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Technical Note

Rectangular Unfoldings of Polycubes

Martin L. Demaine1,a) Robert A. Hearn2,b) Junnosuke Hoshido3,c) Jason Ku1,d)

Ryuhei Uehara4,e)

Received: December 26, 2019, Accepted: June 1, 2020

Abstract: In this paper, we investigate the problem that asks if there exists a net of a polycube that is exactly a rect-
angle with slits. For this nontrivial question, we show affirmative solutions. First, we show some concrete examples:
(1) no rectangle with slits with fewer than 24 squares can fold to any polycube, (2) a 4 × 7 rectangle with slits can fold
to a heptacube (nonmanifold), (3) both of a 3× 8 rectangle and a 4× 6 rectangle can fold to a hexacube (nonmanifold),
and (4) a 5 × 6 rectangle can fold to a heptacube (manifold). Second, we show a construction of an infinite family of
polycubes folded from a rectangle with slits. The smallest one given by this construction is a 6 × 20 rectangle with
slits that can fold to a polycube of genus 5. This construction gives us a polycube for any positive genus. Moreover,
by this construction, we can show that there exists a rectangle with slits that can fold to k different polycubes for any
given positive integer k.
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1. Introduction

It is well known that a unit cube has eleven edge developments.
When we unfold the cube, no overlap occurs on any of these
eleven developments. In fact, any development of a regular tetra-
hedron is a tiling, and hence no overlap occurs [1]. However, this
is not necessarily true for a general polycube, which is a polyhe-
dron obtained by face-to-face gluing of unit cubes. For example,
we can have an overlap when we unfold a box of size 1 × 1 × 3
(Fig. 1), while we have no overlap when we unfold a box of size
1×1×2 (checked by exhaustive search). On the other hand, even
for the Dali cross (3-dimensional development of 4-dimensional
hyper cube), there is a non-overlapping unfolding that is a poly-
omino with slits that satisfies Conway’s criterion in the induced
plane tiling [2].

In this context, we investigate a natural but nontrivial question
that asks if we can fold a polycube from a rectangle with slits
or not. We first note that a convex polycube (or a “box”) can-
not be folded from any rectangle with slits. In general, slits are
irrelevant for a development of a convex polycube as proved in
Ref. [3], Lemma 1. Therefore, a rectangle cannot fold to any con-
vex polycube even if we make slits in any way. That is, if the
answer to the question is yes, the polycube should be concave.

In this paper, we show two series of affirmative answers to the
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Fig. 1 Cutting along the bold lines of the left box of size 1 × 1 × 3, overlap
occurs at the dark gray square on the right development. This devel-
opment was first found by Takeaki Uno in 2008. We have four places
to glue the top; however, this development is essentially unique way
for this box to overlap except the place of the top, which is examined
by exhaustive search.

question. First, we use a computer program that searches slits of
a given rectangle to fold a polycube. Based on the algorithm, we
find some concrete slit patterns:

Theorem 1 (1) No rectangle with slits with fewer than 24
squares can fold to any polycube. (2) A 4 × 7 rectangle with slits
can fold to a nonmanifold heptacube. (3) Both of a 3×8 rectangle
and a 4 × 6 rectangle can fold to a nonmanifold hexacube. (4) A
5 × 6 rectangle can fold to a manifold heptacube.
Second, we show a construction of an infinite family of polycubes
folded from a rectangle with slits.

Theorem 2 For any positive integer g, there is a rectangle
with slits that can fold to a polycube of genus g.
As a result, we can conclude that there are infinite many poly-
cubes that can be folded from a rectangle with slits. In the con-
struction in Theorem 2, we use a series of gadgets that can be
folded in many different ways of folding. Using this property, we
also have the following corollary.

Corollary 3 For any positive integer k, there is a rectangle
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with slits that can fold to at least k different polycubes.
In this paper, we concentrate on folding of rectangular grid.

That is, each sheet is a rectangle that consists of unit squares with
some slits on the grid lines. The sheet is one piece, or it is not
disconnected by the slits. We fold only along on grid lines.

2. Proof of Theorem 1

We first show the results and give a brief idea of the algorithm
that we used for finding the patterns. In Fig. 2, 3, and 4, D, B,
R, L, U, F in the unfolding mean Down, Back, Right, Left, Up,
Front, respectively.

2.1 Pattern 1: 4 × 7 Rectangular Unfolding of a Heptacube
In Fig. 2, we give a heptacube that has a 4 × 7 rectangular un-

folding. Cubes a and f touch along a diagonal. This heptacube
has 90 rectangular unfoldings.

2.2 Patterns 2 and 3: 3×8 and 4×6 Rectangular Unfoldings
of a Symmetric Hexacube of Genus 1

In Fig. 3, we give a hexacube that has two rectangular unfold-
ings. One is of size 3 × 8 and the other is of size 4 × 6. This
polycube has no pair of unit cubes sharing an edge (like a and

Fig. 2 The right rectangle is an unfolding of the left polycube of volume 7.
The left figures specify the polycube by its cross-sections.

Fig. 3 The left down polycube of volume 6 has two different rectangular
unfoldings of size 3 × 8 and 4 × 6 with slits.

f in Fig. 2) although it is genus 1 at the central point. There are
1440 rectangular unfoldings, and two representative rectangular
unfoldings are shown in Fig. 3. (This 24-face hexacube has 12
symmetries; therefore, the number of distinct rectangular unfold-
ings is 120 rather than 1440.)

2.3 Pattern 4: 5 × 6 Rectangular Unfolding of a Symmetric
Heptacube

In Fig. 3, we give a heptacube that has rectangular unfolding
of size 5 × 6. This polycube has no diagonal touch with genus
0. Curiously, this heptacube has only 4 rectangular unfoldings.
All unfoldings are shown in Fig. 4. As you can observe, these 4
unfoldings are almost the same except the cut of unit length at the
top left corner.

Our program confirmed that there are no rectangular polycube
unfoldings with fewer than 24 faces, and the one shown in Fig. 3
is unique for 24 faces. These facts complete the proof of Theo-
rem 1. We give the outline of the algorithm used in this section.

2.4 Algorithm
The input of our algorithm is a polycube Q. We here con-

sider the polycube Q of surface area n squares as a graph
G(Q) = (V, E); the set V of n unit squares and E = {{u, v} |
the unit squares u and v share an edge on Q}. On the graph G(Q),
a slit on Q cuts the corresponding edge. Then it is known that an
unfolding of the polycube Q is given by a spanning tree of G(Q)
(see, e.g., Ref. [3]). For example, the cutting pattern in Fig. 1 cor-
responds to the spanning tree in the right graph in Fig. 5. There-

Fig. 4 The left polycube of volume 7 has rectangular unfolding of size 5×6.

Fig. 5 Spanning tree corresponding to the pattern in Fig. 1.
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Fig. 6 I gadgets.

Fig. 7 A construction of a rectangle of size 6 × 20. It can fold to a polycube of genus 5.

fore, when a polycube Q is given, the algorithm can generate all
unfoldings by generating all spanning trees for the graph G(Q)
(We note that, as mentioned in Introduction, some slits can be
redundant in this context; however, we do not care about this is-
sue. Therefore, some unfoldings in the figures contain redundant
slits).

For each spanning tree of G(Q), the algorithm checks whether
the corresponding unfolding overlaps or not. If not, it gives a
valid net of Q. If, moreover, it forms a rectangle, it is a solution
of our problem. For a given spanning tree, this check can be done
in linear time. Since all spanning trees of a given graph G can be
enumerated in O(1) time per tree (see Ref. [5]), all unfoldings of
a given polycube Q of area n can be done in O(nT (G(Q))) time,
where T (G(Q)) is the number of spanning trees of G(Q).

We note that our algorithm runs for any given polycube Q, and
it can check if Q has a valid net or not. By exhaustive checking,
we have the following theorem:

Theorem 4 All polycubes that consist of 12 or fewer cubes
have an edge unfolding without overlapping.

We mention that Xu et al. investigated all polygons of area 30
that may fold to two boxes of size 1 × 1 × 7 and 1 × 3 × 3 (and√

5× √5× √5) by an exhaustive hybrid search of the breadth-first
search and the depth-first search using a supercomputer [11]. Our
exhaustive search also implies that it is quite hard to search the
area of size much bigger than 30.

3. Proof of Theorem 2

Now we turn to construct a family of polycubes. We introduce
a series of gadgets in Fig. 6. Let an I gadget of size i, denoted
by I(i), be a rectangle of size 3 × (i + 2) with some slits given as

shown in Fig. 6. That is, the I(i) has a zig-zag slit of length 2i as
shown in Fig. 6. This gadget can be folded not only in the I shape
in a natural way, but also in many other ways. For example, I(4)
has ten ways of folding in total as shown in the right in Fig. 6.
Therefore, in general, I(i) has exponentially many ways of fold-
ing (The exact value is open, but it is at least 10i/4 by joining i/4
of I(4)s).

For the I gadget I(4), we call the bottom left way of folding in
Fig. 6 an F-folding. It is useful since it realizes a “turn” of direc-
tion. Gluing two copies of I(4) gadgets (precisely, one is the mir-
ror image) and performing F-folding, we can obtain an L-shaped
pipe with two holes of size 1 × 2 on both endpoints. Therefore,
joining four of the L-shaped pipes, we can construct a polycube
as shown in Fig. 7. By elongating the gadgets, we can change the
size and genus as shown in Fig. 8.

Combining these gadgets, it is easy to construct a rectangle
with some slits for folding a polycube of any genus. In Fig. 9 (a),
we give an example of a rectangle with some slits that can be
folded to a polycube of genus 2. Figure 9 (b) describes the poly-
cube of genus 2 folded from (a) (since all polycubes folded in this
manner are of thickness 2, we draw them in top-view).

We can observe that there are many polycubes folded from (a)
by the property of the I gadget. That is, each I gadget in a rectan-
gle can be folded to one of nine different shapes with consistency
of lengths unless it intersects with others. That is, choosing each
way of folding properly, we can fold to (exponentially) many dif-
ferent polycubes from the rectangle of length 6× n with slits. For
a rectangle in Fig. 9 (a), one of the variants is given in Fig. 9 (c).
Now it is easy to see that Theorem 2 and Corollary 3 hold.
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Fig. 8 A construction of rectangle of size 6 × 24. It can fold to a polycube of genus 1.

Fig. 9 (a) A construction of rectangle of size 6×48. (b) A polycube of genus 2 folded from the rectangle.
(c) Another polycube of genus 1 folded from the same rectangle.

4. Concluding Remarks

In this paper, we show some concrete polycubes folded from a
rectangle with slits. Among them, there is a polycube of genus
0. We also show that for any given integer k, one rectangle with
slits can fold to at least k different polycubes. This construction
also gives us at least k different polycubes of genus g for any pos-
itive integers k and g. So far, however, we have no construction
that gives infinitely many polycubes of genus 0, which is an open
problem.

The series of I gadgets in Fig. 6 gives us interesting patterns.
For a given i, the number of ways of folding of I(i) seems to
be an interesting problem from the viewpoint of computational
origami. From the viewpoint of puzzle design, it is also an inter-
esting problem to decide the kind of polyominoes folded from I(i)
for general i. In the construction in Theorem 2 and Corollary 3,
we use the rectangle of size 6 × n. It may be interesting whether
we can use the rectangle of size 4 × n or not.

In Theorem 4, we stated that all polycubes consisting of 12 or
fewer cubes have an edge unfolding without overlaping. This the-
orem begins to address an open problem that asks whether there
exists a polycube that has no non-overlapping edge unfolding.
It seems very challenging to find such an “ununfoldable” poly-
cube by brute-force search: our program is able to quickly find
solutions for randomly sampled polycubes with as many as 1,000
cubes (as well as for hand-constructed polycubes that appear hard
to unfold), and an exhaustive search becomes infeasible at much
smaller numbers. This problem sometimes appears as “grid un-
foldings” in the context of unfolding of orthogonal polyhedra.
See Refs. [6], [7], [8], [9], [10] for further details.
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