
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Sigma Coloring and Edge Deletions

Agnes D. Garciano1,a) ReginaldoM. Marcelo1,b) Mari-Jo P. Ruiz1,c)

Mark Anthony C. Tolentino1,d)

Received: December 31, 2019, Accepted: September 10, 2020

Abstract: A vertex coloring c : V(G) → N of a non-trivial graph G is called a sigma coloring if σ(u) � σ(v) for
any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The
sigma chromatic number of G, denoted by σ(G), is defined as the fewest number of colors needed to construct a sigma
coloring of G. In this paper, we consider the sigma chromatic number of graphs obtained by deleting one or more of
its edges. In particular, we study the difference σ(G)−σ(G− e) in general as well as in restricted scenarios; here, G− e
is the graph obtained by deleting an edge e from G. Furthermore, we study the sigma chromatic number of graphs
obtained via multiple edge deletions in complete graphs by considering the complements of paths and cycles.
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1. Introduction

A neighbor-distinguishing graph coloring is a coloring of
the vertices and/or edges of a graph that induces a vertex la-
belling under which any pair of adjacent vertices is assigned
different labels. The most studied example of a neighbor-
distinguishing coloring is the well-studied proper vertex color-
ing. Several neighbor-distinguishing colorings have been intro-
duced and studied in the literature such as in Refs. [2] and [5]. In
Ref. [4], Chartrand, Okamoto, and Zhang introduced a new kind
of neighbor-distinguishing vertex coloring defined as follows.
Definition 1 (Chartrand et al. [4]). For a non-trivial connected

graph G, let c : V (G) → N be a vertex coloring of G. For each

v ∈ V (G), the color sum of v, denoted byσ (v) , is defined to be the

sum of the colors of the vertices adjacent to v. If σ (u) � σ (v) for

every two adjacent u, v ∈ V (G), then c is called a sigma coloring
of G. The minimum number of colors required in a sigma color-

ing of G is called its sigma chromatic number and is denoted by

σ(G).
The notion of sigma coloring is related to the vertex color-

ings/labellings discussed in Refs. [1], [8], [11]. These color-
ings/labellings also use the sum of the colors/labels of a vertex’s
neighbors. Sigma colorings of different families of graphs have
already been studied in Refs. [4], [6], and [9].

In this paper, we study the sigma chromatic number in relation
to edge deletion. Let G = (V, E) be a graph. Let V ⊆ V and
E ⊆ E. We denote by G −V the graph obtained by deleting from
G all vertices in V and all edges with at least one end vertex in
V. Moreover, we denote by G−E the graph obtained by deleting
from G all edges in E. For simplicity, whenV or E is a singleton,
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say {k}, we denote G −V or G − E simply by G − k.
Previous work has been done on chromatic numbers in rela-

tion to edge deletion. For instance, it is well-known that 0 ≤
χ(G)−χ(G−e) ≤ 1. In Ref. [10], the notion of critical edges (and
vertices) was considered and defined as follows: An edge (or ver-
tex) in a graph is critical if its deletion reduces the chromatic
number of the graph by one. The paper studied the complexity
of the problem of testing for the existence of critical vertices and
edges in H-free graphs and showed that an edge in a graph is crit-
ical if and only if its contraction reduces the chromatic number
by one.

In Ref. [7], b-colorings were studied in relation to edge-deleted
subgraphs. A b-coloring of a graph G with k colors is a proper
coloring of G that uses k colors such that for each color class,
there is a vertex that has a neighbor in each of the other color
classes. The b-chromatic number of G, denoted by b(G), is the
largest positive integer k for which G has a b-coloring using k

colors. In Ref. [7], it was shown that b(G) − b(G − e) ≥ 2 − � n
2 �.

In Ref. [2], Chartrand et al. studied edge deletion in relation
to another neighbor-distinguishing coloring called set coloring.
Let c : V(G)→ N be a vertex coloring of a non-trivial connected
graph G and denote by NC(x) the set of colors assigned to vertices
adjacent to x. Then c is called a set coloring if NC(u) � NC(v) for
any pair of adjacent vertices u and v. The set chromatic number

of G, denoted by χS (G), is defined as the least number of col-
ors needed to construct a set coloring of G. Since a set coloring
induces a proper vertex coloring using the neighborhood of each
vertex, it is interesting to study the effect of edge deletion (i.e.,
the removal of a neighbor from two vertices) on the set chromatic
number. In Ref. [2], Chartrand et al. proved the following:
Theorem 2 (Ref. [2]).
( 1 ) If e is an edge of a graph G, then

|χS (G) − χS (G − e)| ≤ 2.
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( 2 ) If e = uv is an edge of a graph G that is not a bridge such

that dG−e(u, v) ≥ 4, then

|χS (G) − χS (G − e)| ≤ 1.

Since a sigma coloring also induces a proper vertex coloring
using the neighborhood of each vertex, it is natural to also study
the effect of edge deletion on the sigma chromatic number of a
graph and establish bounds analagous to those in Theorem 2. It is
worth noting that a proper vertex coloring of a graph G induces,
in different ways, both a sigma coloring and a set coloring of G;
that is, χ(G) is a natural upper bound for both σ(G) and χS (G).

2. Sigma Coloring and Edge Deletion

Our first result is on the bounds for σ(G)−σ(G−e) for general
G. The result is analogous to the result in Theorem 2.
Theorem 3. If e = uv is an edge of a graph G, then

|σ(G) − σ(G − e)| ≤ 2.

Proof. We first show that σ(G− e)−σ(G) ≤ 2. Let c be a sigma
coloring of G that uses σ(G) colors. We will show that G − e can
be sigma colored using σ(G) + 2 colors. Define the coloring c on
G − e as follows:

c(x) =

⎧⎪⎪⎨⎪⎪⎩
c(x), x � {u, v}

c(x) + S , x ∈ {u, v},

where S :=
∑

x∈V(G) c(x). Note that c uses at most σ(G) + 2 col-
ors. For a vertex x ∈ V(G − e), we denote by σ(x) the color
sum of x with respect to c. Then since σ(x) ≤ S − c(x) < S

for every x ∈ V(G), we have σ(u) = σ(u) − c(v) < S and
σ(v) = σ(v) − c(u) < S . If y is adjacent to u or v (possibly both),
then it is clear that σ(y) = σ(y)+S > S or σ(y) = σ(y)+2S > S ;
and so σ(y) � {σ(u), σ(v)}. Now, suppose that x1 and x2, where
both x1 and x2 are neither u nor v, are adjacent in G − e. Then
exactly one of the following holds for x1 (resp. x2): (1) it is not
adjacent to both u and v, (2) it is adjacent to u or v but not both,
or (3) it is adjacent to both u and v. Thus,

σ(x1) ∈ {σ(x1), σ(x1) + S , σ(x1) + 2S }

and

σ(x2) ∈ {σ(x2), σ(x2) + S , σ(x2) + 2S }.

Since σ(x1) � σ(x2) and by the definition of S , it follows that
σ(x1) � σ(x2). Hence, c is a sigma coloring of G − e that uses at
most σ(G) + 2 colors.

Now, we show that σ(G) − σ(G − e) ≤ 2. Let c be a sigma
coloring of G − e that uses σ(G − e) colors. We will show that
G can be sigma colored using at most σ(G − e) + 2 colors. Note
that the addition of edge e to G − e (to form G) changes the color
sums of only u and v. Define the coloring c on G as follows:

c(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c(x), x � {u, v},
c(x) + S , x = u,

c(x) + 2S , x = v,

where S :=
∑

x∈V(G−e) c(x). Note that c uses at most σ(G − e) + 2

colors. Again, for a vertex x ∈ V(G), we denote by σ(x) the
color sum of x with respect to c. We have σ(x) < S for ev-
ery x ∈ V(G − e)(= V(G). Also, 0 < σ(u) + c(v) ≤ S and
0 < σ(v) + c(u) ≤ S since uv � E(G − e). It follows that

2S < σ(u) = σ(u) + c(v) + 2S ≤ 3S

and

S < σ(v) = σ(v) + c(u) + S ≤ 2S .

Thus, σ(u) � σ(v).
Now, suppose y is a vertex that is neither u nor v.
• If y is adjacent to u but not to v, then σ(y) = σ(y)+S ≤ 2S <

σ(u).
• If y is adjacent to v but not to u, then σ(y) = σ(y) + 2S >

2S ≥ σ(v).
• If y is adjacent to both u and v, then σ(y) = σ(y)+3S , which

is clearly strictly greater than both σ(u) and σ(v).
Now, suppose x1 and x2, both not u nor v, are adjacent in G, then
x1 and x2 are also adjacent in G − e. Similar to the previous argu-
ment, we have

σ(x1) ∈ {σ(x1), σ(x1) + S , σ(x1) + 2S , σ(x1) + 3S }

and

σ(x2) ∈ {σ(x2), σ(x2) + S , σ(x2) + 2S , σ(x2) + 3S }.

Since σ(x1) � σ(x2) and by the definition of S , it follows that
σ(x1) � σ(x2). Hence, c is a sigma coloring of G that uses at
most σ(G) + 2 colors. �

Example 4. For all m ≥ 6 and k ∈ {−1, 0}, there is a connected

graph G, with order m, that has an edge e so that G − e is con-

nected and σ(G) − σ(G − e) = k.

Proof. Consider the graph G given below.
Clearly, σ(G) = 1. Moreover, σ(G − e1) = 1 and σ(G − e2) =
2. �

In the above example, we considered only −1 and 0 as values
for k. The case where k = 1 or k = 2 is addressed in the fol-
lowing. We study the existence of sequences of edge deletions
each of which decreases the sigma chromatic number of a graph
by one. We consider this problem for path complements, which
we define as follows:

Fig. 1 The graph G with order 4 + n.
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Fig. 2 The path complement P4,7.

Definition 5. The complement of a path Pm, m ≥ 2, in the com-

plete graph Kn, n ≥ m, is the graph obtained by deleting the edges

of a subgraph of Kn that is isomorphic to Pm. This graph is de-

noted by Pm,n.

As an example, the graph P4,7 is shown in Fig. 2 where the
deleted edges are indicated using dashed segments.
Observation 6. It is easy to see that P2,n, n ≥ 3, has sigma chro-

matic number n − 2; that is, deleting one edge from Kn decreases

the sigma chromatic number by two.

As a consequence of Proposition 3.1 in Ref. [4], it is worth
noting that there is no sequence of edge deletions in Kn that will
decrease the sigma chromatic number to n − 1.

Our result on the sigma chromatic number of path comple-
ments is the following.
Proposition 7. For n ≥ 4 and m = 2, 3, . . . , �n/2�,
σ(Pm,n) = n − m.

Proof. First, note that the graph Pm,n has exactly one subgraph
S that is isomorphic to Kn−m. Moreover, for each s ∈ V(S ),
N[s] = V(Pm,n). Hence, σ(Pm,n) ≥ n − m.

We are now left to show that Pm,n has a sigma coloring that
uses n − m colors. Let c be a sigma coloring of Kn; naturally, c

uses n colors. Moreover, by setting d = Δ(Kn) + 1 = n, we can
choose the colors used by c to be

1, d, d2, . . . , dn−1.

We proceed by considering the following cases.
Case 1. Suppose n = 5 and m = �n/2� = 3. This case pertains
to P3,5, for which it is easy to verify that the sigma chromatic
number is 5 − 3 = 2.
Case 2. Suppose n ≥ 7 is odd and m = �n/2�. Let a and
b be the endvertices of the path Pm whose edges were deleted
from Kn to form Pm,n. Construct the coloring c on Pm,n as fol-
lows: if x ∈ V(S ), set c(x) = c(x); moreover, we define c on
V(Pm,n) − V(S ) so that
( 1 ) c(V(Pm,n) − V(S )) ⊆ c(S ),
( 2 ) c(a) = c(b),
( 3 ) c(x) � c(a) for all x ∈ V(Pm,n) − V(S ), and
( 4 ) c(x) � c(y) for all x, y ∈ V(Pm,n) − V(S ).
Note that such a coloring is possible since the vertices in V(Pm,n)−
V(S ) use only m−1 colors and m−1 = �n/2�−1 = n−m = |V(S )|.
We now show that c is a sigma coloring. Suppose x1 and x2 are
adjacent in Pm,n.
• Case 2.1: Suppose x1 and x2 are both in V(S ). Then
σ(x1) = σ(x1) and σ(x2) = σ(x2); hence, σ(x1) � σ(x2).

• Case 2.2: Suppose x1 is in V(S ) while x2 is in V(Pm,n)−V(S ).
Then deg x1 = n − 1 while deg x2 = n − 2. By the choice of
colors of c, σ(x1) � σ(x2).

• Case 2.3: Suppose x1 = a and x2 = b. Then deg x1 =

deg x2 = n − 2. Since m ≥ 4, then x1 and x2 do not have
the same neighbors in V(Pm,n) − V(S ). By the construction
of c, σ(x1) � σ(x2).

• Case 2.4: Suppose x1 ∈ {a, b} and x2 ∈ V(Pm,n) −
(V(S ) ∪ {a, b}). Then deg x1 = n − 2 and deg x2 = n − 3.
By the choice of colors of c, σ(x1) � σ(x2).

• Case 2.5: Suppose x1 and x2 are both in V(Pm,n) −
(V(S ) ∪ {a, b}). Then deg x1 = deg x2 = n − 3 and c(x1) �
c(x2). Hence, σ(x1) � σ(x2).

Therefore, c is a sigma coloring of Pm,n that uses n − m colors.
Case 3. Suppose n is even or 2 ≤ m ≤ �n/2� − 1. Construct
the coloring c on Pm,n as follows: if x ∈ V(S ), set c(x) = c(x);
moreover, we define c on V(Pm,n) − V(S ) so that
( 1 ) c(V(Pm,n) − V(S )) ⊆ c(S ), and
( 2 ) c(x) � c(y) for all x, y ∈ V(Pm,n) − V(S ).
Note that such a coloring is possible since the vertices in V(Pm,n)−
V(S ) use only m colors and m ≤ n − m = |S |. We now show that
c is a sigma coloring. Suppose x1 and x2 are adjacent in Pm,n.
• Case 3.1: Suppose x1 and x2 are both in V(S ). Then
σ(x1) = σ(x1) and σ(x2) = σ(x2); hence, σ(x1) � σ(x2).

• Case 3.2: Suppose x1 is in V(S ) while x2 is in V(Pm,n)−V(S ).
Then deg x1 = n − 1 while deg x2 = n − 2. By the choice of
colors of c, σ(x1) � σ(x2).

• Case 3.3: Suppose x1 ∈ {a, b} and x2 ∈ V(Pm,n) −
(V(S ) ∪ {a, b}). Then deg x1 = n − 2 and deg x2 = n − 3.
By the choice of colors of c, σ(x1) � σ(x2).

• Case 3.4: Suppose (x1 = a and x1 = b) or (x1 and x2 are
both in V(Pm,n) − (V(S ) ∪ {a, b})). Then deg x1 = deg x2 and
c(x1) � c(x2). Hence, σ(x1) � σ(x2).

Therefore, c is a sigma coloring of Pm,n that uses n−m colors. �
Proposition 7 implies the following: Consider a subgraph of Kn

isomorphic to a path Pm : v1 → v2 → · · · → vm, where each vi is a
vertex of Kn. The deletion of edge v1v2 decreases the sigma chro-
matic number by two. Then in the sequence of deletions of edges
vivi+1 where i runs from 2 to m − 1, each edge deletion decreases
the sigma chromatic number by one. This is illustrated for K7

in Fig. 3. For comparison, the same sequence of edge deletions
in Fig. 3 produces the following sequence of chromatic numbers:
χ = 6, χ = 6, χ = 5.

Example 4, Observation 6, and Proposition 7 imply the follow-
ing:
Corollary 8. For each m ≥ 6 and for each k ∈ {−1, 0, 1, 2}, there

is a connected graph G, with order m, that has an edge e for

which G − e is connected and σ(G) − σ(G − e) = k.

We have not found a graph G that has an edge e for which
σ(G) − σ(G − e) = −2. But as in Ref. [2], we have also found
sufficient conditions for the inequality σ(G) − σ(G − e) ≥ −1 to
hold.
Theorem 9. Let e = uv be an edge in a graph G. If e is a bridge

or dG−e(u, v) ≥ 4, then σ(G) − σ(G − e) ≥ −1.
Proof. Let c be a sigma coloring of G that uses σ(G) colors. We
will show that G− e can be colored using σ(G)+1 colors. Define
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Fig. 3 A sequence of edge deletions in K7.

c on G − e as follows:

c(x) =

⎧⎪⎪⎨⎪⎪⎩
S , x ∈ {u, v},

c(x), otherwise,

where S :=
∑

x∈V(G) c(x).
Note that c uses at most σ(G) + 1 colors. We will show c is

a sigma coloring of G − e. Let x and y be adjacent vertices in
G − e. As detailed in Ref. [3], we can make a change of colors
to ensure that σ(x) � σ(y) whenever x and y are vertices of dif-
ferent degrees. For instance, we may first choose the colors used
by c to be 1, d, d2, . . . , dσ(G)−1, where d := Δ(G) + 1 and update
S := dσ(G), which is greater than

∑
x∈V(G) c(x). With this choice

of colors, two adjacent vertices may have equal color sums only
if they have equal degrees. Hence, we only need to consider the
case that deg x = deg y.
Case 1. Suppose x = u. Then y cannot be adjacent to v since
this will create a u − v path of length 2. Also, σ(y) − c(u) ≥ 0 as
u and y are adjacent. In this case, σ(u) = σ(u) − c(v) < S and
σ(y) = σ(y) − c(u) + S ≥ S . Then σ(y) ≥ S > σ(u).
Case 2. Suppose x = v. Then this case proceeds in a similar
manner as Case 1.

We now consider the case where {x, y} ∩ {u, v} = ∅. If x is adja-
cent to u, then x and y must not be adjacent to v since this would

create a u − v path of length 2 or 3. Moreover, σ(x) � σ(y) since
x and y are also adjacent in G.
Case 3. Suppose x ∈ N(u) and y ∈ N(u). Then σ(x) =
σ(x) − c(u) + S � σ(y) − c(u) + S = σ(y).
Case 4. Suppose x ∈ N(u) and y � N(u). Then σ(x) =
σ(x) − c(u) + S � σ(y) = σ(y).
Case 5. Suppose x � N(u) and y � N(u). Then σ(x) = σ(x) �
σ(y) = σ(y).
Therefore, c is a sigma coloring of G − e that uses σ(G) + 1 col-
ors. �

In the following, we consider edge deletions in regular graphs
of order at least 2.
Proposition 10. Suppose G is a connected regular graph with

order at least 2.

( 1 ) For any edge e = uv in G, σ(G − e) ≤ σ(G).
( 2 ) If G is not complete and e = uv � E(G), then σ(G + e) ≤
σ(G) + 1.

Proof. ( 1 ) Suppose c is a sigma coloring of G that uses σ(G)
colors. Let c be the coloring of G − e so that c(x) = c(x) for
each x ∈ V(G − e) = V(G). We show that c is a sigma color-
ing of G − e. First, σ(x) = σ(x) for each x � {u, v}. Let x and
y be adjacent vertices in G−e. If they have different degrees,
then σ(x) � σ(y) (possibly needing a change of colors as in
the proof of Theorem 9). If they have equal degrees, then
σ(x) = σ(x) � σ(y) = σ(y).

( 2 ) Let c be a sigma coloring of G that uses σ(G) colors. Let
c be the coloring of G + e where c(x) = c(x) if x � v and
c(v) = S :=

∑
z∈V(G) c(z). Let x, y be adjacent vertices of G+e

with equal degrees. Then {x, y} = {u, v} or {x, y} ∩ {u, v} = ∅.
( a ) If x and y are both not in NG(v), then σ(x) = σ(x) �
σ(y) = σ(y);

( b ) If x and y are both in NG(v), thenσ(x) = σ(x)−c(v)+S �
σ(y) − c(v) + S = σ(y);

( c ) If exactly one of x and y is in NG(v), say x ∈ NG(v) and
y � NG(v), then σ(x) = σ(x) − c(v) + S > σ(y) = σ(y).
This also covers the case where {x, y} = {u, v}.

�

3. On the Sigma Chromatic Number of Com-
plements of Paths and Cycles

In this section, we determine a lower bound for the sigma
chromatic number of the complement of a cycle or a path. For
convenience, we introduce the following notations. For a cy-
cle Cn = v1v2 · · · vnv1, n ≥ 3 and for each k = 1, 2, . . . , n/2�,
we denote by Ak the triple of vertices (v2k−1, v2k, v2k+1) and by Bk

the triple of vertices (v2k−2, v2k−1, v2k) (Note that the subscripts are
computed modulo n). For example, in C7 = v1v2v3v4v5v6v7v1, we
have

A1 = (v1, v2, v3), A2 = (v3, v4, v5), A3 = (v5, v6, v7),

and

B1 = (v7, v1, v2), B2 = (v2, v3, v4), B3 = (v4, v5, v6).

Given an ordered triple T of vertices (e.g., some Ak or Bk) and
a vertex coloring c of Cn or Cn, we denote by c(T ) the multiset of
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colors used in the vertices in T . Note that c(T ) is a multiset and
not an ordered triple. The following is an important observation.
Observation 11. If c is a sigma coloring of Cn, then for any triple

T and T ′ of consecutive vertices in Cn, we must have c(T ) � c(T ′)
if |T ∩ T ′| ≤ 1. In particular, for any distinct k, j, we must have

c(Ak) � c(Aj) and c(Bk) � c(Bj).
The above observation follows from the fact that if v is the

middle vertex in a triple T , then σ(v) = S − ∑x∈T c(x), where
S :=

∑
z∈V(Cn) c(z).

Proposition 12. Let m be a positive integer and set M =
(

m+2
3

)
.

Then σ(Cn) > m for all n ≥ 2M + 1.
Proof. Suppose c is a vertex coloring of Cn that uses m colors.
Moreover, assume that the colors are 1, d, d2, . . . , dm−1, where
d = n − 2. Then the number of 3-multisets that can be formed
using these m colors (repetition of colors allowed) is M. By the
choice of colors, it also follows that there are M possible color
sums.

Suppose n ≥ 2M + 2. Then  n
2 � > n

2 − 1 ≥ M. By Obser-
vation 11, we must have M ≥  n

2 �. Therefore, c is not a sigma
coloring of Cn and σ(Cn) > m.

Now, suppose n = 2M + 1. Then n/2� = M. For c to
be a sigma coloring, by Observation 11, c(A1), c(A2), . . . , c(AM)
must be distinct triples. Furthermore, c(B1) must be distinct
from c(A2), c(A3), . . . , c(AM). Then c(B1) = c(A1). Simi-
larly, c(B2) must be distinct from c(A3), c(A4), . . . , c(AM) and
c(B1) = c(A1); thus, c(B2) = c(A2). Proceeding in this man-
ner, we conclude that we must have c(Ak) = c(Bk) for all k =

1, 2, . . . ,M. Now, consider the triple T = (v2M , v2M+1, v1). Again,
for c to be a sigma coloring, we must have c(T ) distinct from
c(A1), c(A2), . . . , c(AM−1) and c(BM) = c(AM). But since T is a
triple not in {Ak, Bk : k = 1, 2, . . . ,M}, c(T ) will have to be one
of c(A1), c(A2), . . . , c(AM−1), c(AM), which implies that c is not a
sigma coloring of Cn. Therefore, σ(Cn) > m. �

We now turn to the complements of paths. Suppose Pn =

v1v2 · · · vn, n ≥ 3. Note that the vertices v2, v3, . . . , vn−1, which
are of degree n−3 in Pn, will also have color sums corresponding
to 3-multisets of colors. Hence, by arguing in a similar manner
as in Proposition 12, we obtain the following.
Proposition 13. Let m be a positive integer and set M =

(
m+2

3

)
.

Then σ(Pn) > m for all n ≥ 2M + 3.
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