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Abstract: This paper proposes a Bayesian Inference for mixture of sparse linear regression models with the exchange
Monte Carlo method. Mixture of linear regression model is a hybrid machine learning model that simultaneously per-
forms clustering and linear regression. Mixture of sparse linear regression model imposes sparsity on the regression
parameters and is expected to be applied to the analysis of real data in the field of materials science. The proposed
method calculates the mixture ratio of each cluster, the label of each data point, and the posterior distribution of the
sparse regression parameters by Bayesian inference using the exchange Monte Carlo method. Model selection based
on the Bayesian free energy determines the appropriate number of mixtures of clusters. Experiments on artificial data
confirmed that we obtained an appropriate posterior distribution of the parameters and showed appropriate model se-
lection results. We applied our method to the data on aluminum alloys in materials science, and model selection and
parameter estimation were performed by Bayesian inference.
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1. Introduction
Mixture of regression model [1] clusters given data and per-

forms regression within each class. This model extracts the struc-
ture that exists behind the data without directly dividing the data
space. It is considered to be an important model in data-driven
science. Among them, the Mixture of sparse regression model
is expected to improve the simplification, the clarification, and
the interpretability of the model itself by assuming sparseness for
regression parameters in each class.

Various methods have been proposed for the inference of Mix-
ture of sparse regression model. Khalili et al. and Stadler et
al. derived Expectation Maximization (EM) algorithms for ob-
taining a Maximum a posteriori (MAP) solution by regularizing
Least absolute shrinkage and selection operator (LASSO) and
Smoothly clipped absolute deviation (SCAD) for the regression
parameters[2], [3]. Blekas et al. proposed a mixture of sparse
polynomial regression model for time series data [4]. This study
assumed a Gaussian distribution for each element of the regres-
sion coefficients to induced sparseness, and derived an EM algo-
rithm to obtain a MAP solution. Furthermore, in [5], a mixture
of regression model in which each component is a multi-kernel
of Relevance vector machine was proposed and an EM algorithm
was derived for obtaining a MAP solution. These studies consti-
tute algorithms for obtaining MAP solutions and cannot handle
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the uncertainty of the obtained parameters. A method based on
the Bayesian information criterion (BIC) has been proposed for
the estimation of appropriate mixture numbers [5]. However, it
is known that asymptotic normality does not hold in a statistical
model with hierarchical structure such as a neural network and
a mixture model focused in this study, and belongs to a singular
statistical model [6], [7]; therefore, it is doubtful whether BIC is
appropriate for model selection. Zhang et al. performed Bayesian
inference for Mixture of sparse linear regression models using
Gibbs Sampling and implemented model selection using Reverse
Jump Markov chain Monte Carlo (RJMCMC) [8]. Kuo et al. also
performed Bayesian inference for mixture of sparse linear regres-
sion models using Gibbs Sampling and model selection based on
BIC and Akaike information criterion (AIC) [9]. However, it is
doubtful whether AIC is also appropriate for model selection in
singular statistical model.

In this study, we propose an implementation of Bayesian in-
ference for a mixture of sparse linear regression model with sam-
pling by the exchange Monte Carlo method. The exchange Monte
Carlo method avoids the local optimal solution and allows us to
perform global sampling from the posterior distribution of pa-
rameters. Furthermore, it is possible to calculate Bayesian free
energy based on the obtained sampling series, which enables us
to perform model selection of the number of mixtures in a mix-
ture of linear regression model. The proposed method is vali-
dated with artificial data and applied to the problem of regression
for material design and properties in materials science to show its
effectiveness.

The rest of this paper is organized as follows. Section 2 deals
with mixture of regression models and mixture of sparse linear
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Fig. 1 Graphical model of mixture of linear regression model

regression models with sparsity introduced into the regression
coefficients. Furthermore, an exchange Monte Carlo method is
described. In section 3, simulation of the proposed method on
artificial data and simulation of the proposed method on exper-
imental data in materials science are described and the results
are discussed. Finally, in section 4, the future prospects are dis-
cussed.

2. Bayesian Inference for Mixture of Sparse
Linear Regression Model

In this section, we describe the formulation of generative
model and Bayesian inference of mixture of sparse linear regres-
sion models.

2.1 Mixture of Linear Regression Model
First, we describe the mixture of linear regression model. The

　 model assumes that given data are generated from multiple
probability models, and deals with the task of estimating the prob-
ability model from which each data point is generated (clustering)
as well as the task of estimating the parameters of each proba-
bility model. Now suppose that N pairs of dx-dimensional in-
put vectors xn and dy-dimensional output vectors yn are given
(n = 1, · · · ,N). Denote this as D = {X,Y} = {xn,yn}Nn=1. As-
suming that each data is generated from a mixture of K proba-
bility models, let sn be a K-dimensional discrete variable vec-
tor sn ∈ {0, 1}K , such that the element indicating the mixture
to which the data belong is 1 and the others are 0. Then, the
overall probability model can be obtained using the mixture ratio
π = (π1, · · · , πK)T ,

∑K
k=1 πk = 1 as follows:

p(Y, S |X,K,Θ) =
N∏

n=1

K∏
k=1

{πk p(yn|xn, θk)}snk , (1)

where θk is a parameter of the k-th class, Θ = {θ1, · · · , θK} is
a set of parameters, and snk is the k-th element of the n-th hid-
den variable sn. The hidden variable S = {sn}Nn=1 is assumed
to occur stochastically according to the mixture ratio π. We
also assume a linear model y = Wkx between input and output.
Wk ∈ Rdy×dx is a weight parameter of the k-th model, and collec-
tively W = {Wk}Kk=1. In this model, let Θ = {π,W} and estimate
the parameters Θ and the hidden variable S .

A graphical model of mixture of linear regression model is
shown in Fig. 1. From Fig. 1, the data generation process can
be written as follows:

Fig. 2 Graphical model of mixture of sparse linear regression model

( 1 ) Mixture number K is derived from the prior p(K).
( 2 ) Mixture ratio π is derived from the prior p(π|K).
( 3 ) Weight parameters W are generated from the prior p(W |K).
( 4 ) Input X is given.
( 5 ) Hidden variables S are generated from the prior p(S |π).
( 6 ) The output Y is generated from the following relation:

yn =

K∑
k=1

snk (Wkxn) + ϵn, (2)

where ϵn is a noise vector.

2.2 Introducing Sparsity
This section describes a mixture of sparse linear regression

model in which sparsity is imposed on each model parameter of
the mixture of linear regression model. We introduce indicator
vectors V = {Vk}Kk=1,Vk ∈ {0, 1}dy×dx , where each element is a bi-
nary variable for each element of the weight parameter in each
stochastic model, taking 1 when the element is used and 0 when
it is not used. Using the indicator vectors, we define the relation-
ship between each input and output as

yn =

K∑
k=1

snk {(Wk ◦ Vk)xn} + ϵn, (3)

where ◦ is the element-wise product. Indicator vectors V are as-
sumed to be generated from the prior p(V |µ,K) conditioned on
the hyper-parameter µ ∈ (0, 1), which controls the sparseness. A
graphical model of this model is shown in Fig. 2. As in the previ-
ous section, the process of generating the data is
( 1 ) Mixture number K is derived from the prior p(K).
( 2 ) Mixture ratio π is derived from the prior p(π|K).
( 3 ) Weight parameters W are generated from the prior p(W |K).
( 4 ) Indicator vectors V are generated from the prior p(V |µ,K).
( 5 ) Input X is given.
( 6 ) Hidden variables S are generated from the prior p(S |π).
( 7 ) The output Y is generated from the relation (3).
In this model, let Θ = {W,V,π} and we estimate Θ and S .

2.3 Bayesian Inference
For each input and output (xn,yn) in a mixture of sparse linear

regression model, we assume that Gaussian noise ϵn with mean 0

and variance covariance matrix Σ = Diag(σ2
1, · · · , σ2

dy
) is added.

The likelihood function p(Y, S |X,Θ,K) for the output Y and the
hidden variables S in this model is
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p(Y, S |X,Θ,K) =
N∏

n=1

K∏
k=1

{πk p(yn|xn, θk)}snk

=

N∏
n=1

K∏
k=1

{πkN(yn|(Wk ◦ Vk)xn,Σ)}snk , (4)

where N(µ,Σ) is the Gaussian distribution of the mean µ and
variance covariance matrix Σ. Then, the error function E(Θ, S ) of
this model is defined by negative logarithm of likelihood function
p(Y, S |X,Θ,K) as follows,

E(Θ, S ; K) =
N∑

n=1

K∑
k=1

snk

dy∑
i=1

1
2σ2

i

{
yni − (wik ◦ vik)Txn

}2
+

N
2

dy∑
i=1

log 2πσ2
i −

K∑
k=1

Nk log πk, (5)

where Nk is the number of data points belonging to k-th class,
wik and vik are i-th row of Wk and Vk respectively, and yni is i-th
element of yn. In Bayesian inference, each parameter is treated
as a random variable. Firstly, we assume that the value of K is
given. The posterior distribution p(Θ, S |D,K) of the parameters
Θ = {W,V,π} and the hidden variable S given the training data
D = {X,Y} and the number K of mixture can be written using
Bayesian theorem as follows:

p(Θ, S |D,K) =
p(Y, S |X,Θ,K)p(Θ|K)

p(Y |X,K)

=
1

ZK(D)
exp (−E(Θ, S ; K)) p(Θ|K). (6)

where p(Θ|K) represents the prior distribution of the parameter Θ
and the normalization constant ZK(D), also called the marginal
likelihood, is expressed in the following way;

ZK(D) =
∫

exp (−E(Θ, S ; K)) p(Θ|K)dΘdS . (7)

In Bayesian inference, the negative logarithmic marginal likeli-
hood − log ZK(D) is called Bayesian free energy, and it is used
in model selection. From the Bayesian free energy, posterior dis-
tribution p(K|D) of the number of mixture can be calculated as
follows:

p(K|D) =
p(D|K)p(K)

p(D)
∝ ZK(D)p(K), (8)

where p(K) is the prior distribution of the number of mixture
K. However, it is difficult to analytically calculate the Bayesian
free energy because of the integration of parameters. In this
study, Bayesian free energy is calculated numerically using the
exchange Monte Carlo method.

2.4 Calculation of Bayesian Free Energy
The Markov chain Monte Carlo method enables us to obtain

the normalized constant such as the marginal likelihood in Eq.(7).
An auxiliary variable β is introduced and zK(β) is defined as fol-
lows:

zK(β) =
∫

exp (−βE(Θ, S ; K)) p(Θ|K)dΘdS . (9)

Here, 0 ≤ β ≤ 1 is a parameter called inverse temperature, and

from the definition, zK(0) = 1, zK(1) = ZK(D) is clear. To obtain
zK(1) numerically, we consider the inverse temperature sequence
0 = β1 < β2 < · · · < βL−1 < βL = 1, and

zK(1) =
zK(βL)

zK(βL−1)
× zK(βL−1)

zK(βL−2)
× · · · × zK(β2)

zK(β1)

=

L−1∏
l=1

⟨
exp (−(βl+1 − βl)E(Θ, S ; K))

⟩
q(θ,S ;βl) . (10)

This indicates that the marginal likelihood is obtained as the ex-
pected value of the following probability distribution:

q(Θ, S ; β) ∝ exp (−βE(Θ, S ; K)) p(Θ|K). (11)

Using the exchange Monte Carlo method, it is possible to obtain
the value of Eq.(10) depending on the samples obtained [10].

2.5 The exchange Monte Carlo method
The exchange Monte Carlo method is one of the Markov chain

Monte Carlo methods, which enables us to sample around the
global optimal solution even in problems with local solutions.
The specific algorithm of the exchange Monte Carlo method is
shown below.
( 1 ) We perform Monte Carlo sampling such as the conventional

metropolis method or Gibbs sampling from multiple proba-
bility distributions {q(Θl, S l; βl)}Ll=1.

( 2 ) Decide probabilistically whether or not to exchange the pa-
rameters {Θl, S l},{Θl+1, S l+1}, of the neighboring distribu-
tions with the following probability u.

u = min (1, v)

v =
q(Θl+1, S l+1; βl)q(Θl, S l; βl+1)
q(Θl, S l; βl)q(Θl+1, S l+1; βl+1)

= exp ((βl+1 − βl)(E(Θl+1, S l+1; K) − E(Θl, S l; K))) .

By alternately repeating the procedure (1) and (2) above, a se-
quence of samples {{Θ1, S 1} , · · · , {ΘL, S L}} at each temperature
is obtained.

Label-switching[11], in which the uniqueness of the order of
classes is lost by the exchange operation, is a problem in parame-
ter estimation of mixture models using the exchange Monte Carlo
method. In this study, we re-labeled with the method based on the
indicator vector W ◦ V .

3. Simulations
In this study, numerical simulations of the proposed method

are conducted on artificial data and real data of material science.
In this section, the simulations and the results are discussed.

3.1 Numerical Simulation on Artificial Data
Firstly, numerical simulations were conducted on artificial

data. For the generation of the artificial data, the number of mix-
tures was set to K = 3, and the dimensions of the input space and
output space were set to dx = 16 and dy = 1. The number of train-
ing data is set to N = 300. The variance of the observed noise is
set to σ2

1 = 0.1, and the hyper-parameter µ for the sparseness is
fixed at µ = 0.5. The prior distribution of each parameter is set as
follows:
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Fig. 3 Examples of generated artificial data (N = 300): The horizontal axis
of each figure shows the one-dimensional xi, (i = 1, · · · , dx) with
input variables, and the vertical axis shows the output y. The first
element of the input variables is always taken to be 1. This means
that the first element of the weight parameter w1k of each class cor-
responds to the intercept of the regression hyperplane.

p(Θ|K) = p(W |K)p(V |K, µ)p(π|K)

p(W |K) =
K∏

k=1

p(w1k) =
K∏

k=1

N(w1k |0, I), (12)

p(V |µ,K) =
K∏

k=1

dx∏
l=1

µ(1−v1kl)(1 − µ)v1kl , (13)

p(π|K) = Dir(π|α) =
1
β(α)

K∏
k=1

παk−1
k , (14)

α = (1, · · · , 1)T ∈ RK , (15)

where v1kl is l-th element of v1k. The prior distribution p(K) of
the number of mixture K is set to the uniform distribution from
K = 1 to K = 6.

Fig. 3 shows the artificial data generated according to the
graphical model shown in Fig. 2. One hundred simulations were
conducted to generate artificial data, perform parameter estima-
tion and model selection. The number of replicas in the exchange
Monte Carlo method was set to L = 96. 20, 000 samples were ob-
tained by the exchange Monte Carlo method, and the first 10, 000
samples were discarded as burn-in period.

The results of the numerical simulations for artificial data are
described below. Fig. 4 shows the results of the model selection
based on Bayesian free energy in one case of 100 simulations.
From Fig. 4, we can see that the appropriate mixture number
K = 3 is selected. Therefore, the simulation results for K = 3 are
presented below. Fig. 5 and Fig. 6 respectively show the sampling
results for the mixture ratio π and the weight parameter W ◦ V .
Fig. 5 shows that the sampling of the mixture ratio π is performed
near the true value. In addition, Fig. 6 shows that the sampling
results for the weight parameters are around the true value. The
posterior distribution of the mixture ratio π and the weight pa-
rameter W ◦ V are unimodal thanks to the appropriate removal of

Fig. 4 Bayesian free energy and posterior probability of mixture number K:
The line in the figure shows Bayesian free energy, and the bar chart
shows the posterior probability of mixture number K, p(K|D).

Fig. 5 Sampling results for mixture ratio π (K = 3)

Fig. 6 Sampling results for the weight parameter W ◦ V (K = 3): The hori-
zontal axis shows the axis wi (i = 1, · · · , d) for each dimension of the
weight parameter and the vertical axis shows the sampling frequency.
Values where the corresponding element of indicator vectors is zero
are excluded from the figures. The vertical line in each figure shows
the true value.

label switching. Next, in the same simulation in Fig. 3, 50 sets of
indicator vectors with high sampling frequency were extracted,
and Fig. 7 shows the indicator vectors V when they were sorted
in the order of frequency. Fig. 7 shows that the most sampled in-
dicator vectors match the true indicator vectors. This indicates
that the proposed method performs accurate variable selection.

Finally, the results of 100 times model selection experiments

4ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-MPS-131 No.7
2020/12/17



Fig. 7 The pattern of 50 frequently sampled indicator vectors: The top panel
shows the number of times sampled, and the three right panels below
show the actual indicator vectors sampled, respectively. The three
left plots show the true indicator variables, where black color indi-
cates 0 and white color indicates 1.

Fig. 8 Bayesian free energy for mixture number K in material data: The
line shows the Bayesian free energy, and the bar chart is the poste-
rior probability of the number of mixture K, p(K|D) calculated based
on the Bayesian free energy.

show that the correct mixture number K = 3 could be selected 98
times out of 100 times. This shows that the proposed method can
estimate the correct mixture number from Bayesian free energy.

Simulation results for model selection with free energy are
shown in Fig. 8. From Fig. 8, we can see that the appropriate
mixture number is K = 3.

3.2 Numerical Simulation for Material Data
In this simulation, the proposed method is applied to the ex-

perimental data summarizing the manufacturing conditions and
product characteristics of 7000-series aluminum alloys in materi-
als science. The input is a 16-dimensional variable ,dx = 16, that
corresponds to the composition and process conditions. The out-
put is a 3-dimensional vector, dy = 3, representing the function
of the aluminum alloy. Summarizing our simulation setting, we
use 17-dimensional weight parameters W = {Wk ∈ R3}Kk=1, and
indicator vectors V = {vk ∈ {0, 1}3×17}Kk=1, which are added to the
intercept parameters. In order to guarantee the confidentiality of
the data, each input and output name is discussed without men-
tioning them, and the experimental values are also discussed in
terms of values that have been pre-processed by standardization
and other means. The prior distribution of each parameter is set
up as follows:

Therefore, we discuss the simulation results for K = 3 below.
Fig. 9 shows the sampling results for the mixture ratio π. Com-
pared to the sampling for the artificial data shown in Fig. 5, there

Fig. 9 Sampling results for the mixture ratio π at K = 3: The black dots in
the figure represent the sample.

Fig. 10 Sampling results for the weight parameter W ◦ V at the first output
y1 at K = 3: Histograms of the weight parameters, excluding the
intercept parameter, where the horizontal axis of each figure shows
the axes of each dimension w1i (i = 1, · · · , 16) of the weight param-
eter and the vertical axis shows the frequency of sampling. Samples
are excluded from the figures if the corresponding indicator variable
is zero.

is a large variance in the sampling, but we can see that the sam-
pling was performed mainly at certain points.

p(Θ|K) = p(W |K)p(V |K, µ)p(π|K)

p(W |K) =
K∏

k=1

dy∏
i=1

p(wik) =
K∏

k=1

dy∏
i=1

N(wik |0, 10 × I),

p(V |µ,K) =
K∏

k=1

dy∏
i=1

dx∏
l=1

µ(1−vikl)(1 − µ)vikl ,

p(π|K) = Dir(π|α) =
1
β(α)

K∏
k=1

παk−1
k ,

α = (1, · · · , 1)T ∈ RK .

The prior distribution p(K) of the number of mixture K is set to
the uniform distribution from K = 1 to K = 12.

In the simulation, N = 297 data points were used. Since the
output is multidimensional, the noise variance of the first and sec-
ond element is set as σ2

1 = σ
2
2 = 0.01, one of the third element is
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Fig. 11 The 50 most frequently sampled indicator vectors for each output: from left to right, these figures
relate to the first, second and third outputs and are viewed in the same way as in Fig. 7

Fig. 12 Graphs showing the fit for the data used: from left to right are the
graphs of the first, second and third outputs. The horizontal axis
of each graph represents the true output and the vertical axis is the
output predicted from the input data using the trained parameters.
The closer the line in the figures, the better the fit of the prediction.

set as σ2
3 = 0.04, and the value of the hyper-parameter µ is fixed

at µ = 0.5. The number of replicas of the exchange Monte Carlo
method was set to L = 128. The appropriate number of mixtures
is estimated between K = 1 to K = 12. We obtained 50, 000 sam-
ples by the exchange Monte Carlo method and discarded the first
25, 000 samples as burn-in period.

In addition, Fig. 10 shows the sampling results of the weight
parameters for the first output y1. Comparing these results to
those for the artificial data, The histogram has larger variance
than that for artificial data. However, some posterior distribution
such as the weight parameter w are peaky and has good confi-
dence accuracy. Hence, we can see that the corresponding input
has the importance for regressing the output y1, which becomes a
feedback information for experiments for materials science.

Fig. 11 shows 50 indicator variables with high sampling fre-
quency, which were extracted and sorted in the order of fre-
quency. Unlike the results for the artificial data in Fig. 7, there
was a large variation in the indicator variables sampled, but there
was also a large number of specific indicator variables used, sug-
gesting that feature selection by class functioned properly.

Fig. 12 illustrates the regression accuracy for the data. The re-
gression performance of the third output is worse than that of the
first and second outputs, and this is thought to be due to the fact
that a large noise variance was set for the third output only. In
order to discuss the appropriateness of this setting, it is important
to estimate the noise variance within the framework of Bayesian
estimation, and this is an issue to be addressed in the future.

4. Conclusion
In this paper, we proposed a Bayesian inference for a mixture

of sparse linear regression model using the exchange Monte Carlo
method. The proposed method is able to obtain appropriate pos-
terior distributions of parameters for artificial data. The number
of mixture is appropriately selected by a model selection based on
using Bayesian free energy. The proposed method was also ap-
plied to the data on aluminum alloys in materials science, and we
were able to estimate the appropriate mixture number and each
parameter. In this research, the variance of the noise was treated
as a constant. In the future, we need to estimate the noise variance
for each class.
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