ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 組込みシステム(EMB)
  3. 2020
  4. 2020-EMB-055

A DNN implementation on FPGAs from the existing DNN framework using HLS

https://ipsj.ixsq.nii.ac.jp/records/208718
https://ipsj.ixsq.nii.ac.jp/records/208718
a34d1809-5d65-4c8a-b995-9395b4755fc3
名前 / ファイル ライセンス アクション
IPSJ-EMB20055004.pdf IPSJ-EMB20055004.pdf (1.1 MB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2020-12-04
タイトル
タイトル A DNN implementation on FPGAs from the existing DNN framework using HLS
タイトル
言語 en
タイトル A DNN implementation on FPGAs from the existing DNN framework using HLS
言語
言語 eng
キーワード
主題Scheme Other
主題 シミュレーション・高位合成
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Nagoya University
著者所属
Nagoya University
著者所属
Nanzan University
著者所属
Nagoya University
著者所属(英)
en
Nagoya University
著者所属(英)
en
Nagoya University
著者所属(英)
en
Nanzan University
著者所属(英)
en
Nagoya University
著者名 Hyunjae, Kim

× Hyunjae, Kim

Hyunjae, Kim

Search repository
Ryota, Yamamoto

× Ryota, Yamamoto

Ryota, Yamamoto

Search repository
Shinya, Honda

× Shinya, Honda

Shinya, Honda

Search repository
Masato, Edahiro

× Masato, Edahiro

Masato, Edahiro

Search repository
著者名(英) Hyunjae, Kim

× Hyunjae, Kim

en Hyunjae, Kim

Search repository
Ryota, Yamamoto

× Ryota, Yamamoto

en Ryota, Yamamoto

Search repository
Shinya, Honda

× Shinya, Honda

en Shinya, Honda

Search repository
Masato, Edahiro

× Masato, Edahiro

en Masato, Edahiro

Search repository
論文抄録
内容記述タイプ Other
内容記述 DNN (Deep Neural Network) implementation on FPGAs has been actively conducted recently. Although some frameworks can use high speed and memory saving methods such as quantization, only a few frameworks are user friendly. Neural Network Console (NNC) is one of a few frameworks providing a user-friendly experience by GUI. In this paper, we explore implementing the network designed by the NNC on FPGAs. We used various optimization techniques using high-level synthesis, and evaluated execution time. In the case study, we implemented a network where all parameters were quantized to 8 bit integers. By implementing without using any floating-point arithmetic, we confirmed that the accuracy of inferences was comparable to the original network.
論文抄録(英)
内容記述タイプ Other
内容記述 DNN (Deep Neural Network) implementation on FPGAs has been actively conducted recently. Although some frameworks can use high speed and memory saving methods such as quantization, only a few frameworks are user friendly. Neural Network Console (NNC) is one of a few frameworks providing a user-friendly experience by GUI. In this paper, we explore implementing the network designed by the NNC on FPGAs. We used various optimization techniques using high-level synthesis, and evaluated execution time. In the case study, we implemented a network where all parameters were quantized to 8 bit integers. By implementing without using any floating-point arithmetic, we confirmed that the accuracy of inferences was comparable to the original network.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12149313
書誌情報 研究報告組込みシステム(EMB)

巻 2020-EMB-55, 号 4, p. 1-6, 発行日 2020-12-04
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-868X
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:44:51.720078
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3