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Abstract: We propose an algorithm for finding a minimum forcing set of a given flat-foldable single-vertex crease
pattern (SVCP). SVCP consists of straight lines called creases that can be labeled as mountains or valleys, and the
creases are incident to the center of a disk of paper. A forcing set is a subset of given creases that forces all other
creases to fold according to the given labels. Our algorithm is a modification of an existing algorithm for 1D origami.
We show that the size of a minimum forcing set of an SVCP is n/2 or n/2 + 1 where n is the number of creases in the
SVCP.
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1. Introduction

In an origami application called self-folding origami, a thin
material folds into an intended shape by rotating the planes
around creases according to the label mountain or valley assigned
on the creases (See Ref. [6], [8], [11], [12]). The cost of such an
application can be reduced if it is enough to put actuators on a
subset of creases. Finding such a subset of creases can be mod-
eled as a forcing set problem. In applications, material is often
desirable to satisfy flat-foldability in order to make the size small.
A material is flat-foldable if we can transform it from the com-
pletely unfolded state to the flat state that all creases are com-
pletely folded.

The forcing set problem is a new topic in computational
origami, which was considered in Ref. [1], [2], [4]. Especially,
minimum forcing set for flat-foldability was studied for 1D
origami [4] and 2D Miura-ori [2]. In a forcing set problem for
flat-foldability, a flat-foldable crease pattern C and a flat-foldable
mountain-valley assignment (or MV assignment briefly) μ are
given, where μ is a function from creases to {M,V}. MV assign-
ment μ(c) on a crease c ∈ C determines the direction of rotation
of the planes around c when folding. For a flat-foldable crease
pattern C and its flat-foldable MV pattern μ, a forcing set F is a
subset of the creases in C such that if μ′ is any other flat-foldable
MV assignment on C with μ′(c) = μ(c) for all c ∈ F, then we
must have that μ′ = μ. A forcing set F is called minimum if there
is no other forcing set with size less than |F|.

This paper focuses on minimum forcing sets for flat-foldable
single-vertex crease pattern (SVCP). An SVCP is a crease pat-
tern whose creases are incident to the center of the sheet of paper
to be folded. We consider the sheet of paper of SVCP is a disk.
If |C| is two, we are to fold the disk in half, and it is obvious that
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Fig. 1 An example of flat-foldable SVCP with MV assignment.

Fig. 2 Examples of minimum forcing sets for the flat-foldable SVCP in
Fig. 1. Each crease with a small circle is the crease of the forcing
set.

the size of the minimum forcing set is one. Figure 1 is an exam-
ple of flat-foldable SVCP with MV assignment. The minimum
forcing sets for the flat-foldable SVCP in Fig. 1 are depicted in
Fig. 2. A crease pattern is flat-foldable if and only if there exists
an MV assignment so that the sheet of paper settles into a flat
shape without penetrating itself after folding the creases along
the assignment. Bern and Hayes developed an algorithm to deter-
mine flat-foldability of a given SVCP with MV assignment [3].
Flat-foldable SVCPs were studied in Ref. [13] from the viewpoint
of enumeration as well. A crease pattern of SVCP is a sequence
of creases C = (c0, c1, . . . , cn−1) which are put in clockwise on the
disk incident to the center. θi denotes the clockwise angle from ci

to ci+1 mod n. We call (C, μ) an MV pattern.
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In this paper, we develop an algorithm to find a minimum forc-
ing set of a given flat-foldable SVCP in O(n2) time. As far as the
authors know, our algorithm is the first one for finding a mini-
mum forcing set of flat-foldable SVCP, even though SVCP is an
important component of origami. Our algorithm is based on one
for 1D origami in Ref. [4] because the structure of SVCP is sim-
ilar to 1D origami if we regard it as a ring by cutting away the
inner space of the sheet of paper: the creases reduce to points
on the ring, and the sheet of paper becomes 1D origami if we
cut the ring at some point. We also reveal that the size of F is
n/2 or n/2 + 1. Precisely, |F| is n/2 if the SVCP is of generic
angles, which is a case that the angles to be operated always dif-
fer. In the case when all the angles in the SVCP are equal, |F|
is n/2 if n = 2, otherwise |F| is n/2 + 1. For a general SVCP,
which does not have any constraints, the size of F is n/2+1 if the
crease pattern can be reduced to an SVCP of equal angles with
size four or more by repeatedly crimping two consecutive creases
(ci, ci+1 mod k) with different MV assignment where θi is minimal,
otherwise |F| = n/2.

2. Preliminaries

This section introduces some terminology and preliminary re-
sults following [4]. Throughout the paper we work with a flat-
foldable MV pattern (C, μ), where C = (c0, c1, . . . , cn−1) is an
SVCP and μ is a flat-foldable MV assignment.

2.1 Crimpable Sequences [4]
We slightly change the definition of crimpable sequence to fit

the assumption that C is circular. A crimpable sequence in SVCP
is composed of consecutive creases where the angles between the
creases are equal, with the property that the two angles adjacent
to the left and right end of the sequence are strictly larger than the
equal angles. Formally, for integers 0 ≤ i < n and 0 < k < n,
a sequence of consecutive creases (ci, ci+1 mod n, . . . , ci+k mod n) is
crimpable if θi = θi+1 mod n = · · · = θi+k−1 mod n and θi−1 mod n >

θi < θi+k mod n. We note that we have to take a mod on the index
for circulation. Thus we may have (i − 1) mod n = (i + k) mod n.

A monocrimp operation is defined as a fold about a single pair
of consecutive creases of opposite MV parity in a crimpable se-
quence.

A crimp operation is a set of monocrimps repeatedly conducted
on a crimpable sequence while the sequence is crimpable. In our
proofs for the minimum size of a forcing set, we characterize such
size by considering the conditions for flat-foldability on a given
SVCP while repeating a crimp operation to fold the SVCP flat.
The following theorem will be needed in Section 5.

Theorem 1 (Theorem 4 from Ref. [7]) Let α be a crimpable
sequence in a flat-foldable MV pattern. The difference in the
number of M and V assignments for the creases in α is zero (one)
if α has an even (odd) number of creases.

In the case of a crimpable sequence α of odd length, we say
that the crease remaining after a crimp operation on α survives

the crimp. We note that the surviving crease in α is with majority

assignment in α (Ref. [4], Observation 1). Majority assignment
denotes the assignment M or V which is major in a sequence or a
set of creases.

2.2 End Creases [4]
End creases are the remains after exhaustive crimps. Exhaus-

tive crimps mean crimping repeatedly until there is no crimpable
sequence. The following lemma holds for SVCP.

Lemma 2 The end creases of an SVCP form a flat-foldable
SVCP of equal angles.
To prove this lemma, we need the following lemma and theorem:

Lemma 3 (Corollary 12.2.11 from Ref. [5]) An equal-
angle SVCP is flat-foldable if and only if |#M − #V| = 2.

Theorem 4 (The Maekawa Theorem) In a flat-foldable
SVCP with MV assignment defined by angles θ0 + θ1 + · · · +
θn−1 = 360◦, the number of mountains and the number of valleys
differ by ±2.
Details about the Maekawa Theorem can be found in Ref. [5],
Chapter 12. Now let us prove Lemma 2.
Proof. We will make exhaustive crimps, that is, we will repeat
crimps while processed C satisfies θi−1 mod n > θi = θi+1 mod n =

· · · = θi+k−1 mod n < θi+k mod n for some i and k. While two or more
different values of angles exist in C, this condition is always sat-
isfied around the minimum angle. Thus, after this repetition, the
crease pattern becomes one that consists of all equal angles.

The original flat-foldable (C, μ) satisfies the equation in
Lemma 3 by the Maekawa Theorem. A monocrimp does not
change the difference between the number of Ms and the num-
ber of Vs. Therefore after crimping all crimpable sequences in
(C, μ), the crease pattern satisfies |#M − #V| = 2. By Lemma 3,
the obtained equal-angle SVCP is flat-foldable.

3. The Size of a Minimum Forcing Set of an
SVCP

This section is devoted to proof of the theoretical minimum
size of forcing sets.

3.1 SVCP of Generic Angles
In this section, let a given SVCP be of generic angles, that

is, consecutive angles to be crimped always differ. Formally,
SVCP is of generic angles if θi − θi+1 + θi+2 − θi+3 + · · · + θ j−1 �
θ j − θ j+1 + θ j+2 − θ j+3 + · · · + θk−1 holds for any i, j, and k such
that i ≤ j ≤ k(modn) where the length of each sequence is odd
except when the inequality includes all of the angles θi around the
SVCP. (This definition is from Ref. [5], Section 12.2.2. We here
note that when SVCP is flat-foldable, the last two creases should
be separated by equal angles.) The following lemma is important
in our proof.

Lemma 5 (from Refs. [9], [10]) If an angle θi is strictly min-
imal, that is, θi−1 mod n > θi < θi+1 mod n holds, then the two consec-
utive creases ci and ci+1 mod n forming θi have assignment different
from each other in any flat-foldable MV pattern.

In this section, first we show the existence of F with size n/2,
then we prove that F with size n/2 − 1 or less does not exist.

Lemma 6 There is a forcing set of an SVCP of generic an-
gles, whose size is n/2.
Proof. First we use a contradiction in order to show that there
are always three consecutive angles which satisfy Lemma 5. As-
sume there are different consecutive angles θ0, θ1, . . . , θn−1, and
any consecutive three of them do not satisfy Lemma 5. Then,
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for example, we can assume θ0 > θ1 > θ2. By the condition
and assumption, θ1 > θ2 > θ3 holds. Similarly, θ0 > θ1 >
θ2 > θ3 > θ4 > · · · holds and the sequence monotonically de-
creases. However, θn−1 > θ0 could never happen, which is a
contradiction. Therefore we can fold the SVCP by repeatedly
finding three consecutive angles θi−1 mod n, θi, θi+1 mod n satisfying
Lemma 5 and applying the monocrimp operation.

Applying Lemma 5 on (θi−1 mod n, θi, θi+1 mod n) repeatedly, we
can fold flat the sheet of paper. Let (ci, ci+1 mod n) be the pair of
creases between the three angles. If we determine the assignment
on one of (ci, ci+1 mod n), the assignment on the other of the pair is
also determined. Hence we can make a forcing set by picking a
crease in each pair as an element of the forcing set. Therefore the
size of the forcing set is n/2.

Lemma 7 There is no forcing set of an SVCP of generic an-
gles whose size is less than n/2.
Proof. The proof is by contradiction. Assume a forcing set F

with size n/2 − 1 or less exists.
We monocrimp (θi−1 mod n, θi, θi+1 mod n) according to Lemma 5

except the last two creases. Every pair (ci, ci+1 mod n) is isolated
from other pairs and there are n/2 pairs (including the last pair),
thus every crease appears in a pair only once. Because |F| < n/2,
there is an index i such that both in (ci, ci+1 mod n) are not in F.
This contradicts the definition of F because the sheet of paper
folds flat in the following two cases when it is not the last pair: we
assign (M,V) on (ci, ci+1 mod n), or (V,M) on (ci, ci+1 mod n). When
it is the last pair, we assign (M,M) or (V,V) on it, which contra-
dicts the definition of F again. Thus there is no forcing set of size
less than n/2.

By Lemma 6 and Lemma 7, we obtain the following theorem.
Theorem 8 The size of a minimum forcing set for SVCP of

generic angles is n/2.

3.2 SVCP of Equal Angles
In this section, let a given SVCP be of equal angles, or equal-

angle SVCP. Hence θi = θi+1 mod n holds for any integer i.
Lemma 9 There is a forcing set of an equal-angle SVCP

whose size is n/2 + 1 if n ≥ 4. Furthermore, the forcing set is
composed of all creases with majority assignment.
Proof. Assume that F consists of all majority M creases (thus
all V creases are not in F). If F is not a forcing set then we can
choose some crease in C \ F to be M, contradicting Lemma 3.

Lemma 10 There is no forcing set of an equal-angle SVCP
whose size is less than n/2 + 1 if n ≥ 4.
Proof. We prove it by contradiction. Assume F is a forcing set of
an equal-angle SVCP, whose size is n/2 or less. Then there may
be a pair of an M crease and a V crease which are not in F (let
M be the majority in the MV pattern). We denote such pair by p.
We note that the creases in p do not have to be consecutive.

If all V creases are in F, p does not exist. In this case, we
can invert the assignment of a pair of M creases in C \ F to Vs,
where the pair is not necessary to be consecutive. This operation
contradicts Lemma 3.

Otherwise we can swap the MV assignment in p, and the re-
sulting SVCP is flat-foldable by Lemma 3. This is a contradiction
to our assumption that F is forcing.

Theorem 11 Assume that a given SVCP is of equal angles.
If the number of creases in the SVCP is two, then the minimum
forcing set consists of one crease. Otherwise the size of the mini-
mum forcing set of the SVCP is n/2+1. By Iverson’s convention,
it can be described as n/2 + [n ≥ 4].
Proof. It is obvious if the number of creases in an equal-angle
SVCP is two. Lemma 9 and Lemma 10 imply that n/2 + 1 is the
minimum size of F if n ≥ 4.

3.3 General SVCP
Here we consider that a given SVCP has no constraints.
Theorem 12 Let m be the number of monocrimps performed

until the given SVCP becomes a flat-foldable equal-angle SVCP
(cf. Lemma 2). F denotes a minimum forcing set of the given
SVCP. Then |F| = n/2 + [n − 2m ≥ 4].
Proof. As the case of generic angles, we crimp the creases in
crimpable sequences as possible as we can. For each monocrimp,
one of the creases in the pair must be in F. Such monocrimps
contribute to m elements in F.

After monocrimping m times, the crease pattern has become a
flat-foldable equal-angle SVCP (cf. Lemma 2). This equal-angle
SVCP is composed of n−2m creases because two creases are con-
sumed per one monocrimp. By Theorem 11, the size of a mini-
mum forcing set of the equal-angle SVCP is (n−2m)/2+[n−2m ≥
4].

The minimum size of F is the sum of the sizes of the two
sets of forcing creases obtained above. This is because the
sets do not have an intersection and both are minimum. Thus,
|F| = m + (n − 2m)/2 + [n − 2m ≥ 4] = n/2 + [n − 2m ≥ 4].

4. Constructing a Minimum Forcing Set

4.1 Crimp Forest Construction
We convert the crimp forest algorithm in Ref. [4] to an algo-

rithm for SVCP by allowing circulation of the index of creases
when finding a crimpable sequence. The converted algorithm
is shown in Algorithm 1. A circulating crimpable sequence
(ci, ci+1, . . . , c0, c1, . . . , ck) may occur when the algorithm finds
and crimps crimpable sequences, but it does not change the be-
havior of the other parts of the algorithm. The algorithm con-
structs a forest in a bottom-up manner. The edges of the forest
are added if the sequence in the parent node includes the crease
surviving the crimp on the sequence in a child node. Figure 3
depicts an example of a crimp forest.

Algorithm 1: CrimpForestSVCP(C, μ)

Initialize W ← ∅;
while C has a crimpable sequence do

let s be the crimpable sequence in C with the smallest starting

index; // modified from Ref. [4]

create a node v corresponding to s, and add v to W;

make v the parent of each root node in W whose crimpable

sequence has a surviving crease that is in s;

apply the crimp operation to s;

update C to be the resulting crease pattern;
end

return W.
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Fig. 3 An example of a crimp forest construction. [·] is a crimpable se-
quence to be crimped. The surviving creases are underlined. Inclu-
sion of a surviving crease is presented as an edge of a tree. We note
that each “disk” actually forms a “cone”. It depicts the top view of
the cone.

A straightforward implementation of Algorithm 1 takes O(n2)
time because a naive way to find a crimpable sequence takes O(n)
time: start searching from c0 in clockwise; skip monotonically
nonincreasing angles; stop at the right side crease cr which sat-
isfies θr−1 mod n < θr; in counterclockwise from cr, search the left
side crease cl which satisfies θl−1 mod n > θl; other operations can
be done in constant time; since the algorithm loops at most n

times, the time complexity of the algorithm is O(n2).
The following lemma describing the properties of crimp forest

holds for SVCP as well.
Lemma 13 (Lemma 4 from Ref. [4]) Given a crease pattern

C and two flat-foldable MV assignments μ1 and μ2, let W1 and
W2 be the crimp forests corresponding to (C, μ1) and (C, μ2), re-
spectively. Then the following properties hold:
( 1 ) W1 and W2 are structurally identical.
( 2 ) Corresponding nodes in W1 and W2 have crimpable se-

quences of the same size and the same interval distances be-
tween adjacent creases.

( 3 ) Creases involved for the first time in a crimpable sequence
at a node in W1 have the same position in the crimpable se-
quence at the corresponding node in W2.

4.2 Forcing Set Algorithm
We convert the forcing set algorithm in Ref. [4]. We switch

CrimpForest(C, μ) in Ref. [4] to CrimpForestSVCP(C, μ); it first
simulates CrimpForest(C, μ) with initialization of F to all end
creases as in CrimpForest(C, μ), and later it removes redundant
creases in the end creases. See Algorithm 2 for the detail.

We note that Algorithm 3 is the same as the corresponding al-
gorithm in Ref. [4]. Only Algorithm 2 differs.

The preorder traversal takes O(n) time because each node is
visited only once and the sum of lengths of the sequences in the
nodes is n. Thus the main factor of computation time is Crimp-
ForestSVCP, which takes O(n2) time.

We need the following lemma for the proof in Section 5:
Lemma 14 (Lemma 6 from Ref. [4]) Let (C, μ1) be a flat-

foldable MV pattern, and let F be the forcing set generated by

Algorithm 2: ForcingSetSVCP(C, μ)

Initialize W to the output generated by CrimpForestSVCP(C, μ);

// W is the crimp forest

initialize EC to the set of end creases that remain after running

CrimpForestSVCP(C, μ);

// EC forms a cyclic creases with equal angles

initialize F to the creases in EC;

ForcingSet1D(C, W, F, μ);

if |EC| = 2 then remove one crease from F ∩ EC;

if |EC| ≥ 4 then remove the creases with minority assignment in EC

from F ∩ EC;

output F.

Algorithm 3: ForcingSet1D(C, W, F, μ)

foreach tree T ∈ W do
foreach node v in a preorder traversal of T do

if v’s crimpable sequence has even length;

then
add to F all creases from v’s crimpable sequence having

M assignment;
else if the surviving crease from v’s crimpable sequence is

already in F then
add to F all creases from v’s crimpable sequence having

the majority MV assignment;
else

add to F all creases from v’s crimpable sequence having

the minority MV assignment.
end

end
end

Algorithm 2 with input (C, μ1). Let (C, μ2) be a flat-foldable pat-
tern such that μ2 agrees with μ1 on the forcing set F, that is,
μ2(c) = μ1(c) for c ∈ F. Let T1 and T2 be two structurally
equivalent trees generated by the forcing set algorithm with in-
puts (C, μ1) and (C, μ2), respectively. If a crease c in a crimpable
sequence α1 ∈ T1 is in F, then a crease (not necessarily c) with
the same MV assignment occurs in the corresponding crimpable
sequence α2 ∈ T2, in the same position as in α1.

5. Proof of Correctness

For a given SVCP, a forcing set is of size n/2 or n/2 + 1 if it is
flat-foldable. This section proves that F created by Algorithm 2
is forcing and minimum. The proof is almost the same as Ref. [4]
because Damian et al. use local properties of crimpable sequence
and abstract properties of crimp forest, which are not affected by
the change from 1D to SVCP except the last step, where we have
an SVCP of equal angles eventually.

We consider the set F0 after ForcingSet1D(C, W, F, μ). We
first observe that the algorithm is the same as the one in Ref. [4]
up to this step. Therefore, F0 is a forcing set. Let F1 be the set
after the removal of creases from F0 ∩ EC. Then it is sufficient
to show that F1 is still a forcing set after removal, and it has the
minimum size stated in Theorem 12.

We here observe that, in Algorithm 3, each node v in a tree T

in the crimp forest W provides (1) nv/2 creases to F for even nv,
(2a) (nv − 1)/2 creases to F for odd nv if v has no surviving crease
in F, and (2b) (nv + 1)/2 creases to F for odd nv if v has a surviv-
ing crease in F, where nv is the number of creases in v. We note
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Fig. 4 A crease c which is removed from F ∩ EC after computing F.

that, for a node v of odd size nv, the surviving crease in majority
assignment will be counted in its parent node. Therefore, it is not
difficult to see that F1 has the same size of the minimum forcing
set stated in Theorem 12.

We here prove that F1 is a forcing set. To derive contradic-
tions, we assume that F1 is not a forcing set. In the set EC of end
creases, since the set forms an SVCP of equal angles, we can ob-
serve that the set EC\(F0 \F1) is a forcing set with respect to EC.
Thus, there is a crease c in F0 \ F1 that violates the property of a
forcing set with respect to a tree T in the crimp forest W. Without
loss of generality, we assume that the minority assignment in EC

is M. Let r be the root of T . Then the nodes including c induces
a path from r to a node in T (Fig. 4). Let v be the lowest node
that includes c. Then, every node from r to v has a majority as-
signment M, and c is the surviving crease from v to EC. Along
the path from r to v, all creases with a majority assignment M

are put in F by Algorithm 3. Since c violates the property of the
forcing set, we have a node u along the path from r to v such that
F1 is not a forcing set any more. Now the node u has nu creases,
the number nu is odd, and all creases with assignment M but c is
in F1. That is, (nu − 1)/2 creases with assignment M are in F1,
the crease c is not in F1, and the other (nu − 1)/2 creases have
assignment V . Since F1 is not a forcing set, we have a crease c′

with assignment V such that the assignments V of c′ and M of c

can be exchanged without breaking the flat-foldability. We here
note that any crease with assignment V can be chosen, however,
we have to choose c with assignment M because this is the only
crease that is not in F1. However, if we change the assignment of
c from M to V, it contradicts that the set EC of end creases is flat-
foldable. Therefore, any crease in EC with minority assignment
does not violate the property of a forcing set even if it is removed
from F0.

Therefore, the output F0 is the minimum forcing set, which
completes the proof of the correctness of the algorithm.

6. Conclusion

We have developed an algorithm to find a minimum forcing set
of flat-foldable SVCP in O(n2) time. We have shown that the size
of such forcing set is n/2 or n/2+ 1. It is an open problem to find
a minimum forcing set of arbitrary 2D origami. Considering the
case of two vertices might be the first step to solve the arbitrary
case. Enumeration of minimum forcing sets of a given MV pat-
tern is an interesting problem as well. We believe that our result
will help us to solve such open problems.
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