Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Valid Orderings of Layers When Simple-Folding a Map

Y1vanc Jial-®

JuN Mirtant':

b) 2,0)

Ryuner UEHARA

Received: November 12, 2019, Accepted: June 1, 2020

Abstract: In this work, we consider a decision problem on whether an overlapping order of all the squares of an m xn
map is valid under a particular context called simple folding. This problem belongs to the field of map folding. It is a
variation of both the decision problem of valid orders of a 1 X n map under the context of simple folds and the decision
problem of valid orders of an m X n map under the context of general folds. We provide a method and its corresponding
linear-time algorithm to solve this problem, which is based on the construction of a directed graph representing the

adjacency relations among squares.

Keywords: map folding problem, overlapping order, m X n map, linear-time algorithm

1. Introduction

This research is in the field of computational origami, in which
flat folding is a significant topic among diverse problems. It con-
cerns whether a given crease pattern can be flat folded or not. For
the simplest case, i.e., when there is only one vertex in the given
crease pattern, the satisfiability for the pattern to be flat folded is
called local flat-foldability. Two crucial conditions about it are
listed below.

Condition 1 (Kawasaki[1], Justin[2]): For a flat-foldable ver-
tex, the alternate angles between its adjacent creases sum up to
.

Condition 2 (Maekawa [3], Justin [2]): For a flat-foldable ver-
tex, the numbers of its related creases assigned to be mountains
and valleys differ by +2.

Whereas a linear-time algorithm on deciding the local flat-
foldability of an arbitrary planar crease pattern exists, it is NP-
hard to decide if all the vertices can be flat folded simultaneously
without self-intersection, i.e., the global flat-foldability. Both of
the conclusions are introduced in Ref. [4].

Concerning flat-folding, some simplifications have been ap-
plied to the general problem to find simpler solutions for some
limited cases. The map folding problem is a typical one that spe-
cializes the crease patterns. It limits the paper to a rectangle of
size m X n and limits the crease pattern to an embedded m X n
grid pattern. This problem was first presented by Jack Edmonds
in 1997 with also a mapping from every non-boundary edge to
a set {M, V}, namely the Mountain-Valley assignment (MV as-
signment) as the input. The desired output is the answer of if
the given map can be folded into a square of size 1 X 1 on the
plane or not [5]. Although it simplifies the pattern, analyzing the
global flat-foldability still seems intricate. It is known so far that

' University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

2 School of Information Science, JAIST, Nomi, Ishikawa 923-1292, Japan
¥ yiyangjia@cgg.cs.tsukuba.ac.jp

Y mitani @cs.tsukuba.ac.jp

9 uehara@jaist.ac.jp

© 2020 Information Processing Society of Japan

Fig.1 A map of size 2 X 5 which cannot be flat-folded (The red segments
indicate mountains whereas blue segments indicate valleys).

the flat-foldability of a 2 X n map needs O(n°) time to decide [6].
A superficially simple but not flat-foldable example is shown in
Fig. 1. This pattern is locally flat-foldable for each vertex, but it
is not globally flat-foldable.

To reduce the difficulty, some further simplifications are ap-
plied to the map folding. We can classify them into three types
according to the problem settings. The first type limits the shape
or the size of the map, e.g. limits the value of m or n to be a con-
stant. The second type limits the type of the folds, e.g., limits the
folding operations to simple folds. The third type limits the con-
figuration of the folded state, e.g., limits the ordering of layers in
the folded state.

Arkin et al. [5] and Morgan [6] investigated the first type. They
studied the maps of size 1 xn and 2Xn, respectively. They focused
on the flat-foldability of some given crease patterns, the accessi-
bility to some desired states and the complexity to find a folding
which leads to a certain flat-folded state.

A typical one of the second type is limiting the folds to sim-
ple folds [5] whose definition will be given in Section 2. The
book [7] concludes the results in Refs.[4] and [5]. It also de-
scribes a linear-time algorithm to determine whether an MV as-
signment can be simple-folded or not. Another extension named
simple unfold is introduced in Ref. [8]. Their research concerns
1 x n MV-assigned maps and concludes that all the achievable
flat-folded states by general folding are also achievable by only
simple folds. Our research employs the result of their study and
discusses it in Section 4. Furthermore, a related problem on the

Electronic Preprint for Journal of Information Processing Vol.28

topic of the 1 X n map folding is solved in Ref. [9].

The research by Nishat[10] belongs to the third type. They
explored the validity of the orders of layers in the final folded
state of an m X n map. Although their method of checking and
enumerating the flat-folded states follows an intuitive way, their
exponential time algorithm still implicates a great likelihood of
the non-existence of polynomial time algorithms.

Our research congregates the latter two types of limitations,
which can be viewed as further research of Ref. [10] by limiting
the general folds to simple folds. Our purpose also differs from
the work in Ref. [7]. Their research concentrates on the simple-
foldability of a given MV assignment regardless of how many
valid flat-folded states can be induced from it; whereas our re-
search focuses on the validity of a certain given flat-folded state.
The aim is to figure out the potential relationship between simple
folds and the final flat-folded state, about whether or not a given
ordering of the layers in a non-assigned map indicates a valid flat-
folded state achievable by only simple folds. More specifically,
the input is an overlapping order O of the m X n squares of the
map in the final flat state. The output is a decision on the validity
of O, i.e., according to whether O is achievable only by simple
folds, the algorithm outputs true or false. We also discuss the
computational complexity of this decision question. Theorem 1.1
concludes our main result.

Theorem 1.1. Given an ordering of all the squares representing
a flat folded state of an m X n map, its validity under the context
of simple folds can be decided in O(mn) time.

2. Terminology

In this section, we present the terminology for a clear descrip-
tion.

A map M,,, is a rectangular sheet of paper with m X n congru-
ent squares arrayed in m rows and n columns. The two sides of
the sheet are differentiated as the front side and the back side. Its
crease pattern is specified as a grid pattern consisting of all the
edges of the squares other than the ones on the boundary of the
map. These edges are called creases and their non-boundary end-
points are called vertices (following the terminology in Ref. [5]).
A mapping from the set of creases to the set {M, V} is defined
as the Mountain-Valley assignment (MV assignment). The MV
assignment models the way to fold every crease along either of
the two possible directions, i.e., a Mountain Fold (“M”, denoted
by a red solid-line segment) or a Valley Fold (“V”, denoted by a
blue dashed-line segment). Each vertex has degree 4, and it is
known that this vertex is locally flat-foldable if and only if three
of them are assigned the same and the remaining one is assigned
differently.

M,,, is assumed to be at the first quadrant of a right-handed
Cartesian coordinate whose unit length is equal to the side length
of the squares. The bottom row of M, , is aligned with the x-axis
from the origin. We use s;; (0 < i < n,0 < j < m) to refer to
the square whose lower-left vertex is located at (i, j) before any
fold. Both the pair s, j, si11,; and the pair s, j, s; ;41 are called
neighbour squares. Without loss of generality, s is supposed to
always face the front side up during the whole folding process.

The notations for creases are defined as follows. h; ; refers to

© 2020 Information Processing Society of Japan

o <

V3 V7

hy

K] IR

b ho.2 }VI,Z E E E

o 1 2 3 4 5 6 |7 8 X

Fig.2 An example of 6 x 8 map.

ﬁ%)
__
S
C
D D

(a) (b)

Fig.3 An example of some-layers simple fold.

C i
1

a horizontal crease whose left endpoint is located at (7, j) and v; ;
refers to a vertical crease whose bottom end is located at (i, j).
Then, we use A, to indicate the set of all the creases located on
y =a,l <a<m-1and v, to indicate the set of all the creases
onx = b,1 <b < n-1 and call such h,s and v,s crease lines.
The notations so far are illustrated by the example of 6 X 8 size in
Fig. 2.

The following definitions are about the foldings. Simple folds
focused in this research are exactly the same with the some-layers
simple fold model in Ref. [S]. An illustration is given in Fig. 3. It
is distinguished from the general folds by limiting that (1) the
states before and after a simple fold are both flat and (2) only
some continuously adjacent layers whose surfaces touch each
other in pairs are folded along a single crease line. They mean
that a simple fold is along a line and avoids interference on other
layers. We do not concern other models of simple folds in this
research. A folding sequence is a continuous reconfiguration of
the map from its initial state R, (a single sheet of paper) to a tar-
get flat state R, of the 1 X 1 size without tearing, stretching or
self-penetrating. A simple folding sequence is a folding sequence
composed of some ordered simple folds. For convenience, a sim-
ple folding sequence is briefly called a simple folding in the fol-
lowing descriptions. We note that every partly flat-folded state
during the folding is always in the shape of a rectangle. An over-
lapping order is a list of the layers ordered from bottom to top in
a flat state, which is represented by a fixed sequence of the ele-
ments in {5; ;|0 < i <nand 0 < j < m}. In R, each square forms
a single layer.

In any partly or completely flat-folded state, we say a pair of
squares whose surfaces touch each other are adjacent. When a
pair of squares sy, 5, and s, 5, are adjacent and s, 5, is supposed
to be folded below s,, 5, in Ry, the adjacency relation between
them is indicated by a tuple (Sq, 4, Sa,.5,)- As an extension, the

Electronic Preprint for Journal of Information Processing Vol.28

Crimp —

|

End fold —

Fig. 4 The crimp and the end-fold.

adjacency relation among a set of squares {sy, $,. .., s;} in which
all the pair of s, and s,4+; have adjacent relation (s4, S4+1) is indi-
cated by the tuple (s1, 52, ..., $i).

A valid ordering is a feasible overlapping order by folding a
map to the 1 X 1 size with only the simple folds considered in
this paper.

An earlier study [5] defines two kinds of simple folds for a
one-dimensional map. They are respectively called end-folds and
crimps, which describe the folds illustrated in Fig.4. An end-
fold is a folding of either the first or the last crease along the
one-dimensional map whereas a crimp is a folding of a pair of
adjacent creases with different labels. We use the same terms
since a single simple fold of a two-dimensional map can be seen
as a simple fold of a one-dimensional map if we view the folding
along a crease line in the two-dimensional map as along a crease
point in the one-dimensional map. A simple folding applied on
M,,, is composed of at most m + n — 2 crimps and end folds.
To simplify the description, we consider a crimp as one folding
operation.

We formalize the problem The Valid Total Order Using Simple
Folds (VTOS) as below:

When an overlapping order O of all the squares of M,,, is
given, is O a valid ordering reachable by a simple folding starting
from Ry?

3. Outline

The procedure proposed in this paper to decide the validity of
O is specified as follows: (1) Compute the MV assignment from
O and check if it is everywhere locally flat-foldable (Section 4.1);
if not, we return false. Otherwise, we proceed to the next step.
(2) Check a necessary condition of the MV assignment to be flat-
foldable with only simple folds; if this condition is not satisfied,
we immediately return false. Otherwise, we obtain an incomplete
order P of the simple folds (Section 4.2.1), and we proceed to
the next step. (3) Construct a directed graph G to describe the
adjacency relations of the squares which can be obtained from P
(Section 4.3). (4) Traverse O while adding the remaining edges to
G and checking if O follows the construction of G (Section 4.3).
Note that in the above steps, (2) and (3) can be concluded at the
same time and only part of the edges in G are assigned before
applying (4). This procedure can be realized in linear time.

In Section 4, we first present the method to obtain the MV as-
signment and its corresponding incomplete order of simple folds.
Then, we introduce how to construct a directed graph G of adja-
cency relations based on the known information so far. Finally,
we complete our algorithm with the check of the consistency be-
tween O and G. Based on these steps, the algorithm description
is given in Section 5. We provide some possible future research
in Section 6.

© 2020 Information Processing Society of Japan

So, 1

s

S1,1 1,0
(@) (b)

Fig.5 The checkerboard pattern of a 2x2 map and its corresponding folded
state.

4. Decision on the Validity of the Given Order

4.1 Computing the MV Assignment

We first traverse O to figure out the MV assignment of the
map. Note that O may correspond to an MV assignment not
everywhere locally flat-foldable. If it is not everywhere locally
flat-foldable, we immediately return false. The check of local
flat-foldability is concluded in O(mn) time by checking the as-
signment of the creases around every vertex [4]. The MV assign-
ment can be obtained by traversing O once since the label of any
crease is uniquely decided by the overlapping relation between its
two incident squares. Thus, the MV assignment can be clarified
in O(mn) time because O has m X n elements. The computation is
detailed as follows.

By the reason that s is fixed to face front side up, s; ; faces
front side up (down) when i + j is even (odd) in R,. This property
is described in Ref.[10] by embedding a checkerboard pattern
into the map.

Consider an arbitrary s; ; facing front side up in the final folded
state, if it is positioned below its neighbour square, the crease be-
tween them must be labeled V. If it is positioned over its neigh-
bour square, the crease must be labeled M. Following this way,
the labels of all the creases can be figured out through a traverse
of O. A simple example of a 2 X 2 map is illustrated in Fig.S.
Given the overlapping order (sy0, S1,1, So,1, So0) of the folded
state in (b), where s is positioned above s and so; makes it
clear that ho; and v; are labeled Ms. Since s, also faces its
front side up and is positioned below sp; but above s, A1 is
labeled M and v, ; is labeled V.

4.2 The Incomplete Order of Simple Folds

In this section, we first describe the way to construct an incom-
plete order of simple folds when the MV assignment is simple-
foldable. Then, we introduce some notations based on the incom-
plete order.
4.2.1 Construction of the Incomplete Order P

After the MV assignment of M, , is obtained by the method
described in Section 4.1, next we decide whether the MV assign-
ment is simple-foldable. If it is simple-foldable, we construct
an incomplete order of simple folds P = (po, p1, ..., pr—1) With
t < m+ n— 1 according to this MV assignment, which satisfies
that (1) each py is either a maximal set of some A,s or a maxi-
mal set of some v,s perpendicular to those involved in pg,; and
(2) the crease lines in p; are folded directly after p;—; and be-
fore pyy1. By this indication, a p; uniquely describes the fold
along one crease line or the folds along multiple parallel crease

Electronic Preprint for Journal of Information Processing

Fig. 6 Obtaining the partial order based on a known MV assignment via a
simple folding.

lines. Without loss of generality, we assume that p,; consists of
h,s and py;; consists of v,s. Since there exist m — 1 horizon-
tal crease lines and n — 1 vertical crease lines in an m X n map,
[pol+1p2l+... =m—1and |p|+|p3]+... = n—1. When the MV
assignment is not simple-foldable, we conclude that O is invalid
and end the process.

Roughly speaking, the method to construct P uses the one in-
troduced in Section 14.2 in Ref.[7] where their concern is the
simple-foldability of a given MV assignment. According to their
description, the computation costs O(mn) time.

When we approach the construction of P, an important obser-
vation is that a partly simple-folded state of M,,, can be viewed
as a new map. At least one of the crease lines of the new map
should have all creases labeled the same, or it would be impossi-
ble to apply the next simple fold.

Note that the inner order of any p; does not affect the shape of
its folded state but only affects the resulting ordering of the in-
volved squares in such layers. This means that M,,, can always
be folded to the shape of the largest rectangle divided by the folds.
If M,, , is flat-foldable under the context of simple folds, the com-
putation of P should end as M,,, ,, is reduced to a map of size 1 X 1.

The details of the construction are omitted here because it is
the same with the computation in Section 14.2 in Ref.[7]. For
a better understanding, we provide an example of the process in
the rest of this section. The succeeding steps are described in the
following sections.

For the instance in Fig. 2, the folding consists of 5 steps. Fig-
ure 6 illustrates the first three steps in (a), (b) and (c), respec-
tively. In the first step, the map is folded along vs and vy, i.e.,
po = {vs,v7}. The check of their reasonability is implemented
first locally on the pairs of creases folding to the same position,
then upon the global map to check the self-intersection. In de-
tail, first pairs of creases in the two areas of size 6 X 3 adjacent
to v3 and the two columns adjacent to v7 are respectively verified
to match each other; then we check if we can sequence v3 and vy
to achieve a feasible folding. In this case, the answer is yes since
they comprise a crimp. Similarly, in the second step we fold the
crimp involved in p; = {hy, hs}. Note that different inner orders
of p; induce different overlapping orders, meaning that a given
MYV assignment may give more than one overlapping order; The
folding in the third step is recorded by p, = {v2, 04,06}, Which
involves two end folds and no crimp since vy, v4 are located on
the same line segment. The omitted following two steps consist
of p3 = {hy, h3, hs} and ps = {v},vs}. In conclusion, this example
can be flat folded via a simple folding with P = (po, p1, p2, P3, P4)
along exactly 6 + 8 — 2 = 12 crease lines.

© 2020 Information Processing Society of Japan

Vol.28

(@)

Fig.7 The uniformity of the positions in an m X n map and a 1 X n map.

4.2.2 Notations and Some Theoretical Basis

In this section, we introduce some notations and theoretical
basis. The simple folding starts from the initial state Ry. Corre-
> Pi-1),
the sequence of partly flat-folded states is indicated by #Z =
(Rog, R, R»,...,R;) where each Ry, indicates the flat-folded state
directly after folding p;. As denoted in Section 2, the last element

sponding to the simple folding sequence P = (po, p1, - -

R, represents the final flat-folded state. For a precise description,
we assume that s is located at (0, 0) in every element of Z.

We use a 3-tuple g(j, x,y) for j,x,y € Z, which is called a
group, as a description of the squares located at a certain coor-
dinate (x,y) in R;. Specifically, we can describe Ry by the set
of ¢g(0, x, y)s assigned as follows. For every (x,y) with 0 < x <
n,0 <y < m,let g(0,x,y) = {sy,}. For other coordinates (x, y)s
where no square locates initially, let g(0, x,y) = 0. Based on the
abovementioned assumption, so belongs to every g(j, 0, 0).

Unless any exception is noted, in the following descriptions,
pr refers to an arbitrary element in P which folds the map from
corresponding Ry to Ry and (x, y) refers to an arbitrary coordi-
nate. For convenience, the following descriptions about groups
concern only the non-empty ones.

g(k + 1, x,y) is defined for the sake of properly indicating the
squares supposed to be positioned at (x,y) in Ry.;. Its precise
definition will be given later in this section. We first provide the
theoretical basis and proof so that it can be well-defined. For the
squares involved in g(k + 1, x,y), we have Observation 4.1 and
Lemma 4.2 as follows.

Observation 4.1. The squares involved in the same rows
(columns) in Ry, are never separated into different rows (columns)
in any R, where u > k.

Lemma 4.2. The feasible inner order of py affects the squares
involved in g(k + 1, x,y) only on the aspect of their overlapping
order. The squares involved in g(k + 1, x,y) are decided, regard-
less of the inner order of py.

Proof. We use an illustration in Fig. 7 (a) to explain the correct-
ness. Without loss of generality, assume that the crease lines in
Dx are vertical. We consider a square s, in g(k, x’, ") and aim to
find its corresponding g(k + 1, x, y).

It is clear that y* = y = b holds for s,,. We focus on the value
of x for s,;, which can be computed using a one-dimensional
model illustrated in Fig. 7 (b). The folding is composed of a se-
quence of crimps and end folds [5]. Corollary 12.1.5 of Ref. [7]
clarifies that the value of x for s, is certain after folding all the
crease lines in p;. The same analysis can be applied to the case
when the crease lines in p; are horizontal. Therefore, by the re-
cursion of k, the squares involved in any g(k + 1, x, y) are certain.
Lemma 4.2 is proven. O

Electronic Preprint for Journal of Information Processing Vol.28

Based on Lemma 4.2, we can conclude that the set of squares
located at (x, y) in Ry is comprised of the set of squares located
at some certain (x’, y’)s in Ry. So far, we can define g(k + 1, x, y)
asg(k + 1, x,y) = {g(k, x",y’") | g(k, X', y’) is supposed to be folded
to (x,y) by pr}. Namely, g(k + 1, x, y) is a set with each element
as a g(k, x’, ") supposed to be folded to (x, y) by py.

For g(k + 1, x,y), if the overlapping order of its elements is
uniquely decided in Ry, then we say that the inner order of
g(k + 1,x,y) is clear, otherwise we say that the inner order of
g(k + 1, x,y) is unclear. Furthermore, the definition of adjacent
relation is extended to a pair of groups. If the uppermost square
in g(k, x],y}) touches the lowermost square in g(k, x5, y,) in R,
where u > k, we say that they are adjacent and denote them by
(gtk, X1, y1), g(k, x5, y3)) or (g(k, x5, y5), g(k, X7, y})) according to
which side they face up in R, (the parity of their coordinates).

The following lemma is about the adjacency relations.
Lemma 4.3. Any pair of adjacent squares in Ry are still adjacent
in the final state R, even though the adjacency relation between
them may be converse.

Proof. A pair of adjacent squares in R; are always folded to-
gether by the subsequent folds. The definition of simple folds en-
sures that no other layers can be inserted between them. Thus a
pair of adjacent squares in Ry are also adjacent in Ry, ;. The proof
of their adjacency in R, is concluded by the recursion relation of
g(k + 1, x,y). Their overlapping order in R; is decided by their
coordinates in Ry, which can be checked using a checkerboard
pattern as mentioned in Section 4.1. The proof of Lemma 4.3 is
concluded.]

Now we introduce another type of relations among groups.
The crease lines of p; divide Ry into multiple rectangles. We
view each of them as a single layer in Ry,; and denote the set
of these rectangles as L; = {l(k,i)} withi = 0, 1,...,|ptl}. We
consider a g(k + 1, x,y) composed of g(k, x’,y’)s from different
I(k,7)s. Once the inner order of a g(k + 1, x, y) becomes clear, the
overlapping order of these I(k,i)s is also decided in Ry.;. Spe-
cially, if g(k + 1, x2,) is composed of g(k, x},y;)s from these
I(k, i)s, then the inner order of g(k + 1, x,, y,) also becomes clear.
For such g(k, x',y") and g(k, x, y5) related by the same I(k, i)s,
we say that g(k, X", y’) and g(k, X}, y}) are associated and call the
relations among them interdependencies.

4.3 The Directed Graph G and the Validity Checking

We have already introduced the construction of the incomplete
order P representing the partial order of simple folds. P only pro-
vides partial information to decide the validity of O. The reason
is that O should be verified by checking all the adjacency rela-
tions, whereas not all the adjacency relations can be decided only
by P. To solve this problem, in this section, we introduce a di-
rected graph G = {V,E}. G is constructed according to P and
O. Each edge represents the adjacency relation (in R;) between
a pair of squares. Thus when G is concluded, E should include
m X n — 1 directed edges which induce a Hamiltonian path. The
validity of O is checked by referencing G. For convenience to
indicate the different states of G, when constructing G, each of
its partly specified states achieved directly after py is denoted by
Gi+1 = {Vi+1, Ex+1}, which corresponds to all the possible Ry s.

© 2020 Information Processing Society of Japan

In other words, every Gy, represents a certain middle state of
G, corresponding to the adjacency relations decided by P and in-
volved in Ry, .

Initially, Go = {Vb, Ep} is constructed as a graph with V, =
{sij 10 <i<n0<j<m}and Ey = 0. Each square s;; is
abstracted as a node s, ; of Go.

Corresponding to the final state R;, G; is obtained when all the
elements of P are considered. Note that G, does not represent the
final state of G. In the next step we traverse O and complete G
according to O. If G indicates a valid state reachable by simple
folds and O is verified to be consistent with it, we claim that O is
valid.

The adjacency relations decided by py are indicated in G by as-
signing edges to G;. As mentioned before, the adjacency relation
of two squares known to be adjacent in R, can be figured out by
a parity check on their initial coordinates. Thus in the following,
we only consider the adjacency relations in R, when assigning the
edges. In every Gy, a directed edge from s, to s. 4 represents the
adjacency relation (84, S¢4) in R;.

G is achieved through three phases. In the first two phases we
only consider P without touching O. Every Gy, is constructed
from Gy according to pi. G, is obtained before traversing O.

In the first phase, we consider the adjacency relations inside
the groups whose inner orders are clear. Their adjacency rela-
tions are assigned as edges. In the second phase, we record the
interdependencies among groups whose inner orders are unclear.
The method is indexing the elements of associated groups con-
sistently. In the last phase, we construct G referencing G, and O
by assigning the edges according to the recorded interdependen-
cies and check the consistency between O and G to determine the
validity.

These phases are detailed in Sections 4.3.1, 4.3.2 and 4.3.3 re-
spectively.

4.3.1 Construction of the Adjacency Relation Graph G from
P

In this phase, we concern g(k + 1, x, y)s whose inner orders are
clear. Note that g(k, x’,y")s comprising g(k + 1, x,y) can have
unclear inner orders. The adjacency relations involved in such
g(k + 1, x,y)s are assigned as edges in E.

Corresponding to each pg, the g(k,x’,y’)s comprising
g(k + 1, x,y) are certain. Furthermore, whether the inner order
of g(k + 1, x,y) is clear or not can also be decided with the same
method mentioned in Section 14.2 in Ref.[7]. We conclude
that there are three possible cases where the inner order of
gk +1,x,y) is clear. (1) [px] = 1. (2) The order of folds in a
certain py is uniquely decided. (3) g(k, x’,y’)s relocated by the
folds in p; do not overlap each other.

To properly assign the edges to G corresponding to all the ad-
jacency relations involved in g(k + 1, x,y), we handle g(k, x’, y")
with an unclear inner order in the following manner. For ev-
ery g(k,x',y’) whose inner order is unclear, we use two new
types of nodes called a top pseudo node and a bottom pseudo
node, denoted by g,(k, x’,y’) and g,(k, x’,y’) to represent its up-
permost and lowermost element in R, (the overlapping order may
be converse to Ry), respectively. Then, the adjacency relations be-
tween g(k, X', y’) and the two groups upper and lower adjacent to

Electronic Preprint for Journal of Information Processing Vol.28

8.0, 1)

s3] 039 [

&(1,0,0)

g(l,O, 1)
'
f
[52.01=1g,01:0.0)}
—

S0 X Sl,o) £0.0.0
y

H 2 50 D 3g(l’0’l)

f‘ i

4
1

—\ SO'O : gﬂvoym
S0 X S1,0

(©

Fig. 8 The interdependencies among groups. The numbers on the upper-
right corner of nodes indicate their indices.

g(k, x’,y’) in Ry, can be specified in G by assigning an incoming
edge to gp(k, X', y’) and an outgoing edge from g,(k, x’,y). In this
manner, we can assign all the edges between the corresponding
adjacent nodes in G.

If the inner order of g(k + 1, x, y) is unclear, this edge assign-
ing phase is skipped. Only the two pseudo nodes g;(k + 1, x, y)
and g,(k + 1, x,y) are added to G for the subsequent handlings.
All the pseudo nodes will be removed in the third phase once the
inner orders of their groups become clear.

Along with the construction, G, includes all the adjacency re-
lations involved in the groups with clear inner orders. Other ele-
ments in E are specified during the operations in the third phase
based on O, which will be detailed in Section 4.3.3.

We explain the process using the simple example shown on
the left-hand side of Fig. 8 (a) with its corresponding G initially
specified as six square nodes s;; (i = 0,1,2,j = 0,1), as illus-
trated in the right figure of (a). Initially, g(0,7, j) = {s;;}. The
inner order of py = {v;,v,} remains unclear. That means corre-
sponding to R; (of size 1 x 2), ¢g(1,0,0) and g(1,0, 1) are speci-
fied as ¢g(1, 0, 0) = {g(0,0,0), g(0, 1, 0), g(0,2,0)} and g(1,0, 1) =
{g(0,0, 1), g(0, 1, 1), g(0,2,1)}. The inner orders of both groups
are unclear. We add the top pseudo nodes g,(1, 0,7) and the bot-
tom pseudo nodes g,(1,0, i) to represent g(1,0,7) with i = 0, 1,
respectively. p; = {h;} folds the map to R, and decides that
g(1,0, 1) is upper adjacent to g(1,0,0) in R, since sp faces front
side up. Correspondingly, we add an edge from ¢,(1,0,0) to
g5(1,0, 1).

4.3.2 The Specification of the Interdependencies among
Groups Based on P

In this section, we give the method to index the nodes involved
in the associated groups with unclear inner orders. Even though
there are multiple cases of the inner orders in these groups, the
simple folds still restrict the consistency of the inner orders of
these associated groups.

To indicate the interdependencies as introduced in Sec-
tion 4.2.2, we assign indices to the g(k, x’,y")s which comprise
a g(k + 1, x,y) with an unclear inner order. We index g(k, x’, y’)
by i if it is in the rectangle I(k, i) (introduced in Section 4.2.2)
before folding py. The details are as follows.

© 2020 Information Processing Society of Japan

We choose an arbitrary feasible order of p; by the method in
Section 14.2 of Ref.[7]. Each rectangle divided by the crease
lines in py is viewed as a single segment along the axis perpen-
dicular to the crease lines. A feasible overlapping order of these
rectangles can be obtained. We index the rectangles from bottom
to top to obtain L = {l(k,i)|i = 0, 1,...,|pl}. According to where
g(k, x’,y’) is relocated by py, the index of g(k, x’, y’) is specified
asi.

Using these indices, even if the inner order of py is arranged
differently, in any R, reachable by simple folds, the adjacency re-
lations among associated groups are consistent with each other.
The way to assign the remaining edges according to the indices
and O is specified in the third phase (Section 4.3.3).

As an example, we show the indexing for the map illustrated in
Fig. 8. Corresponding to the feasible state shown on the left side
of (b) where py is sequenced as (v;,v;), the figure on the right
side of (b) illustrates the indexing in G. In detail, the elements
in g(1,0,0) are ordered by an ordered set (g(0, 1,0), ¢(0,0,0),
g(0,2,0)). The elements in g(1,0, 1) are ordered by an ordered
set (g(0,1,1), ¢g(0,0,1), g(0,2,1)). In both groups, the ordinal
number of each element represents its index.

4.3.3 The Completion of Adjacency Relation Graph by
Traversing O

As mentioned before, the edges corresponding to the unclear
inner orders of groups are still unspecified after the first two
phases. In the third phase, G is concluded from G; by con-
cluding the edge assigning corresponding to every group with
an unclear inner order. Meanwhile, the check for the validity
of O is also implemented. Along with the construction of G,
g:(k+1,x,y) and g,(k + 1, x,y) are removed from G when the
inner order of g(k + 1, x, y) becomes clear. Moreover, the edges
incident to g,(k + 1, x,y) and g,(k + 1, x,y) are replaced by the
edges incident to its uppermost and lowermost elements. There-
fore, as above-mentioned, as the final state of G, a Hamiltonian
path with exactly m X n — 1 directed edges should be induced.

In this step, O is traversed from the first element to the last one.
For every adjacent pair of squares (s,.,, S,vy) in O whose adja-
cency relation is valid, there are two cases (1) and (2) of G. Case
(1) corresponds to the case where the adjacency relation between
sup and s, v is already decided and specified in G. It can be fur-
ther divided to two subcases (1a) and (1b). Case (1a) is that there
exists a corresponding directed edge between s, and s,/ ,». Case
(1b) is that a directed edge is assigned from s,,, to a group which
includes s,/ ,» and with its inner order still totally unclear at this
point. In such case, we specify s, as the lowermost element
of this group. There exists no other case because based on our
edge assigning process, before (s,,, s,/ ») is traversed, we have
already specified the uppermost element of the group including
Sy AS Syp-

Case (2) corresponds to the interdependencies among groups.
As introduced before, the adjacency relation between a pair of
g(k,x’,y")s of the same g(k + 1, x,y) uniquely indicates both
the MV assignment and the ordinal number of a certain crease
line in py, which clarifies the adjacency relation between cor-
responding rectangles I(k,i;) and I(k,i;). In other words, this
adjacency relation decides the adjacency relations between all

Electronic Preprint for Journal of Information Processing Vol.28

the pairs of g(k,a’,b’)s in I(k,i;) and I(k,i,) belonging to the
same g(k + 1,a,b). When specifying G in the second phase, all
the interdependencies among the unclear adjacency relations are
recorded by the indices. Therefore, we view every adjacency re-
lation in O which is unspecified in G as new information. We add
edges between the nodes corresponding to this pair of g(k, x’, y’)s
and all their interdependent pairs g(k,a, b)s. The directions of
edges are assigned consistently with R,. In this manner, the inter-
dependent adjacency relations are represented by the newly added
edges in all the associated groups. Whether O follows the rela-
tions added in other groups or not is also checked along the tra-
verse. An example is given at the end of this section.

During the traverse, if (1) O is always in accordance to G and
(2) the inner order of every group is valid under the context of
simple folds, we can claim the validity of O. For (2), whether the
inner order follows the simple folds or not can be verified with
the method provided in Ref.[8]. Their main conclusion is that
any valid flat-folded state of a 1 X n map can be unfolded to Ry
by a sequence F of simple folds and unfolds with |F| < 2n. On
account of the interdependencies among the groups, each time
we only have to apply the unfolds to an L if the inner order of
g(k,x’,y’) is unclear. Only the edge assignment in one group is
checked since it can represent all its associated groups.

Once an edge is added to E, the adjacency relation represented
by it is unchangeable during the after folding by Lemma 4.3. Cor-
respondingly, we can claim that a valid R, should respect all the
adjacency relations indicated by G. The invalid orders are defi-
nitely ruled out by our specification since we strictly follow the
restrictions of simple folds. In addition, any valid order corre-
sponding to a reasonable G is accepted by our method. Hence,
the correctness of our method follows.

We use the example in Fig. 8 introduced in the last section
to simulate the check in the third phase. Two possible foldings
and their corresponding edge assignments of G are illustrated in
Fig.8(b) and (c). Specifically, Fig. 8 (b) shows the case when
the first pair traversed in O is (s, Sop). This means py is se-
quenced as (vy,v;). First, an edge is assigned from s to s,
namely the nodes indexed 1 and 2 in ¢g(1,0,0). Then, we assign
an edge to their interdependent nodes in g(1, 0, 1) (with the same
indices) from s¢; to s1,; (the direction is reversed because of the
parity). The next pair traversed in O should be (s¢ 0, 52,0) because
g(1,0,0) is supposed to be folded under g(1, 0, 1). Otherwise, O is
invalid. The corresponding edge assignment is from sy o(indexed
2) to 52 (indexed 3) in g(1,0,0) and from s; ; (indexed 3) to s
(indexed 2) in g(1,0, 1). In addition, as s, and s, are clarified
as the lowermost and the uppermost elements of g(1,0,0), the
edges incident to ¢,(1,0,0) and g;(1,0,0) are reassigned to s2¢
and s, o, respectively. Then g,(1,0, 0) and g,(1, 0, 0) are removed
from G. At this point, all the edges in E are assigned. Then we
traverse the remaining elements in O to check if their adjacency
relations follow G. Another possible folding is when the first
pair traversed in O is (s;p, $20), corresponding to the case that
po is sequenced as (vy,v;) illustrated in (c). The edges assigned
to the nodes in g(1,0,0) include the one between (s, 52,0) and
the other between (52, S0,0). At the same time, the edges inci-
dent to the nodes with the same indices in g(1, 0, 1) are assigned.

© 2020 Information Processing Society of Japan

With the directions conversed, the edges assigned to the nodes in
g(1,0, 1) are specified as one between (so 1, 52,1) and one between
(82,1, 51,1). The edges reassignment is shown on the right side of
(b) and (c).

5. Algorithm Description

Algorithm 1 describes the mentioned process. We use the coor-
dinates of the squares in Ry to represent them in the input. In this
description, the ith member in O is indicated by O;. From the flow
of the algorithm, we can conclude that it can be accomplished in
polynomial time.

Next we discuss that Algorithm 1 can be realized in O(mn)
time. Note that to achieve a linear-time realization, the coordi-
nates of s are not standardized to (0, 0) in each step any more.

For the first two steps, the MV assignment can be obtained by
traversing O once in O(mn) time and the computation of the in-
complete order P for simple folds costs O(mn) time by analyzing
the labels of all the creases only once (the result in [7]). Next,
we consider the time complexity of the three phases introduced
in Section 4.3. Since every group represents the squares posi-
tioned the same when folding a certain py, they can be figured
out along with the traverse of P and cost the same time as sim-
ple folding a map, i.e., O(mn) time referencing the method in
Ref. [7]. Furthermore, this process can simultaneously figure out

Input : A sequence O of the ordering of layers from bottom to top //
indicating m X n numbered squares

Output: A boolean value // the validity of O under the context of
simple folds

Begin

initialization

P « 0 // the incomplete order sequence

G « A directed graph with m X n nodes

Specify the MV assignment by traversing O

// Section 4.1. O(mn)

if the MV assignment is not locally flat-foldable then
| return false // The map cannot be flat-folded. O(mn)

end
Construct P as an incomplete order by referring the MV
assignment // Section 4.2. O(mn)

if the construction failed then
| return false // The map cannot be folded by simple folds.

end

foreach p; in P do
// Partly specify the directed graph G (Section 4.3.1 and

4.3.2 O(mn))
if py uniquely decides the adjacency relation between two

squares or groups already exist then
Add edges representing the corresponding adjacency

relations after folding py to G
else
Make group nodes based on their positions after the

folding according to py // The nodes correspond to the
sets g(k + 1, x, y)s for the admissible xs and ys, and this
operation is done only if the order of py is unclear

For each group, add a top pseudo node and a bottom
pseudo node to G

Index the elements of each group from bottom to top

according to an arbitrary flat folded state after folding py

end

end

Electronic Preprint for Journal of Information Processing Vol.28

Delete the isolated pseudo nodes in G

fori=0tomxn—1do
if O; is not in any group S then
if O;y1 is in a group g and the next adjacent node of O; is

the bottom pseudo node of g then
assign all the incident edges of the bottom pseudo

node to O;;; and then remove this pseudo node
from G

next i
else

if the next adjacent node of O; is O;, then
| mnexti

else
| return false

end
end

else
if O;;1 and O; are in the same group then

if O; is not adjacent to Oy, in G then
assign the edge from O; to O;;; and the edges

between the same-indexed nodes in other
groups // the direction is decided by the side
the squares face up

next i
end

else

if O;,1 is in another group then
// It means that all the edges in the group

including O; are specified since squares of the
same group are adjacent in the final order;
otherwise O is invalid

if O; is in a group whose arrangement in G is

invalid under the context of simple folds then
return false // checked with the method in

Ref. [8] O(max{m, n})
end

assign all the incident edges of the top pseudo
node of the group containing O; and then
remove this pseudo node from G

assign all the incident edges of the bottom
pseudo node of the group containing O;y; to
041, and then remove this pseudo node from G

next i
else
| return false // O is not in any group

end

end
end

end

return true
end

Algorithm 1: A linear-time algorithm for VTOS.

whether the inner orders of the groups are clear or not. We now
discuss the time complexity when constructing G. To represent
the groups with unclear inner orders, there would be no more than
2 x m x n pseudo nodes added and thus there are O(mn) nodes in
any state of G. The edge-assigning of adjacency relations in the
first phase can be implemented along with the traverse of P and
involves no more than O(mn) single edge additions. Thus, this
phase costs O(mn) time using a simple BFS algorithm. In the
second phase, the indexing of elements of groups with unclear
inner orders essentially equals to arranging a reasonable order for
the crease lines in p;s, which cost the same time as arranging P,
i.e., O(mn) time.

© 2020 Information Processing Society of Japan

In the third phase, for all the adjacency relations in O, whether
they are in accordance with G or not can be concluded by travers-
ing O once, which costs O(mn) time. The construction of G is
also completed during this traversing. There remains only the
time consumption of checking the edge assignments in groups
with unclear inner orders. The orders of these groups are clarified
by the overlapping orders in O and are required to be checked for
the simple-foldability. This check is applied to the correspond-
ing L;s by seeing them as one-dimensional maps and using the
method in [8]. According to their result, the process costs linear
time to the factor of the number of elements. Thus, the total con-
sumption of all this kind of checks during the whole process costs
O(m + n) time since there are m + n — 2 crease lines.

In conclusion, the realization of Algorithm 1 costs O(mn) time.

6. Conclusion and Future Work

The core of our study is about this problem: for a given m X n
map with an ordering of its squares, can it be folded to the given
ordering by simple folds? Superficially, the given overlapping or-
der only indicates an unverified folded state. Whereas under the
context of simple folds, the total order of all the folding opera-
tions can be obtained from the overlapping order. Our strategy
can be briefly concluded as: first compute a partial order on the
creases set, which consists of sets of creases not sequenced. Then
on occasion of the folds involved in each set, establish a map-
ping between the squares and their positions to achieve a directed
graph on the adjacency relations. This mapping is based on the
consistency between their positions and the folds no matter how
the order of the folds is arranged. Finally, the check on the va-
lidity of the given order is concluded by referencing and com-
plementing the directed graph whereas checking the uniformity
between the directed graph and the given order.

Among all the possible directions for further research, we
would like to emphasize the following one. When the input is
changed to some partial orders, the problem may become far
more complicated. It means that we have to decide a reason-
able simple folding sequence from some incomplete information
on the folded state. The standpoint is that a total order leads to
only one case whereas a partial order may give rise to more cases.
Thus we view the research on deciding whether the partial-order
version is in class P as a compelling direction.

References

[1] Kawasaki, T.: On the relation between mountain-creases and valley-
creases on a flat origami, Proc. 2nd International Meeting of Origami
Science and Scientific Origami, Huzita, H. (Ed.), Origami Science and
Technology, pp.229-237 (1989).

[2] Justin, J.: Towards a mathematical theory of origami, Miura, K. (Ed.),
Proc. 2nd International Meeting of Origami Science and Scientific
Origami, pp.15-29 (1997).

[3] Kasahara, K. and Takahama, T.: Origami for the Connoisseur, Japan
Publications Inc. (1998).

[4] Bern, M. and Hayes, B.: The Complexity of Flat Origami, Ann. ACM-
SIAM Symposium on Discrete Algorithms, pp.175-183, ACM (1996).

[5] Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell,
J.S., Sethia, S. and Skiena, S.S.: When Can You Fold a Map, Compu-
tational Geometry: Theory and Applications, Vol.29, No.1, pp.23-46
(2002).

[6] Morgan, T., Thomas, D., et al.: Map folding, PhD Thesis, MIT (2012).

71 Demaine, E.D. and O’Rourke, J.: Geometric folding algorithms, Cam-
bridge University Press Cambridge (2007).

Electronic Preprint for Journal of Information Processing Vol.28

[8] Uehara, R.: Stamp foldings with a given mountain-valley assignment,
Origami 5, pp.599-612, AK Peters/CRC Press (2016).

[9] Umesato, T., Saitoh, T., Uehara, R. and Ito, H.: Complexity of the
stamp folding problem, International Conference on Combinatorial
Optimization and Applications, pp.311-321, Springer (2011).

[10] Nishat, R.: Map folding, PhD Thesis, Bangladesh University of Engi-
neering and Technology (2013).

Yiyang Jia is a Ph.D. student at Graduate
School of Systems and Information Engi-
neering, University of Tsukuba. Her re-
search mainly focuses on computational
origami, especially map folding problems.

Jun Mitani received his Ph.D. in Engi-
neering from the University of Tokyo in
2004. He has been a professor of Univer-
sity of Tsukuba since April 2015. His re-
search interests center in computer graph-
ics, especially geometric modeling tech-
niques. He studies geometry of curved

origami as well as interactive design in-
terfaces.

Ryuhei Uehara is a professor in School
of Information Science, Japan Advanced
Institute of Science and Technology
(JAIST). He received B.E., M.E., and
Ph.D. degrees from University of Electro-
Communications, Japan, in 1989, 1991,

and 1998, respectively. He was a re-
searcher in CANON Inc. during 1991-
1993. In 1993, he joined Tokyo Woman’s Christian University
as an assistant professor. He was a lecturer during 1998-2001,
and an associate professor during 2001-2004 at Komazawa Uni-
versity. He moved to JAIST in 2004. His research interests in-
clude computational complexity, algorithms and data structures,
and graph algorithms. Especially, he is engrossed in computa-
tional origami, games and puzzles from the viewpoints of theo-
retical computer science. He is a member of EATCS, and vice
chair of EATCS Japan Chapter.

© 2020 Information Processing Society of Japan

