
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

On Domination Number of Triangulated Discs

Shin-ichi Tokunaga1,a)

Received: December 30, 2019, Accepted: September 10, 2020

Abstract: Let G be a 3-connected triangulated disc such that the boundary cycle C of the outer face is an induced
cycle of G and G −C is a tree. In this paper we prove that γ(G) ≤ n+2

4 , which gives a partial solution for the conjecture
that the same inequality holds for any 3-conneced triangulated disc. We also show related conjectures.
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1. Introduction

For a graph G = (V(G), E(G)) and v ∈ V(G), let NG(v) denote
the set of all the vertices which are adjacent to v in G, and let
NG[v] = {v} ∪ NG(v). For S ⊂ V(G), let NG[S ] =

⋃
v∈S NG[v],

and let 〈S 〉G denote the induced subgraph of G induced by S . For
S ⊂ V(G) and v ∈ V(G), we say S dominates v if v ∈ NG[S ]. If
D ⊂ V(G) dominates all the vertices of G, then D is said to be a
dominating set of G. The domination number of G, denoted γ(G),
is defined as the minimum cardinality of a dominating set of G. A
plane graph G is said to be a triangulated disc if G is 2-connected
and all its faces are triangles except for the outer (infinite) face.
The boundary cycle of the outer face of G is said to be the outer

cycle of G and is denoted C(G). G − C(G) is said to be an inner

subgraph of G and is denoted In(G). An l-coloring is a function
f : V(G) → {1, ..., l}. An l-coloring f is proper if f (u) � f (v) for
each edge uv ∈ E(G). If G is l-colored and v ∈ V(G) is dominated
by the set of all the vertices of color i (i = 1, 2, ..., l), then we say
v is dominated by color i.

In 1996, Matheson and Tarjan [2] proved that any triangulated
disc G with n vertices satisfies γ(G) ≤ 	 n

3 
. They also conjectured
that γ(G) ≤ 	 n

4 
 for every n-vertex maximal planar graph G with
sufficiently large n. Note that we need two vertices to dominate
the six vertices of the octahedron graph, and there also exists a
11-vertex maximal planar graph with γ(G) = 3 > 	 11

4 
 (Fig. 1),
therefore we cannot omit the condition that n is sufficiently large.
In 2010, King and Pelsmajer [7] proved that the conjecture of
Matheson and Tarjan holds for maximal planar graphs with a
maximum degree 6. In 2013, Campos and Wakabayashi [1] and
Tokunaga [3] independently proved γ(G) ≤ 	 n+t

4 
 for each n-
vertex outerplanar graph G with n ≥ 3 having t vertices of degree
2. In 2016, Li, Zhu, Shao, and Xu improved the upper bound in
Refs. [1], [3] by showing γ(G) ≤ n+k

4 , where k is the number of
pairs of consecutive 2-degree vertices with a distance of at least 3
on the outer cycle.

In Ref. [3], the author gave a simple proof by showing that G
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Fig. 1 Maximal planar graph with 11 vertices and domination number 3.

Fig. 2 3-connected triangulated disc with 14 vertices and domination num-
ber 14+2

4 = 4.

has a proper 4-coloring such that each vertex except those with
degree two is dominated by all the four colors, and a similar
method is also applied to other related problems [4], [5]. More-
over, the author conjectured as follows.
Conjecture 1 Suppose G is a 3-connected n-vertex triangulated

disc, then γ(G) ≤ 	 n+2
4 
.

Figure 2 shows that the upper bound in Conjecture 1 is sharp.
Note that the inner subgraph of the graph in Fig. 2 is a path. There
are many graphs satisfying the equality in Conjecture 1 whose in-
ner subgraphs are trees. In this paper, we prove the following
theorem.
Theorem 1 Suppose G is an n-vertex triangulated disc such

that In(G) is a tree and C(G) is an induced cycle of G, then

γ(G) ≤ 	 n+2
4 
.

2. Proof of Theorem 1

To prove Theorem 1, we show the following lemma.
Lemma 1 Suppose G is an n-vertex triangulated disc such that

In(G) is a tree and C(G) is an induced cycle of G, and let v be

a vertex of C(G) with degG(v) = 3. Then, G − v has a proper
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Fig. 3 Case 1.

4-coloring f such that each vertex of G − v is dominated by all

the four colors except the vertices of NG(v).
To prove Lemma 1, let us introduce the following notation. For

an l-coloring f of graph G and v ∈ V(G), let

f̄ (v) = {1, 2, · · · , l} −
⋃

v′∈NG[v]

{ f (v′)},

and let

f ∗(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 when f̄ (v) = ∅,

i when f̄ (v) = {i},

∞ otherwise.

Note that if G is a triangulated disk and f is a proper 4-coloring
of G, | f̄ (v)| ≤ 1 holds for each v ∈ V(G), which implies f ∗(v) ∈
{0, 1, 2, 3, 4}.
Proof of Lemma 1. Let G and v be as in Lemma 1. Let C = C(G),
T = In(G) and NG(v) = {u, w, x}. Since C is an induced cycle of
G, we may assume NC(v) = {u, w} and x is the unique vertex of
T which is adjacent to v. We use induction on n = |V(G)|. Since
the statement of Lemma 1 clearly holds for K4, we assume n ≥ 5.
In view of degG(u) ≥ 3 and degG(w) ≥ 3, there are two cases as
follows.
Case 1. degG(u) = 3 or degG(w) = 3.

We may assume degG(u) = 3 without loss of generality. Let u′

be the vertex of NC(u) satisfying u′ � v, and let G′ = G − v + uw.
Since In(G′) = In(G) is a tree and C(G′) = C − v + uw is an in-
duced cycle of G′, G′ satisfies the assumption of Lemma 1. Thus
the induction hypothesis, G′ has proper 4-coloring f ′ such that
each vertex of G′ − u is dominated by all the four colors except
u′, x, w. Here we define f as follows; If f ′∗(u′) � 0, then let
f (u) = f ′∗(u′), and if f ′∗(u′) = 0, then let f (u) be any value dif-
ferent from f ′(u′) and f ′(x). Furthermore, let f (y) = f ′(y) for
y � u. Then, f satisfies the conclusion of Lemma 1.
Case 2. degG(u) ≥ 4 and degG(w) ≥ 4.

We divide this case into two subcases in view of degT (x).
Subcase 2.1. degT (x) = 1

Let x′ be the unique vertex of T which is adjacent to x, and
let G′ = G − v. By the assumption of Case 2 and Subcase 2.1,
degG′ (x) = 3. Further, since In(G′) = In(G) − x is a tree and
C(G′) = C − v + ux + xw is an induced cycle of G′, G′ satisfies
the assumption of Lemma 1. Therefore by induction hypothesis,
G′ − x has proper 4-coloring f ′ such that each vertex of G′ − x is
dominated by all the four colors except u, x′, w. Here we define
4-coloring f as follows; If f ′∗(x′) � 0, then let f (x) = f ′∗(x′). If
f ′∗(x′) = 0, then let f (x) be any value different from f ′(u), f ′(x′)
and f ′(w). Moreover, let f (y) = f ′(y) for y � x. Then, f satisfies
the conclusion of Lemma 1.

Fig. 4 Subcase 2.1.

Fig. 5 Subcase 2.2.

Subcase 2.2. degT (x) ≥ 2.
Let x1 be the unique vertex of V(T ) ∩ NG(u) ∩ NG(x), and let

w′ be the vertex of NG(x1) ∩ NG(x) satisfying w′ � u. Let T1 be
a component of T − x containing x1 and let T2 = T − T1. Also,
let G1 = 〈NG[V(T1)]〉G and G2 = 〈NG[V(T2)]〉G − u + x1v. Since
T1,T2 are trees and C(G1),C(G2) are induced cycles of G1,G2,
respectively, both G1 and G2 satisfy the assumption of Lemma 1.
Thus by induction hypothesis, G1 − x has a proper 4-coloring f1
such that each vertex of G1 − x is dominated by all the four colors
except u, x1, w

′, and G2 − v has a proper 4-coloring f2 such that
each vertex of G2 − v is dominated by all the four colors except
x1, x, w. Let j ∈ {1, 2, 3, 4} − { f1(u), f1(x1), f1(w′)}, and let

k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

j when f ∗1 (x1) = 0

f ∗1 (x1) when f ∗1 (x1) � 0.

We can make f1(y) = f2(y) for y ∈ V(G1−x)∩V(G2−v) = {x1, w
′}

and f2(x) = k by exchanging colors. Now let f (y) = f1(y) for
y ∈ (V(G1) − x) and let f (y) = f2(y) for y ∈ (V(G2) − v), then f

satisfies the conclusion of Lemma 1. �
Proof of Theorem 1. Let G, v, f be as in Lemma 1 and let
u, w, x be as in the proof of Lemma 1. Let G′ be the (n + 2)-
vertex graph such that V(G′) = V(G) ∪ {p, q} and E(G′) =
E(G) ∪ {pu, pv, pw, qu, qv, qw}. Further, we give a 4-coloring
f ′ of G′ satisfying f ′(y) = f (y) for y ∈ V(G) − v and
{ f ′(x), f ′(v), f ′(p), f ′(q)} = {1, 2, 3, 4}. Then, each vertex of V(G)
is dominated by all the four colors, and hence we may assume
S = {v ∈ V(G′) | f ′(v) = 1} satisfies |S | ≤ 	 n+2

4 
 without loss of
generality. Finally, if we let

S ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S when S ∩ {p, q} = ∅,

S − p + v when p ∈ S ,

S − q + v when q ∈ S ,

then, S ′ is a dominating set of G satisfying |S ′| ≤ 	 n+2
4 
 �
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Fig. 6 Triangulated disc G with δ(G) = 3 and γ(G) = 3
11 |V(G)|.

3. Other Conjectures

If we weaken the assumption of 3-connectivity in Conjecture
1 to δ(G) ≥ 3, then the upper bound in Conjecture 1 appears to
change as follows.
Conjecture 2 Suppose G is an n-vertex triangulated disc satis-

fying δ(G) ≥ 3, then γ(G) ≤ 	 3
11 n
.

Figure 6 shows that the upper bound in Conjecture 2 cannot be
improved.

Though there is still a gap between Conjecture 1 and Theorem
1, if the following conjecture is true, then Conjecture 1 holds for
4-connected maximal planar graphs.
Conjecture 3 Suppose G is a 4-connected n-vertex maximal

planar graph. Then V(G) can be divided into S 1, S 2 such that

〈S 1〉G, 〈S 2〉G are a maximal outerplanar graph and a tree, re-

spectively.

Note that if we delete all the edges connecting two vertices of
S 1 in the above conjecture, we get a graph satisfying the assump-
tion of Theorem 1.
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