjacent cell of which value

is greater or 1.
These constraints are described in Z3 with Python API as fol-

lows.
Constraint No.1� �
exist1 = [

Or(

And((ans[1][1] == 1), Not(ans[1][2] == 1),

Not(ans[1][3] == 1), ...),

And(Not(ans[1][1] == 1), (ans[1][2] == 1),

Not(ans[1][3] == 1), ...),

...

#Omit other cases

]

� �
Constraint No.2� �
notone = [

Not(ans[i][j] == 1)

for i in range(2, SIZEROW-1)

for j in range(1, SIZECOLUMN-1)

]

� �
Constraint No.3� �
brim1 = [

(ans[0][j] == 0) for j in range(SIZECOLUMN)

]

brim2 = [

(ans[i][0] == 0) for i in range(SIZEROW)

]

brim3 = [

(ans[i][SIZECOLUMN-1] == 0) for i in range(SIZEROW)

]

brim4 = [

(ans[SIZEROW-1][j] == 0) for j in range(SIZECOLUMN)

]

� �
Constraint No.4� �
connectchk = [

Implies(

(ans[i][j] > 1),

Or(

(ans[i-1][j] > ans[i][j]),(ans[i][j-1] > ans[i][j]),

(ans[i][j+1] > ans[i][j]),(ans[i+1][j] > ans[i][j]),

(ans[i-1][j] == 1),(ans[i][j-1] == 1),

(ans[i][j+1] == 1),(ans[i+1][j] == 1)

)

)

for i in range(1, SIZEROW-1)

for j in range(1, SIZECOLUMN-1)

]

� �
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4.5 Checking a Hole
As we explained in Section 3.3.2, satisfying Pick’s theorem im-

plies the region does not have a hole. “S”, the size of the region,
is the number of cells of which the value of ans is positive. “i”,
the number of vertices which are inside the region, is obtained by
counting the number of vertices surrounded by inside cells. “b”,
the number of vertices which are on the boundary of the region,
is the number of horizontal edges and vertical edges. The number
of vertical edges are equal to the number of pairs of which the left
cell is inside and the right cell is outside, or the left cell is outside
and the right cell is inside. Similarly, the number of horizontal
edges are equal to the number of pairs of which the upper cell is
inside and the lower cell is outside, or the upper cell is outside
and the lower cell is inside. We add the constraint that S , i, and b

satisfy the formula of Pick’s theorem. This constraint is described
in Z3 with Python API as follows.

�Checking a Hole �

#Count the number of inside cells

for i in range(0, SIZEROW):

for j in range(0, SIZECOLUMN):

s.add(If(ans[i][j] > 0, incell[i*SIZECOLUMN+j] == 1,

incell[i*SIZECOLUMN+j] == 0))

s.add(n_inside == Sum(incell))

#Count the number of boundary edges

#vertical

for i in range(1, SIZEROW-1):

for j in range(0, SIZECOLUMN-1):

s.add(If(Or(And((ans[i][j] <= 0), (ans[i][j+1] > 0)),

And((ans[i][j] > 0), (ans[i][j+1] <= 0))),

edgev[i][j] == 1, edgev[i][j] == 0))

s.add(countedgev[0] == 0)

for i in range(1, SIZEROW-1):

s.add(countedgev[i] == Sum(edgev[i]))

s.add(n_edgev == Sum(countedgev))

#horizontal

for j in range(1, SIZECOLUMN-1):

for i in range(0, SIZEROW-1):

s.add(If(Or(And((ans[i][j] <= 0), (ans[i+1][j] > 0)),

And((ans[i][j] > 0), (ans[i+1][j] <= 0))),

edgeh[i][j] == 1, edgeh[i][j] == 0))

for i in range(0, SIZEROW-1):

s.add(edgeh[i][0] == 0)

for i in range(0, SIZEROW-1):

s.add(countedgeh[i] == Sum(edgeh[i]))

s.add(n_edgeh == Sum(countedgeh))

#n_edge

s.add(n_edge == (n_edgev + n_edgeh))

#Count internal vertices

for i in range(1, SIZEROW-2):

for j in range(1, SIZECOLUMN-2):

s.add(If(And((ans[i][j] > 0), (ans[i][j+1] > 0),

(ans[i+1][j] > 0), (ans[i+1][j+1] > 0)),

countinternal[(i-1)*(SIZECOLUMN-3)+(j-1)] == 1,

countinternal[(i-1)*(SIZECOLUMN-3)+(j-1)] == 0))

s.add(n_internal == Sum(countinternal))

#Confirm Pick’s theorem

#n_iside = n_internal + n_edge/2 -1

s.add((n_inside + n_inside)

== n_internal + n_internal + n_edge - 2)

� �

4.6 Solving the puzzle
With adding the constraints explained in the previous sections

to the SMT solver, Z3, we solve the puzzle. The procedure to
solve the puzzle is as follows.
( 1 ) Formulate the constraints described in the previous sections.
( 2 ) Create the solver by invoking the API.
( 3 ) Add the constraints to the solver.
( 4 ) If a solution is found, the solution is printed out, otherwise,

the fact that it is unsatisfied is printed out.

5. Evaluation

We show the evaluation result for solving Slitherlink with the
hardware solver and SMT solver. We implemented the hardware
solver on Xilinx Artix-7 FPGA(XC7A35T) with Xilinx Vivado
2018.3. The solver runs with a soft-processor of which archi-
tecture is MIPS instruction set. The running clock frequency is
50MHz. GCC 4.3.3 is used for the compiler. Table 7 shows the
resource usage in the FPGA device (with utilization rate in the
device).

The puzzles from No.1 to No.3 are from Ref. [17]. These three
puzzles are the same ones as those in the literature [14]. The
puzzles from No.4 to No.9 are chosen from Ref. [19] randomly.
“Puzzle Size” is the size of the puzzle (the number of rows × the
number of columns).

Table 8 shows execution times for the same puzzles as in Ta-
ble 7 by the hardware solver, the SMT solver, and a previous
research [3], [14] for comparison. In the literature [3], the authors
formulate the conditions for the puzzles and use integer program-
ming. The table includes, for the previous research, the aver-
age execution time only since they did not designate the puzzles
for each size. The SMT solver, Z3, runs on a PC with Core i7-
6500U CPU @ 2.50 GHz and RAM of 8 GBytes. For the hard-
ware solver, the time is from the reset of the processor to the
acquisition of the solution. For the SMT solver, the time is from
the beginning of the program to the acquisition of the solution.

Table 7 FPGA Resource Usage.

No Puzzle # of # of
Size LUTs FFs

1 [17] 10x10 3941(19.0%) 1542(3.7%)
2 [17] 10x10 4040(19.4%) 1542(3.7%)
3 [17] 10x10 4057(19.5%) 1566(3.8%)
4 [19] 10x10 4144(19.9%) 1594(3.8%)
5 [19] 10x10 4301(20.7%) 1602(3.9%)
6 [19] 10x10 4308(20.7%) 1606(3.9%)
7 [19] 10x10 4057(19.5%) 1566(3.8%)
8 [19] 10x10 4175(20.1%) 1590(3.8%)
9 [19] 10x10 4074(19.6%) 1562(3.8%)

Table 8 Execution Time (sec).

No. Puzzle SMT Hardware Previous
Size Solver Research

1 [17] 10x10 3.835 0.0011 0.116 [14]
2 [17] 10x10 3.850 0.4172 0.384 [14]
3 [17] 10x10 3.878 0.0014 0.060 [14]
4 [19] 10x10 5.536 0.0251 −
5 [19] 10x10 5.357 0.5234 −
6 [19] 10x10 5.407 0.0621 −
7 [19] 10x10 6.294 0.2214 −
8 [19] 10x10 5.510 0.1548 −
9 [19] 10x10 4.225 0.0142 −

Average Time 10 × 10 4.877 0.1578 0.104 [3]
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Table 9 Execution Time (sec).

No. Puzzle SMT Previous
Size Solver Researches

10 [16] 14 × 24 12.251 −
11 [16] 14 × 24 28.978 −

14 × 24 average 20.614 34.937 [3]
12 [18] 20 × 30 27.805 −
13 [18] 20 × 30 23.552 −
14 [18] 20 × 30 28.162 −

20 × 30 average 26.506 2372.7 [3]
15 [16] 20 × 36 26.200 −
16 [16] 20 × 36 1227.437 −

20 × 36 average 626.818 −
17 [20] 20 × 36 26.619 450 [20]
18 [17] 20 × 36 28.059 26.286 [14]

The unit is seconds. This result shows the hardware solver is over
30 times faster on average than the SMT solver, while the CPU in
the PC is 50 times faster than the CPU on the FPGA. In addition,
the average execution time with the hardware solver and that with
the previous research are almost same.

Table 9 shows the execution times for different sizes of puz-
zles by the SMT solver and other works [3], [14], [20]. No.10
and No.11 are the same as No.41 and No.73 in the literature [16],
respectively. No.12 to No.14 are No.31 to No.33 in the litera-
ture [18]. For the size of 20 × 36, No.15 and No.16 are No.74
and No.100 in the literature [16], respectively. In addition, we
used the same puzzle as that in the literature [20]. In the litera-
ture [3] and [20], they use Core i7 3.33 GHz and Let’s Note CF-
W5, respectively. No.18 is in the literature [17]. We evaluated
with the same puzzle as in the literature [14], which is a little
faster than ours, but their processor is AMD Opteron Processor
8393, 3.09 GHz with 512 GBytes memory, whereas our proces-
sor is Core i7 2.50 GHz with 8 GBytes memory.

We used the SMT solver, Z3, whose interface is Python API.
Since Python works in interpreter environment, there is a rela-
tively large overhead of the interpreter, so that execution time is
longer than the previous research for the size of 10×10. On the
other hand, puzzles with larger sizes take a relatively long time to
solve so that the interpreter overhead is hidden. We can conclude
that the proposed method is faster for puzzles of large sizes.

6. Related Work

Slitherlink has been studied and there are several related works.
In the literature [12], it is proved that deciding whether solutions
exist or not belongs to a NP-complete class. Additionally, it is
proved in the literature [13] that when a solution is found, decid-
ing whether another solution exists or not is NP-complete. In the
literature [3], they showed the puzzle can be formulated by using
integer programming and solved faster than the existing formu-
lation. In contrast, we proposed new two methods to solve the
puzzle, one of which is using hardware and the other of which is
using the SMT solver, and revealed that the puzzle can be solved
faster than the previous methods. In Ref. [14], a solution with
a zero-suppressed binary decision diagram (ZDD) is described.
We used the same puzzle as that used in the literature and we can
conclude that our method is faster considering the performance
of the processors used. In the literature [20], the solution with
Sugar (SAT-based Constraint Solver) is explained. We showed

our approach can solve the same puzzle faster than the solution in
the literature [20]. While the literature [2] describes methods for
applying a ruleset to solve the puzzle, the number of conditions
becomes large, so it takes five minutes for a puzzle of the size of
10×10. The literature [9] describes the way to solve the puzzle
by searching all cells and checking Slitherlink partial condition,
but they do not deal with the problem of eliminating the case of
multiple links.

There are several studies to solve other types of puzzles with
using FPGA. As for “Sudoku” puzzle, the literature [4], [10] re-
ported an application of FPGA to Sudoku puzzles.

7. Conclusion

This paper has proposed two methods to solve Slitherlink. One
is with hardware acceleration on an FPGA and the other is with
using an SMT solver, Z3.

We focused on determining inside or outside for each cell in-
stead of making a link. To confirm one link, we showed our meth-
ods for checking connectivity for hardware acceleration and a so-
lution with SMT solver, respectively. In addition, we explained a
way to confirm a region without a hole with Pick’s theorem.

We applied our solution to several puzzles. With hardware ac-
celeration, it takes 0.1578 seconds on average for solving 10 ×
10 puzzles, and with an SMT solver, our solution is faster than
previous researches in most cases.

Our approach for hardware acceleration and the way to deter-
mine whether a region is connected or has a hole can be used for
solving other problems. Applying these methods to other prob-
lems remains for our future work.
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