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Abstract: In this paper, we study the problem of gossiping with neighboring interference constraint in radio chain
networks. Gossiping (also called total exchange information) is a protocol where each node in the network has a
message and is expected to distribute its own message to every other node in the network. The gossiping problem
consists in finding the minimum running time (makespan) of a gossiping protocol and efficient algorithms that attain
this makespan. We focus on the case where the transmission network is a chain (directed path or line) network. We
consider synchronous protocols where it takes one unit of time (step) to transmit a unit-length message. During one
step, a node receives at most one message only through one of its two neighbors. We assume that during one step,
a node cannot be both a sender and a receiver (half duplex model). Moreover we have neighboring interference con-
straints under which a node cannot receive a message if one of its neighbors is sending. A round consists of a set of
non-interfering (or compatible) calls and uses one step. We completely solve the gossiping problem for Pn, the chain
network on n nodes, and give an algorithm that completes the gossiping in 3n − 5 rounds (for n > 3), which is exactly
the makespan.
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1. Introduction and Notations

The aim of this paper is to design optimal gossiping (or total
exchange information) protocols for chain networks with neigh-
boring interference constraints. This paper answers a problem
considered in Ref. [6] where readers can find further references
and motives. More precisely our transmission network is a chain
(also called line) modeled by a symmetric dipath Pn (symmetric
signifies that the communication here is bidirectional). The nodes
are labeled from 0 to n − 1, and each node i has a message also
denoted i. The arcs represent the possible communications. They
are in the form (i, i+1), 0 ≤ i ≤ n−2 and (i, i−1), 1 ≤ i ≤ n−1. In
a gossiping protocol, each node wants to distribute its own mes-
sage to every other node in the network. The network is assumed
to be synchronous and the time is slotted into steps. During a
step, a node receives at most one message only through one of its
neighbors. One important feature of our model is the assumption
that a node can either transmit or receive at most one message per
step. In particular, we do not allow concatenation of messages.

We will consider only useful (valid) calls in which the sender
sends a message to a receiver only if it is unknown to the receiver.
We can have two types of sendings as follows:
(a) via a (regular) call (i, i+1) (resp. (i, i−1)), in which the node
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i sends to the right (resp. to the left) i.e. to the node i + 1
(resp. i − 1) one message which is not known to the node
i + 1 (resp. i − 1)

(b) via a 2-call {i : i − 1, i + 1}, in which the node i sends at the
same time to both nodes i − 1 and i + 1 one message which
is not known to both nodes and so the message must be i.

We assume that each device is equipped with a half duplex in-
terface, i.e., a node can receive or send, but cannot both receive
and send during a step. Furthermore we use a primary node in-
terference model like the one used in Refs. [1], [2], [3], [6], [7].
In this model, when one node is transmitting, its own power pre-
vents any other signal from being properly received by its neigh-
bors (near-far effect of antennas). So two calls (s, r) and (s′, r′)
interfere if the distance between s and r′, d(s, r′) ≤ 1 or the dis-
tance between s′ and r, d(s′, r) ≤ 1. For example call (i, i+1) will
interfere with all the following calls (i−2, i−1), (i−1, i), (i+1, i),
(i + 1, i + 2), (i + 2, i + 1) and (i + 2, i + 3). Two non-interfering
calls will be called compatible. Therefore the two calls (s, r) and
(s′, r′) are compatible if d(s, r′) > 1 and d(s′, r) > 1. For example
call (i, i+ 1) is compatible with calls (i− 1, i− 2) and (i+ 3, i+ 2).
Only non-interfering (or compatible) calls can be performed in
the same step and we will define a round as a set of compatible
calls.

The gossiping problem consists in finding the minimum run-
ning time (makespan) of a gossiping protocol, i.e., the minimum
number Rn of rounds needed to complete the gossiping and to find
efficient algorithms that attain this makespan.

On problems related to information dissemination, we refer to
the survey in Ref. [4]. The gossiping problem has been studied
in both full duplex and half duplex models (i.e., without interfer-
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ences) with no bounds on the message size. A survey for gos-
siping with the interference model considered in this paper has
been completed as in Ref. [5] but most of the results concern un-
bounded message sizes and concatenation is allowed.

The gossiping problem with unit length messages and neigh-
boring interference (our model) was first studied in Ref. [6]. The
authors established that the makespans of gossiping protocols in
chain (called line) and ring networks with n nodes are 3n + Θ(1)
and 2n + Θ(1) respectively. They gave for general graphs an up-
per bound of O(nlog2n). This bound was improved in Ref. [8] to
O(nlogn) with the help of a probabilistic argument. In Ref. [3],
we completely solved the gossiping problem in radio ring net-
works with the same model (our results depend on the congruence
of n modulo 12).

Furthermore in Ref. [6], the authors proved for the chain Pn a
lower bound of 3n−6 and gave a sophisticated protocol in 3n+12
rounds. Here we determine exactly the minimum number Rn of
rounds needed to complete the gossiping when the transmission
network is a chain Pn on n nodes based on the model described
above (see Theorem 1). To our best knowledge no improvement
were made to these bounds since 2002 and the determination of
the exact value of Rn remains an unsolved problem. When we
tackled the problem some years ago, we quickly found a better
lower bound of 3n − 5 when n ≥ 4. We found also optimal pro-
tocols meeting this bound for small values of n, but were unable
to give a general protocol that works for all n. We were more
successful with rings, but the tools developed in Ref. [3] for rings
cannot be used for chains. Surprisingly the problem for chains ap-
pears to be very complicated due to the bottleneck in the middle
of the chain. Eventually, we succeeded in designing an optimal
protocol by developing new sophisticated tools.
Theorem 1 The minimum number Rn of rounds needed to com-

plete the gossiping in the chain network Pn (n ≥ 3) with the neigh-

boring interference model and unit length messages is

Rn =

⎧
⎪⎪⎨
⎪⎪⎩

3n − 5 if n ≥ 4
5 if n = 3.

Remark that for n = 3, Theorem 1 can be proven easily. We
have 6 calls to perform, and a round contains one call except for
the unique round containing the 2-call {1 : 0, 2}. Therefore at
least 5 rounds are needed. The following five calls will work:
{1 : 0, 2} with message 1, (0, 1) and (1, 2) with message 0, (2, 1)
and (1, 0) with message 2.
In the remainder of the paper we assume that n ≥ 4.

2. Lower Bound for n ≥ 4

Proposition 1 The minimum number Rn of rounds needed to

complete the gossiping in the chain network Pn (n ≥ 4), with

the neighboring interference model and unit length messages sat-

isfies Rn ≥ 3n − 5.

Proof. We first remark that for a given i, i+ 1 messages should be
transmitted via the call (i, i + 1) (namely the messages 0 ≤ j ≤ i)
and n− i− 1 messages via the call (i+ 1, i) (namely the messages
i + 1 ≤ j ≤ n − 1). So altogether, calls (i, i + 1) and (i + 1, i) are
used to transmit n messages. Consider n ≥ 4. From the remark,
in order to complete any gossiping scheme, there are 3n messages

that are needed to be transmitted using one of the six calls (0, 1),
(1, 0), (1, 2), (2, 1), (2, 3) and (3, 2): the message 0 over (0, 1), the
messages 1, 2, . . . , n − 1, over (1, 0), and similarly, two messages
over (1, 2), n − 2 messages over (2, 1), three messages over (2, 3)
and n − 3 messages over (3, 2), or 3n messages in total. Now we
will count the number of rounds needed to transmit the 3n mes-
sages using one of the 6 calls (0, 1), (1, 0), (1, 2), (2, 1), (2, 3), and
(3, 2). In general, a round contains at most one of these 6 calls,
except if the round is of the following four types in which case it
can contain two calls.
• type 1: a round with the unique 2-call {1 : 0, 2}. Note that

there is at most one such round.
• type 2: a round with the two calls (0, 1) and (3, 2). Note

that there is at most one such round since only one message
(namely that of 0) is transmitted on the arc (0, 1).

• type 3: a round with the unique 2-call {2 : 1, 3}.
• type 4: a round with the two calls (1, 0) and (2, 3).
For the rounds of type 3 and 4, we note that only three mes-

sages (namely messages 0, 1, 2) are transmitted via the call (2, 3)
and so we have at most 3 rounds of the last two types (one of type
3 and two of type 4, or three of type 4). So altogether among
the rounds needed to transmit the 3n messages using one of the 6
calls (0, 1), (1, 0), (1, 2), (2, 1), (2, 3), and (3, 2), we have at most
5 rounds with two of these 6 calls. So for n ≥ 4, we need at least
3n − 5 rounds. �

3. Upper Bound for n ≥ 4

Let p = �n/2�, n ≥ 4.
We will design in this section a protocol with 3n − 5 rounds.

In fact we will give an exhaustive and explicit description of each
round r, 1 ≤ r ≤ 3n− 5, by giving the set of calls contained in the
round. We will have 3 different phases in the protocol, where the
rounds will be grouped into sequences. In phase 1, we have a se-
quence S 0 of 3 rounds in which we will use all the 2-calls. Then,
in phase 2, we have p − 1 sequences of 4 rounds constructed in
a regular algorithmic manner and we will prove that at the end
of phase 2, all messages will arrive in the middle node p, while
nodes in the left part i.e., nodes i < p (resp. nodes in the right part
i > p) have received all the messages j < i (resp. j > i). Phase 3
will contain the last 3n− 5− 4p+ 1 rounds grouped in sequences
of 2 rounds. The protocol and the proof of its validity will depend
on the parity of n.

Note that though the protocol has some regularities, it is in-
volved and the proof of its validity is not easy. So it might be
helpful for this reason to first see that the protocols work well on
some examples. We will explain how to read the examples given
in the tables at the end of the article and point out some features
of the protocol and some of the difficulties we have encountered.
(Precise description of the rounds will be given in detail after-
wards).

Let us first follow the protocol on the examples given for
n = 12, 13, 14, 15 (in Table A·1, Table A·2, Table A·3, and Ta-
ble A·4). In these tables, line r corresponds to the round r, and
column i to the node i. To facilitate the reading of the tables,
we indicate in the cell (r, i) the value of the message received in
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round r by the node i. If the cell (r, i) is empty, it means that node
i is sending a message in round r (and so cannot receive one). If
the cell (r, i) contains a cross, it means that node i is neither send-
ing nor receiving at round r. In the description of the protocol
and in the proof we will give the set of calls contained in round
r. In the figures, the set of calls of a given round is not explicitly
indicated, but it can be easily deduced. Indeed if in the cell (r, i)
there is a value j > i (respectively j < i) then it implies that round
r contains the call (i + 1, i) (resp. the call (i − 1, i)). Furthermore,
we have indicated in the second column the value of the sequence
considered and in the third column the set of calls of the round r

(when it is written as a set Bk in a round of the sequence s, it
corresponds to the set Bk(s) described in the text).

As an example, consider the case n = 12 and the round r = 4.
In the cell (4, 2), there is a value 4 and so the round 4 contains
the call (3, 2) (transmitting the message 4 to node 2). In the cell
(4, 5), there is a 3, and this implies that round 4 contains the call
(4, 5) (transmitting the message 3 to node 5). Similarly round 4
contains the calls (7, 6) and (8, 9). Nodes 3, 4, 7, 8 are sending
and so the corresponding cells are empty. Nodes 0, 1, 10, 11 are
neither sending nor receiving so there is a cross in each of the
corresponding cells. In summary the round 4 consists of the calls
(3, 2), (4, 5), (7, 6) and (8, 9).

In the 3 first rounds (phase 1 or sequence S 0) all the 2-calls
appear. For example, in round 1 there is a 1 in cell (1, 0) and so
round 1 contains the call (1, 0), while in cell (0, 2) there is a 1
and this implies that round 1 also contains the call (1, 2). These 2
calls form the 2-call {1 : 0, 2}.

We note that these rounds do not necessarily have the max-
imum number of possible calls like round 4 for n = 12.
In fact the set of calls of this round is a subset of the set
A0 = {(0, 1), (3, 2), (4, 5), (7, 6), (8, 9), (11, 10)}, but calls (0, 1)
and (11, 10) are useless since they have no message to transmit.
However, we note that there is a regularity for the nodes in the
middle such as 5 and 6. Indeed, in phase 2, in each sequence of
4 rounds S s (containing rounds 4s, 4s + 1, 4s + 2, 4s + 3) with
s = 1, 2, 3, 4, node 5 (or 6) receives one message from its left
neighbor, one message from its right neighbor and sends both to
its left and right neighbors. That is the same for the sequence
S 5 except in round 21 there is no call (4, 5), as node 5 already
receives all the messages j ≤ 4. So at the end of phase 2 (end
of round 23) nodes 5 and 6 have received all the messages. The
situation is different for nodes in the left part (or right part). For
example consider node 0. It has only its own message to send
and it was sent in round 3. So in further rounds there will be no
more useful calls via (0, 1). In contrary, node 0 should receive
messages from 1 to n − 1 via the call (1, 0). In order to have the
protocol end with a total number of 3n − 5 rounds, node 0 should
receive on average one message every 3 rounds. That is correct
for the sequence S 0 of phase 1 consisting of 3 rounds, however
the other sequences in phase 2 have 4 rounds. To obtain this aver-
age of 3 receptions, we impose 4 receptions during 3 consecutive
sequences. For example, node 0 should receive only one message
in 2 sequences, and two messages in the third sequence (in the
protocol, node 0 receives two messages in sequence S 2 and S 5

and so on). We can see the difference between n even and odd. If

n is even, node 0 receives two messages in rounds 9 and 10 of the
sequence S 2, while if n is odd, it receives two messages in rounds
8 and 11.

Other difficulties and tools will be described in the following
text. Already we note the importance of the order of the rounds
inside a sequence of phase 2. For example in the sequence S 2, the
round containing the set of calls B3(2) (indicated in the example
as round 8) should be completed before the round containing the
set of calls B2(2) (indicated as round 10). Otherwise, if we do
in the sequence S 2 the rounds B1(2) and B2(2) before the round
B3(2), we cannot transmit the message 4 via the call (1, 0) since
it will not arrive at node 1 on time. We can check in the figures
that when a message j is sent in some round r to node i via the
call (i+ 1, i), it has already arrived in node i+ 1 in a round before
r. So we have to describe not only the calls included in a round
but also verify that they have some new message to transmit and
therefore a very careful analysis is needed.

Remark that in what follows we will assume that the nodes
mentioned are all in the range [0, n − 1]. For example, if a node
i − 1 is used, then implicitly we assume that 1 ≤ i ≤ n − 1.

3.1 Phase 1 (Sequence S0)
In the first 3 rounds we do all the 2-calls {i : i − 1, i + 1}. For

the two end nodes 0 and n − 1, the 2-calls are reduced to the reg-
ular calls (0, 1) and (n − 1, n − 2). More precisely, the rounds
r = 1, 2, 3 of the sequence S 0 consist of the sets Rr of 2-calls
Rr = {3 j + r : 3 j + r − 1, 3 j + r + 1} for 0 ≤ 3 j + r ≤ n − 1.
Claim 2 After the first 3 rounds each node 1 ≤ i ≤ n − 2 has

received the two messages i − 1 and i + 1. Node 0 has received

the message 1 and node n − 1 the message n − 2.

Proof. The claim follows from the fact that in one of the 3 rounds,
each node i, 0 ≤ i ≤ n − 1 is the sender of a 2-call, while in an-
other round node i, 1 ≤ i ≤ n − 1 is the receiver of the 2-call with
sender i − 1 and in another round node i, 0 ≤ i ≤ n − 2 is the
receiver of the 2-call with sender i + 1. �

3.2 Phase 2
Here, we will do sequences S s of 4 rounds 4s, 4s + 1, 4s + 2,

and 4s + 3 for 1 ≤ s ≤ p − 1. The first idea is to make the maxi-
mum number of alternating calls. More precisely, if (i, i+1) (resp.
(i, i − 1)) is a call in a round, then so is the call (i + 3, i + 2) (resp.
(i + 1, i + 2)), if it exists.

Recall that a round is defined by the set of (compatible) calls it
contains. In what follows we use the shortened notation “round
A” to mean “round containing the set A of calls”. We will mainly
use rounds obtained from the following 4 rounds Ak, 0 ≤ k ≤ 3,
where the subscript k indicates that node k sends to the right via
the call (k, k + 1).
• Round A0 contains the set A0 of calls (4 j, 4 j + 1), 0 ≤ 4 j ≤

n − 2 and (4 j + 3, 4 j + 2), 0 ≤ 4 j ≤ n − 4.
• Round A1 contains the set A1 of calls (4 j + 1, 4 j + 2),

0 ≤ 4 j ≤ n − 3 and (4 j + 4, 4 j + 3), 0 ≤ 4 j ≤ n − 5.
• Round A2 contains the set A2 of calls (4 j + 2, 4 j + 3),

0 ≤ 4 j ≤ n − 4 and (4 j + 1, 4 j), 0 ≤ 4 j ≤ n − 2.
• Round A3 contains the set A3 of calls (4 j + 3, 4 j + 4),

0 ≤ 4 j ≤ n − 5 and (4 j + 2, 4 j + 1), 0 ≤ 4 j ≤ n − 3.
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Note that rounds A0 and A2 (and also A1 and A3) contain sym-
metric calls. Furthermore, during the 4 rounds, each node differ-
ent from 0, 1, n − 2, n − 1, is exactly once a receiver from the left,
once a receiver from the right, once a sender to the left, and once
a sender to the right.
3.2.1 Sequence S1

The sequence S 1 (rounds 4 to 7) will consist of the set of 4
rounds {A0, A1, A2, A3}. We can do them in any order not neces-
sarily (A0, A1, A2, A3).
Claim 3 During the sequence S 1 (rounds 4 to 7), each node

2 ≤ i ≤ n − 3 receives messages i − 2 and i + 2. Node 0 re-

ceives message 2, node 1 receives message 3, node n− 2 receives

message n − 4, and node n − 1 message n − 3.

Proof. The claim follows from the fact that each node i (except
0, 1, n − 2, n − 1) receives in one of the 4 rounds message i − 2
and in another round, message i+2. For example node 3 receives
message 1 via the call (2, 3) in round A2 and message 5 via the
call (4, 3) in round A1. Note that during sequence S 1, the calls
(0, 1) and (n − 1, n − 2) are useless since node 0 (resp. n − 1) has
no message to send to 1 (resp. n − 2). Therefore, node 1 receives
only message 3 and node n − 2 only message n − 4. Finally, node
0 (resp. n − 1) receives only message 2 (resp. n − 3) because it is
an end node of the chain. �
3.2.2 Idea of the Protocol for a General Sequence Ss

A simple protocol will consist in repeating the sequence S 1, a
total of n− 3 times. This protocol will complete in 4n− 5 rounds,
which is not optimal. This is not surprising since many calls be-
come useless in the process, specifically in the sth sequence these
are the calls (i − 1, i) with i ≤ s and ( j + 1, j) with j ≥ n − s. For
example, for s = 2, calls (0, 1), (1, 2), (n−2, n−3), (n−1, n−2) are
useless. Therefore, we will construct the sequence S s by keeping
only the middle part of the set Ak and deleting useless calls and
adding some valid calls on both sides. These added calls will be
all directed to the left (resp. right) in the left (resp. right) part.
However we will see that in order that these modifications give
valid rounds, we will have to choose a suitable order for the mod-
ified rounds.

Let us first define the sequence S 2 (rounds 8 to 11) and then S 3

(rounds 12 to 15) before defining the general sequence S s.
3.2.3 Sequence S2

Note that call (1, 2) is now useless since node 1 has no new
message to transmit to node 2. We know that call (1, 2) appears
in round A1. So we will delete the call (1, 2) in A1 and add a call
(1, 0) and this will bring a message to node 0. We do the same
modification for the useless call (n − 2, n − 3). More precisely, if
we let n ≡ γ (mod 4), then the call (n − 2, n − 3) appears in the
round Aγ−1.

For example, for n = 12, call (10, 9) appears in round A3, while
for n = 13, call (11, 10) appears in round A0. We will delete the
call (n − 2, n − 3) in Aγ−1 and add a call (n − 2, n − 1) which will
bring a message to node n − 1.

In the rest of the paper, we will use the notation Bk(s) for the
4 rounds of the sequence S s where the value k is always taken
modulo 4. We first construct Bk(2) by modifying the Ak as ex-
plained above. Then we will see that the order in which we do
the 4 rounds of S 2 is important and that only some orders are

valid.
Construction of the rounds Bk(2) of S2

B0(2) is obtained from A0 by deleting call (0, 1). Furthermore,
when γ = 1, we also delete call (n − 2, n − 3) and add call
(n − 2, n − 1), and when γ = 0, we delete (n − 1, n − 2).

B1(2) is obtained from A1 by deleting call (1, 2) and adding call
(1, 0). Furthermore, when γ = 2, we also delete call (n − 2, n − 3)
and add call (n−2, n−1), and when γ = 1, we delete (n−1, n−2).

B2(2) = A2, except when γ = 3, we delete call (n−2, n−3) and
add call (n − 2, n − 1), and when γ = 2, we delete (n − 1, n − 2).

B3(2) = A3, except when γ = 0, we delete call (n−2, n−3) and
add call (n − 2, n − 1), and when γ = 3, we delete (n − 1, n − 2).

Constraints on the order of the rounds Bk(2) of the se-
quence S2

In the sequence S 2, we now have two calls (1, 0), one in round
B2(2) and the other that was added in round B1(2), and these
should transmit two new messages to node 0 namely messages
3 and 4. Node 1 knows the message 3 at the end of sequence S 1,
but it receives message 4 only in round B3(2). So the order in
which we will do the 4 rounds of sequence S 2 is important. For
example, the order (B0(2), B1(2), B2(2), B3(2)) will not be valid.
In a valid order, round B3(2) should be completed before at least
one of the two rounds B1(2) and B2(2). We express this fact by
noting that the order ≺ on the rounds should satisfy the following
constraint.

B3(2) ≺ max{B1(2), B2(2)}

Similarly, in the sequence S 2, we now have two calls (n−2, n−1)
in rounds Bγ−1(2) and Bγ−2(2) (where we recall that n ≡ γ (mod
4) and the subscripts of the B are integers modulo 4). These two
calls should transmit two new messages to node n − 1, namely
messages n − 4 and n − 5. Node n − 2 knows the message n − 4
at the end of sequence S 1, but it receives message n − 5 only in
round Bγ−3(2) and so the order ≺ on the rounds should satisfy the
following constraint.

Bγ−3(2) ≺ max{Bγ−1(2), Bγ−2(2)}

Note that if the two constraints above are satisfied, all the calls
in any round are valid. There are many orders satisfying these two
constraints (see analysis for the general case). We can choose the
following orders (used in the tables for n = 12, 13, 14, 15):
⎧
⎪⎪⎨
⎪⎪⎩

(B3(2), B1(2), B2(2), B0(2)) if n is even (γ = 0 or 2)
(B2(2), B3(2), B0(2), B1(2)) if n is odd (γ = 1 or 3)

Messages received during the sequence S2

We summarize the status of messages received in sequence S 2

in the following claim.
Claim 4 There exists an order of the 4 rounds Bk(2) of sequence

S 2 (rounds 8 to 11) such that, during the sequence S 2, each node

3 ≤ i ≤ n− 2 has received message i− 3, each node 1 ≤ i ≤ n− 4
has received message i + 3, node 0 has received messages 3 and

4, and node n − 1 has received messages n − 4 and n − 5.

Proof. The claim follows from the fact that for node 3 ≤ i ≤ n−4,
the calls are those of the Ak and so each node in one of the 4
rounds receives a new message from the left, namely message
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i− 3 and in another round receives a new message from the right,
namely message i + 3. Node 1 (resp. 2) receives only message 4
(resp. 5) from the right and node n − 3 (resp. n − 2) receives only
message n− 6 (resp. n− 5) from the left. As we have seen above,
node 0 (resp. n − 1) receives two messages 4 and 5 (resp. n − 4
and n − 5). But that is possible only if the order ≺ on the rounds
satisfies the two constraints given above. �
3.2.4 Sequence S3

Construction of the rounds Bk(3) of S3

We have now more useless calls such as (0, 1), (1, 2), (2, 3), (n−
1, n−2), (n−2, n−3), (n−3, n−4). We will delete them, and add
some more calls as in S 2. In Bk(3) we will keep only the calls of
Ak involving nodes inside [4, n − 5]. We denote these calls in the
middle part by Ak[4, n − 5].

For example, for s = 3 and n = 13:

A0[4, 8] = {(4, 5), (7, 6), (8, 9)},
A1[4, 8] = {(4, 3), (5, 6), (8, 7)},
A2[4, 8] = {(5, 4), (6, 7), (9, 8)},
A3[4, 8] = {(3, 4), (6, 5), (7, 8)}.
The rounds Bk(3) will be in the form

Bk(3) = {Lk(3), Ak[4, n − 5],Rk(n − 4)}
where the indices k are taken modulo 4.

The left part Lk(3) is defined to be a set containing the call
(i, i − 1) (i ≤ 3), which does not interfere with the call of
Ak[4, n−5] involving node 4, and where, furthermore, i is chosen
to be the maximum. Similarly the right part Rk(n − 4) is defined
to be a set containing the call ( j, j + 1) ( j ≥ n − 4) which does
not interfere with the call of Ak[4, n − 5] involving node n − 5,
and where, furthermore, j is chosen to be the minimum. There-
fore, as call (4, 5) appears in A0[4, n − 5], L0(3) = (3, 2), as call
(4, 3) appears in A1[4, n − 5], L1(3) = (1, 0), as call (5, 4) ap-
pears in A2[4, n − 5], L2(3) = (2, 1), and as call (3, 4) appears in
A3[4, n − 5], L3(3) = (2, 1).

Similarly (recall that n ≡ γ (mod 4)), as call (n−5, n−6) appears
in Aγ[4, n−5], Rγ(n−4) = (n−4, n−3), as call (n−4, n−5) appears
in Aγ+1[4, n− 5], Rγ+1(n− 4) = (n− 3, n− 2), as call (n− 6, n− 5)
appears in Aγ+2[4, n − 5], Rγ+2(n − 4) = (n − 3, n − 2), and as call
(n−5, n−4) appears in Aγ−1[4, n−5], Rγ−1(n−4) = (n−2, n−1).

For example for s = 3 and n = 13 (γ = 1) we get:

B0(3) = {(3, 2), (4, 5), (7, 6), (8, 9), (11, 12)},
B1(3) = {(1, 0), (4, 3), (5, 6), (8, 7), (9, 10)},
B2(3) = {(2, 1), (5, 4), (6, 7), (9, 8), (10, 11)}, and

B3(3) = {(2, 1), (3, 4), (6, 5), (7, 8), (10, 11)}.
Constraints on the order of the rounds Bk(3) of the se-

quence S3

In the sequence S 3, we now have two calls (2, 1) in rounds
B2(3) and B3(3), which should transmit two messages to node 1
namely messages 5 and 6. Node 2 knows the message 5 at the end
of sequence S 2, but it receives message 6 only in round B0(3). So
B0(3) should be completed before at least one of the two rounds
B2(3) and B3(3). Therefore the following constraint should be

satisfied.

B0(3) ≺ max{B2(3), B3(3)}

Node 1 does not know at the end of S 2 the message 5, but it
should transmit it to node 0 in round B1(3). It receives this mes-
sage in the first of the two rounds {B2(3), B3(3)}. So at least one
of the two rounds B2(3) and B3(3) should be completed before
B1(3). We express this fact by noting that the order ≺ on the
rounds should satisfy the following constraint.

min{B2(3), B3(3)} ≺ B1(3)

Similarly, in the sequence S 3, we now have
• two calls (n − 3, n − 2) in rounds Bγ+1(3) and Bγ+2(3) which

should transmit two messages to node n−2 namely messages
n − 6 and n − 7,

• one call (n − 4, n − 3) in round Bγ(3) which should transmit
message n − 7, and

• one call (n−2, n−1) in round Bγ−1(3) which should transmit
message n − 6.

Node n − 3 knows the message n − 6 at the end of sequence
S 2, but it receives message n − 7 only in round Bγ(3). So Bγ(3)
should be completed before at least one of the two rounds Bγ+1(3)
and Bγ+2(3). Therefore we should have the following.

Bγ(3) ≺ max{Bγ+1(3), Bγ+2(3)}

Node n − 2 does not know at the end of S 2 the message n − 6,
but should transmit it in round Bγ−1(3). It receives this message
in the first of the two rounds {Bγ+1(3), Bγ+2(3)}. So at least one of
the two rounds Bγ+1(3) and Bγ+2(3) should be completed before
Bγ−1(3). Therefore we should have the following.

min{Bγ+1(3), Bγ+2(3)} ≺ Bγ−1(3)

Note that there are many orders satisfying the four constraints
above (see analysis for the general case). We can choose for ex-
ample the following orders according to the values of n.
⎧
⎪⎪⎨
⎪⎪⎩

(B0(3), B2(3), B3(3), B1(3)) if n is even (γ = 0 or 2)
(B3(3), B0(3), B1(3), B2(3)) if n is odd (γ = 1 or 3)

Messages received during the sequence S3

We summarize the status of messages received in sequence S 3

in the following claim.

Claim 5 There exists an order of the 4 rounds Bk(3) of sequence

S 3 (rounds 12 to 15) (for example those defined above), such that

during the sequence S 3, each node 4 ≤ i ≤ n − 3 has received

message i − 4, each node 2 ≤ j ≤ n − 5 message j + 4, node 0
message 5, node 1 messages 5 and 6, node n − 1 message n − 6,

and node n − 2 messages n − 6 and n − 7.

Proof. The claim follows from the fact that for node 4 ≤ i ≤ n−5,
the calls involved are those of Ak, and so node i receives a new
message from the left, namely message i−4 in one of the 4 rounds
and receives a new message from the right, namely message i+ 4
in another round. Node 2 (resp. 3) receives only message 6 (resp.
7) from the right and node n−4 (resp. n−3) receives only message
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n − 8 (resp. n − 7) from the left. As we have seen above, node
1 (resp. n − 2) receives two messages 5 and 6 (resp. n − 6 and
n− 7). But that is possible only if the order ≺ on the rounds satis-
fies the two “max-constraints” given above. Node 0 (resp. n − 1)
receives message 5 (resp. n − 6) but this is possible only if the
order ≺ on the rounds satisfies the two “min-constraints” given
above. In summary, for any order satisfying the four constraints
(see example above), the claim is true. �
3.2.5 Sequence Ss

Just as for s = 3, the rounds Bk(s) will consist of 3 parts: one
left part Lk(s)with a set of calls all directed to the left, a middle
part Ak[s + 1, n − 2 − s], and a right part Rk(n − 1 − s) with a set
of calls all directed to the right. We will have similar constraints
on the orders of the rounds and we will see that there exist two
canonical orders according to the parity of n. We next precisely
define these 3 parts.

Construction of the rounds Bk(s) of Ss

For a general s, we note (see Claim 6) that at the end of
the sequence S s−1, the nodes 1 ≤ i ≤ s have received all the
messages from the left (that is messages j ≤ i), while nodes
n − s − 1 ≤ i ≤ n − 2 have received all the messages from the
right (that is messages j ≥ i). Therefore, in the rounds Ak, such
as for s = 2, 3, there are many useless calls in particular the calls
(s − 1, s) and (n + 1 − s, n − s) which were useful in the preced-
ing sequence. So in Bk(s), we will keep only the set of calls of Ak

with a sender or a receiver in the interval [s+1, n−2− s], denoted
by Ak[s + 1, n − 2 − s].

For example for s = 11 and n = 32,

A0[12, 19] = {(12, 13), (15, 14), (16, 17), (19, 18)},
A1[12, 19] = {(12, 11), (13, 14), (16, 15), (17, 18), (20, 19)},
A2[12, 19] = {(13, 12), (14, 15), (17, 16), (18, 19)},
A3[12, 19] = {(11, 12)(14, 13), (15, 16), (18, 17), (19, 20)}.
We will do the sequence S s till s = p − 1. For s = p − 1,

when n = 2p + 1 is odd, then s + 1 = n − 2 − s and the interval
[s + 1, n − 2 − s] is reduced to the node p. For s = p − 1, when
n = 2p is even, then s + 1 > n − 2 − s and in this particular case
the middle part will be empty.

Having defined the set of calls in the middle part, we now con-
struct the calls in the left (resp. right) part of Bk(s) denoted by
Lk(s) (resp. Rk(n−1− s)). Here, Bk(s) is obtained by the concate-
nation of these three sets

Bk(s) = {Lk(s), Ak[s + 1, n − 2 − s],Rk(n − 1 − s)}
Recall that all the indices k are taken modulo 4.

For the left part, in order to have the maximum number of calls,
we will first put in Lk(s) the call (imax, imax − 1), where imax is
the greatest integer ≤ s such that the call (imax, imax − 1) does
not interfere with the call in Ak[s + 1, n − 2 − s] involving node
s + 1. Then we add in Lk(s) the calls (imax − 3 j, imax − 3 j − 1) for
0 ≤ 3 j ≤ imax − 1. These calls are not pairwise interfering since
nodes imax − 3 j − 2 do nothing (such idle nodes are indicated by
an × in the tables). In the example given before with s = 11, the
call of A0[12, 19] involving node 12 is (12, 13), so imax = 11 and
we get L0(11) = {(11, 10), (8, 7), (5, 4), (2, 1)}.

Let s ≡ α (mod 4).
The call (s + 2, s + 1) appears in Aα−1[s + 1, n − 2 − s]. In that

case, imax = s − 1 and we get

Lα−1(s) = {(s − 3 j − 1, s − 3 j − 2)} 0 ≤ 3 j ≤ s − 2.

The call (s, s + 1) appears in Aα[s + 1, n − 2 − s]. In that case,
we also have imax = s − 1 and so Lα(s) = Lα−1(s) and we get

Lα(s) = {(s − 3 j − 1, s − 3 j − 2)} 0 ≤ 3 j ≤ s − 2.

The call (s + 1, s + 2) appears in Aα+1[s + 1, n − 2 − s]. In that
case, imax = s and we get

Lα+1(s) = {(s − 3 j, s − 3 j − 1)} 0 ≤ 3 j ≤ s − 1.

The call (s+ 1, s) appears in Aα+2[s+ 1, n− 2− s]. In that case,
imax = s − 2 and we get

Lα+2(s) = {(s − 3 j − 2, s − 3 j − 3)} 0 ≤ 3 j ≤ s − 3.

In the example with s = 11 (≡ 3 (mod 4), or α = 3), we have:

L2(11) = {(10, 9), (7, 6), (4, 3), (1, 0)},
L3(11) = {(10, 9), (7, 6), (4, 3), (1, 0)},
L0(11) = {(11, 10), (8, 7), (5, 4), (2, 1)}, and

L1(11) = {(9, 8), (6, 5), (3, 2)}.

For the right part, we do a similar construction obtained by
symmetry (node i is replaced by the node n − 1 − i and the
calls are in the opposite direction). More precisely, in order to
have the maximum number of calls, we will first put the call
(imin, imin + 1) in Rk(n − 1 − s), where imin is the smallest inte-
ger ≥ n − 1 − s such that the call (imin, imin + 1) does not interfere
with the call in Ak[s + 1, n − 2 − s] involving node n − 2 − s.
Then we add in Rk(n − 1 − s) the calls (imin + 3 j, imin + 3 j + 1)
for 0 ≤ 3 j ≤ n − 2 − imin. These calls are not pairwise interfering
since the nodes imin + 3 j + 2 do nothing (such idle nodes are in-
dicated by an × in the tables). In the example given before with
s = 11, n = 32 and so n − 2 − s = 19, the call of A0[12, 19]
involving node 19 is (19, 18). Therefore imin = 20 and we get
R0(20) = {(20, 21), (23, 24), (26, 27), (29, 30)}.

Let n − 1 − s ≡ β (mod 4). (In the preceding subsections we
use n ≡ γ (mod 4), so for s = 2, γ = β − 1 and for s = 3, γ = β).

The call (n − s − 3, n − s − 2) appears in Aβ+2[s + 1, n − 2 − s].
In that case, imin = n − s and we get

Rβ+2(n− 1− s) = {(n− s+ 3 j, n− s+ 3 j+ 1)} 0 ≤ 3 j ≤ s− 2.

The call (n − s − 1, n − s − 2) appears in Aβ+1[s + 1, n − 2 − s].
Here again imin = n − s and so, Rβ+1(n − 1 − s) = Rβ+2(n − 1 − s)
and we get

Rβ+1(n− 1− s) = {(n− s+ 3 j, n− s+ 3 j+ 1)} 0 ≤ 3 j ≤ s− 2.

The call (n− s− 2, n− s− 3) appears in Aβ[s+ 1, n− 2− s]. In
that case, imin = n − s − 1 and we get

Rβ(n − 1 − s) = {(n − s + 3 j − 1, n − s + 3 j)} 0 ≤ 3 j ≤ s − 1.
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The call (n − s − 2, n − s − 1) appears in Aβ−1[s + 1, n − 2 − s].
In that case, imin = n − s + 1 and we get

Rβ−1(n−1− s) = {(n− s+3 j+1, n− s+3 j+2)} 0 ≤ 3 j ≤ s−3.

In the example with n = 32 and s = 11, n − 1 − s = 20 (≡ 0
(mod 4), or β = 0) we have:

R2(20) = {(21, 22), (24, 25), (27, 28), (30, 31)}
R1(20) = {(21, 22), (24, 25), (27, 28), (30, 31)},
R0(20) = {(20, 21), (23, 24), (26, 27), (29, 30)}, and

R3(20) = {(22, 23), (25, 26), (28, 29)}.

If we concatenate the values obtained for the example for
Lk(11), Ak[12, 19], and Rk(20) we get the following Bk(s).
B0(11) = {L0(11), A0[12, 19],R0(20)} = {(11, 10), (8, 7), (5, 4),
(2, 1), (12, 13), (15, 14), (16, 17), (19, 18), (20, 21), (23, 24),
(26, 27), (29, 30)}.

B1(11) = {L1(11), A1[12, 19],R1(20)} = {(9, 8), (6, 5), (3, 2),
(12, 11), (13, 14), (16, 15), (17, 18), (20, 19), (21, 22), (24, 25),
(27, 28), (30, 31)}.

B2(11) = {L2(11), A2[12, 19],R2(20)} = {(10, 9), (7, 6), (4, 3),
(1, 0), (13, 12), (14, 15), (17, 16), (18, 19), (21, 22), (24, 25), (27,
28), (30, 31)}.

B3(11) = {L3(11), A3[12, 19],R3(20)} = {(10, 9), (7, 6), (4, 3),
(1, 0), (11, 12), (14, 13), (15, 16), (18, 17), (19, 20), (22, 23), (25,
26), (28, 29)}.

Constraints on the order of the rounds Bk(s) of the se-
quence Ss

Just as for the case s = 3, for s ≡ α (mod 4), the calls
{(s − 3 j − 1, s − 3 j − 2)}, 0 ≤ 3 j ≤ s − 2 appear twice namely in
rounds Bα−1(s) and Bα(s) in which two messages should be trans-
mitted. But node s − 3 j − 1 has only one message and receives
the second one via the call {(s − 3 j, s − 3 j − 1)} in round Bα+1(s),
and so we have the following constraint on the orders.

Bα+1(s) ≺ max{Bα−1(s), Bα(s)}

Furthermore, in round Bα+2(s), node s − 3 j − 2 has to transmit
the message received via one of the two calls {(s−3 j−1, s−3 j−2)}
and so we have the second constraint.

min{Bα−1(s), Bα(s)} ≺ Bα+2(s)

Similarly, in the right part, for n − 1 − s ≡ β (mod 4), the calls
{(n− s+ 3 j, n− s+ 3 j+ 1)} (0 ≤ 3 j ≤ s− 2) appear twice, namely
in rounds Bβ+2(s) and Bβ+1(s) in which two messages should be
transmitted. But node n − s − 3 j has only one message and it
receives the second one via the call {(n− s− 3 j− 1, n− s− 3 j)} in
round Bβ(s). So we have the following constraint on the orders.

Bβ(s) ≺ max{Bβ+1(s), Bβ+2(s)}

Furthermore, in round Bβ−1(s), nodes n − s + 3 j + 1 (0 ≤ 3 j ≤
s − 2) have to transmit the message received via one of the two
calls {(n − s + 3 j, n − s + 3 j + 1)}, and so we have the second
constraint.

min{Bβ+1(s), Bβ+2(s)} ≺ Bβ−1(s)

Let us now determine the orders that satisfy the 4 constraints
above.

Recall that s ≡ α (mod 4) and n − 1 − s ≡ β (mod 4). We
will see that there are two cases: β has the same parity as α which
happens when n is odd, and β has a different parity as α which
happens when n is even.
• When n is even, then β has a different parity from α.

If β ≡ α + 1 (mod 4) or β ≡ α + 3 (mod 4), we have four
orders which satisfy the 4 constraints as follows:

(Bα+1(s), Bα−1(s), Bα(s), Bα+2(s)),

(Bα+1(s), Bα−1(s), Bα+2(s), Bα(s)),

(Bα−1(s), Bα+1(s), Bα(s), Bα+2(s)),

(Bα−1(s), Bα+1(s), Bα+2(s), Bα(s)).

We choose the first one for n even, then show it with the
value of s (and α).

(B1(s), B3(s), B0(s), B2(s)) for s ≡ 0 (mod 4) (α = 0)

(B2(s), B0(s), B1(s), B3(s)) for s ≡ 1 (mod 4) (α = 1)

(B3(s), B1(s), B2(s), B0(s)) for s ≡ 2 (mod 4) (α = 2)

(B0(s), B2(s), B3(s), B1(s)) for s ≡ 3 (mod 4) (α = 3)

• When n is odd, then β has the same parity as α.
If β ≡ α (mod 4), we have six orders which satisfy the 4
constraints as follows:

(Bα(s), Bα+1(s), Bα+2(s), Bα−1(s)),

(Bα(s), Bα+1(s), Bα−1(s), Bα+2(s)),

(Bα+1(s), Bα(s), Bα+2(s), Bα−1(s)),

(Bα+1(s), Bα(s), Bα−1(s), Bα+2(s)),

(Bα+1(s), Bα−1(s), Bα(s), Bα+2(s)),

(Bα(s), Bα+2(s), Bα+1(s), Bα−1(s)).

If β ≡ α + 2 (mod 4), we have four orders which satisfy the
4 constraints as follows:

(Bα(s), Bα+1(s), Bα+2(s), Bα−1(s)),

(Bα(s), Bα+2(s), Bα+1(s), Bα−1(s)),

(Bα−1(s), Bα+1(s), Bα+2(s), Bα(s)),

(Bα−1(s), Bα+2(s), Bα+1(s), Bα(s)).

We select one of these orders that applies to both cases (the
first one), and show it with the value of s (and α).

(B0(s), B1(s), B2(s), B3(s)) for s ≡ 0 (mod 4) (α = 0)

(B1(s), B2(s), B3(s), B0(s)) for s ≡ 1 (mod 4) (α = 1)

(B2(s), B3(s), B0(s), B1(s)) for s ≡ 2 (mod 4) (α = 2)

(B3(s), B0(s), B1(s), B2(s)) for s ≡ 3 (mod 4) (α = 3)

Messages received during the sequence Ss

We summarize the status of messages received in sequence S s

in the following claim.
Claim 6 There exists an order of the 4 rounds Bk(s) of sequence

S s (rounds 4s to 4s+3), namely (Bα+1(s), Bα−1(s), Bα(s), Bα+2(s))
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for n even, and (Bα(s), Bα+1(s), Bα+2(s), Bα−1(s)) for n odd, such

that during the sequence S s:

• each node s + 1 ≤ i ≤ n − s has received message i − s − 1,

and each node s − 1 ≤ i ≤ n − s − 2 has received message

i + s + 1,

• nodes s − 3 j − 2 (resp. n − s + 3 j + 1), 0 ≤ 3 j ≤ s − 2 have

received two messages from the right (resp. from the left)
• and the other nodes i ≤ s − 1 (resp. i ≥ n − s) have received

one message from the right (resp. from the left).
Proof. The first part follows from the fact that for node s + 1 ≤
i ≤ n − s − 2, the calls are those of Ak, and so in one of the 4
rounds, each node receives a new message from the left, namely
message i − s − 1 and in another round receives a new message
from the right, namely message i + s + 1 (note that by induction
these messages arrived at the sender at the end of sequence S s−1).
The orders determined in the preceding paragraph enable node
s−3 j−1 (resp. n− s+3 j) to send two messages to node s−3 j−2
(resp. n − s + 3 j + 1), and also ensure the arrival of a message in
the other nodes of the left and right. Therefore, the second and
third parts are proven. �

Messages received at the end of phase 2 (end of sequence
Sp−1)

Recall that n = 2p or 2p + 1 and in phase 2, we do p − 1
sequences S s, 1 ≤ s ≤ p − 1.
Claim 7 Let n = 2p. At the end of phase 2 (after round 4p− 1),

• nodes p − 1 − 3 j, 0 ≤ 3 j ≤ p − 1 have received messages

0 ≤ i ≤ 2p − 1 − 2 j

• nodes p−2−3 j, 0 ≤ 3 j ≤ p−2 and p−3−3 j, 0 ≤ 3 j ≤ p−3
have received messages 0 ≤ i ≤ 2p − 2 − 2 j

• nodes p + 3 j, 0 ≤ 3 j ≤ p − 1 have received messages

2 j ≤ i ≤ 2p − 1
• nodes p+1+3 j, 0 ≤ 3 j ≤ p−2 and p+2+3 j, 0 ≤ 3 j ≤ p−3

have received messages 2 j + 1 ≤ i ≤ 2p − 1
Let n = 2p + 1. At the end of phase 2 (after round 4p − 1),

• node p has received all the messages

• nodes p − 1 − 3 j, 0 ≤ 3 j ≤ p − 1 have received messages

0 ≤ i ≤ 2p − 1 − 2 j

• nodes p−2−3 j, 0 ≤ 3 j ≤ p−2 and p−3−3 j, 0 ≤ 3 j ≤ p−3
have received messages 0 ≤ i ≤ 2p − 2 − 2 j

• nodes p + 1 + 3 j, 0 ≤ 3 j ≤ p − 1 have received messages

2 j + 1 ≤ i ≤ 2p

• nodes p+2+3 j, 0 ≤ 3 j ≤ p−2 and p+3+3 j, 0 ≤ 3 j ≤ p−3
have received messages 2 j + 2 ≤ i ≤ 2p

Proof. By claim 6, at the end of sequence S p−1, any node i has
received the messages of the nodes at distance ≤ p. Therefore,
node i ≤ p (resp. i ≥ n − 1 − p) has received all the messages
from the left (resp. right). In particular, node p has received all
the messages and, when n = 2p, node p − 1 has also received all
the messages. Furthermore, node i ≤ p (resp. i ≥ n − 1 − p) has
received more than p messages from the right (resp. left) since
it has received in some sequences two messages. For the precise
analysis we distinguish two cases according the parity of n.

Let n = 2p. As noted above, nodes p − 1 and p have re-
ceived all the messages. Node p − 2 has received all the mes-
sages 0 ≤ i ≤ 2p − 2. But node p − 3 has also received all the
messages 0 ≤ i ≤ 2p− 2. Indeed in S p−1 it has received two mes-

sages namely 2p− 3 and 2p− 2. More generally, node p− 1− 3 j

has received from the right two messages during the j sequences
S p−2−3k, 0 ≤ k ≤ j − 1 and so it has received at the end of phase 2
from the right altogether p+ j messages, namely all the messages
between p − 3 j and 2p − 1 − 2 j.

Node p − 2 − 3 j has received two messages during the j se-
quences S p−3−3k, 0 ≤ k ≤ j − 1 and so has received at the end of
phase 2 from the right all the messages between p − 1 − 3 j and
2p − 2 − 2 j. Node p − 3 − 3 j has received two messages during
the j + 1 sequences S p−1−3k, 0 ≤ k ≤ j and so has received at the
end of phase 2 from the right all the messages between p− 2− 3 j

and 2p − 2 − 2 j.
The proof for the other side is similar. Node p+ 1 has received

the messages 1 ≤ i ≤ 2p−1 at the end of phase 2. Node p+2 has
also received the messages 1 ≤ i ≤ 2p − 1. Indeed in S p−1 it has
received 2 messages namely 2 and 1. More generally node p+ 3 j

has received from the lef, two messages during the j sequences
S p−2−3k, 0 ≤ k ≤ j − 1 and so it has received at the end of phase 2
from the left, p+ j messages that are all the messages between 2 j

and p+3 j−1. Node p+3 j+1 has received two messages during
the j sequences S p−3−3k, 0 ≤ k ≤ j − 1 and so it has received at
the end of phase 2 from the left, p + j messages that are all the
messages between 2 j+1 and p+3 j. Node p+3 j+2 has received
two messages during the j + 1 sequences S p−1−3k, 0 ≤ k ≤ j and
so it has received at the end of phase 2 from the left, p + 1 + j

messages that are all the messages between 2 j+ 1 and p+ 3 j+ 1.
For n = 2p + 1, the proof is similar as that for the case n even.

�

3.3 Phase 3
At the end of phase 2, the nodes in the left part 0 ≤ i ≤ p − 1

still have to receive some messages of large nodes and in particu-
lar, we have to move message n−1 up to the node 0 while the right
part, the node p+1 ≤ i ≤ n−1 still have to receive some messages
from small nodes and in particular, we have to move message 0 up
to the node n − 1. These moves can be completed independently
since there will be no interferences between the calls in the left
part and those in right part (except for the two first rounds in the
case n odd). We have already completed 3 + 4(p − 1) = 4p − 1
rounds in phases 1 and 2. So to complete the protocol in the opti-
mal time, we should do phase 3 in 3n − 4 − 4p rounds or namely,
when n = 2p, in 2p − 4 rounds, and when n = 2p + 1, in 2p − 1
rounds.
Claim 8 We can construct 3n−4−4p rounds (phase 3) to com-

plete the protocol in optimal time.

Proof. The readers can again follow the proof on the tables given
for n = 12, 13, 14, 15.

Let n = 2p. We first do the following two rounds. The first
round contains the non-interfering calls (p − 1 − 3 j, p − 2 − 3 j)
and (p + 3 j, p + 1 + 3 j) for 0 ≤ 3 j ≤ p − 2, and the second round
the calls (p − 2 − 3 j, p − 3 − 3 j) and (p + 1 + 3 j, p + 2 + 3 j) for
0 ≤ 3 j ≤ p − 3. According to claim 7, after these two rounds,
nodes p − 3, p − 2, p + 1, and p + 2 have received all the mes-
sages and nodes p − 4 − 3 j, p − 5 − 3 j, and p − 6 − 3 j (resp.
p + 3 + 3 j, p + 4 + 3 j, and p + 5 + 3 j) have received all mes-
sages 0 ≤ i ≤ 2p − 3 − 2 j (resp. 2 j + 2 ≤ i ≤ n − 1) for valid j.
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The only remaining task is to now push the messages n − 2 and
n − 1 (resp. 1 and 0) to the left (resp. right) via p − 3 sequences
Tk (0 ≤ k ≤ p − 4). Each Tk consists of two identical rounds
each containing the calls (p − 3 − k − 3 j, p − 4 − k − 3 j) and
(p+2+ k+3 j, p+3+ k+3 j) for 0 ≤ 3 j ≤ p−4− k. At the end of
these sequences, each node has received all the messages. Alto-
gether we have completed the protocol in 2+ 2× (p− 3) = 2p− 4
rounds.

Let n = 2p+ 1. We first do the following three rounds (the first
two rounds enable us to separate the left and right parts). The
first round contains the calls (p − 3 j, p − 1 − 3 j), 0 ≤ 3 j ≤ p − 1
and (p + 1 + 3 j, p + 2 + 3 j) 0 ≤ 3 j ≤ p − 2. The second round
contains the calls (p − 1 − 3 j, p − 2 − 3 j), 0 ≤ 3 j ≤ p − 2, and
(p + 3 j, p + 1 + 3 j), 0 ≤ 3 j ≤ p − 1. The third round contains
the calls (p − 1 − 3 j, p − 2 − 3 j) and (p + 1 + 3 j, p + 2 + 3 j) for
0 ≤ 3 j ≤ p − 2. According to claim 7 after these three rounds,
nodes p−1, p−2, p+1, and p+2 have received all the messages.
Nodes p−3−3 j, p−4−3 j, and p−5−3 j (resp. p+3+3 j, p+4+3 j,
and p + 5 + 3 j) have received all messages 0 ≤ i ≤ 2p − 2 − 2 j

(resp. 2 j + 2 ≤ i ≤ n − 1). Then we end the protocol just as
in the case n even with the p − 2 sequences T ′k, 0 ≤ k ≤ p − 3.
Here, T ′k consists of two identical rounds each containing the calls
(p−2−k−3 j, p−3−k−3 j) and (p+2+k+3 j, p+2+k+3 j) for
0 ≤ 3 j ≤ p − 3 − k. At the end of these sequences, each node has
received all the messages. We have now completed the protocol
in 3 + 2 × (p − 2) = 2p − 1 rounds. �

In summary, we have given a protocol in three phases which
completes the gossiping for n > 3 in the optimal number of
rounds 3n − 5 as given in Theorem 1.

4. Conclusion

In this article, we determine the exact minimum gossiping time
in the chain network with n node using hypothetical unit length
messages and neighboring interference. One can also try to de-
termine the exact gossiping time for other simple topologies like
grids. Perhaps one can use our tools for chains to improve the
bounds for trees given in Ref. [6]. It will also be interesting to
consider stronger interferences (a sending node prevents nodes at
distance dI to receive messages).
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Appendix

Table A·1 n = 12.

round s calls nodes
0 1 2 3 4 5 6 7 8 9 10 11

Phase1
1 0 R1 1 1 4 4 7 7 10 10
2 R2 × 2 2 5 5 8 8 11
3 R3 0 3 3 6 6 9 9 ×

Phase2
4 1 A0 × × 4 3 8 7 × ×
5 A1 × 0 5 4 9 8 ×
6 A2 2 1 6 5 10 9
7 A3 × 3 2 7 6 11 ×
8 2 B3 × 4 1 8 5 × 8
9 B1 3 × 6 3 10 7 ×

10 B2 4 0 7 4 11 7
11 B0 × × 5 2 9 6 × ×
12 3 B0 × × 6 1 10 5 × ×
13 B2 × 5 × 8 3 × 6 ×
14 B3 × 6 0 9 4 × 6
15 B1 5 × 7 2 11 5 ×
16 4 B1 6 × 8 1 × 4 × ×
17 B3 × × 7 × 10 3 × 5
18 B0 × × 8 0 11 3 × ×
19 B2 × 7 × 9 2 × 4 ×
20 5 B2 × 8 × 10 1 × 3 ×
21 B0 7 × 9 × × 2 × 4
22 B1 8 × 10 0 × 2 × ×
23 B3 × × 9 × 11 1 × 3

Phase3
24 × 9 × 11 0 × 2 ×
25 9 × 11 × × 0 × 2
26 × × 10 × × × × 1 × ×
27 × × 11 × × × × 0 × ×
28 × 10 × × × × × × 1 ×
29 × 11 × × × × × × 0 ×
30 10 × × × × × × × × 1
31 11 × × × × × × × × 0

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Table A·2 n = 13.

round s calls nodes
0 1 2 3 4 5 6 7 8 9 10 11 12

Phase1
1 0 R1 1 1 4 4 7 7 10 10 ×
2 R2 × 2 2 5 5 8 8 11 11
3 R3 0 3 3 6 6 9 9 12

Phase2
4 1 A0 × × 4 3 8 7 12 ×
5 A1 × 0 5 4 9 8 × ×
6 A2 2 1 6 5 10 9 ×
7 A3 × 3 2 7 6 11 10
8 2 B2 3 0 7 4 11 8 ×
9 B3 × 4 1 8 5 12 9
10 B0 × × 5 2 9 6 × 8
11 B1 4 × 6 3 10 7 × ×
12 3 B3 × 5 0 9 4 × 7 ×
13 B0 × × 6 1 10 5 × 7
14 B1 5 × 7 2 11 6 × ×
15 B2 × 6 × 8 3 12 6 ×
16 4 B0 × × 7 0 11 4 × 6
17 B1 6 × 8 1 12 5 × ×
18 B2 × 7 × 9 2 × 4 × ×
19 B3 × × 8 × 10 3 × 5 ×
20 5 B1 7 × 9 0 × 3 × 5
21 B2 × 8 × 10 1 × 3 × ×
22 B3 × × 9 × 11 2 × 4 ×
23 B0 8 × 10 × 12 2 × 4

Phase3
24 × × 10 × 12 1 × 3 ×
25 × 9 × 11 0 × 2 × ×
26 × 10 × 12 × 0 × 2 ×
27 9 × 11 × × × 1 × 3
28 10 × 12 × × × 0 × 2
29 × × 11 × × × × × 1 × ×
30 × × 12 × × × × × 0 × ×
31 × 11 × × × × × × × 1 ×
32 × 12 × × × × × × × 0 ×
33 11 × × × × × × × × × 1
34 12 × × × × × × × × × 0
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Table A·3 n = 14.

round s calls nodes
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Phase1
1 0 R1 1 1 4 4 7 7 10 10 13
2 R2 × 2 2 5 5 8 8 11 11 ×
3 R3 0 3 3 6 6 9 9 12 12

Phase2
4 1 A0 × × 4 3 8 7 12 11
5 A1 × 0 5 4 9 8 13 ×
6 A2 2 1 6 5 10 9 × ×
7 A3 × 3 2 7 6 11 10 ×
8 2 B3 × 4 1 8 5 12 9 ×
9 B1 3 × 6 3 10 7 × 10

10 B2 4 0 7 4 11 8 × ×
11 B0 × × 5 2 9 6 13 9
12 3 B0 × × 6 1 10 5 × 8 ×
13 B2 × 5 × 8 3 12 7 × ×
14 B3 × 6 0 9 4 13 7 ×
15 B1 5 × 7 2 11 6 × 8
16 4 B1 6 × 8 1 12 5 × 7
17 B3 × × 7 × 10 3 × 6 × ×
18 B0 × × 8 0 11 4 × 6 ×
19 B2 × 7 × 9 2 13 5 × ×
20 5 B2 × 8 × 10 1 × 4 × 6
21 B0 7 × 9 × 12 3 × 5 ×
22 B1 8 × 10 0 13 3 × 5
23 B3 × × 9 × 11 2 × 4 × ×
24 6 B3 × × 10 × 12 1 × 3 × ×
25 B1 × 9 × 11 × × 2 × 4 ×
26 B2 × 10 × 12 0 × 2 × 4
27 B0 9 × 11 × 13 1 × 3 ×

Phase3
28 × × 11 × 13 0 × 2 × ×
29 × 11 × 13 × × 0 × 2 ×
30 10 × 12 × × × × 1 × 3
31 11 × 13 × × × × 0 × 2
32 × × 12 × × × × × × 1 × ×
33 × × 13 × × × × × × 0 × ×
34 × 12 × × × × × × × × 1 ×
35 × 13 × × × × × × × × 0 ×
36 12 × × × × × × × × × × 1
37 13 × × × × × × × × × × 0
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Table A·4 n = 15.

round s calls nodes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Phase1
1 0 R1 1 1 4 4 7 7 10 10 13 13
2 R2 × 2 2 5 5 8 8 11 11 14
3 R3 0 3 3 6 6 9 9 12 12 ×

Phase2
4 1 A0 × × 4 3 8 7 12 11 ×
5 A1 × 0 5 4 9 8 13 12
6 A2 2 1 6 5 10 9 14 ×
7 A3 × 3 2 7 6 11 10 × ×
8 2 B2 3 0 7 4 11 8 × 11
9 B3 × 4 1 8 5 12 9 × ×

10 B0 × × 5 2 9 6 13 10 ×
11 B1 4 × 6 3 10 7 14 10
12 3 B3 × 5 0 9 4 13 8 × ×
13 B0 × × 6 1 10 5 14 9 ×
14 B1 5 × 7 2 11 6 × 8 ×
15 B2 × 6 × 8 3 12 7 × 9
16 4 B0 × × 7 0 11 4 × 7 × ×
17 B1 6 × 8 1 12 5 × 7 ×
18 B2 × 7 × 9 2 13 6 × 8
19 B3 × × 8 × 10 3 14 6 × ×
20 5 B1 7 × 9 0 13 4 × 6 ×
21 B2 × 8 × 10 1 14 5 × 7
22 B3 × × 9 × 11 2 × 4 × 6
23 B0 8 × 10 × 12 3 × 5 × ×
24 6 B2 × 9 × 11 0 × 3 × 5 ×
25 B3 × × 10 × 12 1 × 3 × 5
26 B0 9 × 11 × 13 2 × 4 × ×
27 B1 × 10 × 12 × 14 2 × 4 ×

Phase3
28 10 × 12 × 14 1 × 3 × ×
29 × × 11 × 13 0 × 2 × 4
30 × × 12 × 14 × 0 × 2 × ×
31 × 11 × 13 × × × 1 × 3 ×
32 × 12 × 14 × × × 0 × 2 ×
33 11 × 13 × × × × × 1 × 3
34 12 × 14 × × × × × 0 × 2
35 × × 13 × × × × × × × 1 × ×
36 × × 14 × × × × × × × 0 × ×
37 × 13 × × × × × × × × × 1 ×
38 × 14 × × × × × × × × × 0 ×
39 13 × × × × × × × × × × × 1
40 14 × × × × × × × × × × × 0
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