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Abstract: The cyber attackers generally inject obfuscated malicious scripts to exploit the vulnerabilities by
using various methods. To break the complexity of obfuscated JavaScript code, we use JavaScript’s bytecode
sequences, which representing the instruction of the program. Using this feature, we examine a deep neural
network to detect malicious behavior based on the sequence pattern. However, due to the super long bytecode
sequence problem, a deep pyramid convolutional neural network (DPCNN) is adopted to address long-range
associations of the sequence. A pyramid shape in DPCNN helps to halve the computation and the complex-
ity of the model where it can handle very long input. We combine DPCNN with recurrent neural networks
(RNNs) to improve the system’s performance that helps considering the historical information of bytecode
sequences. The experiment result provides the high accuracy of the proposed model that outperforms the
previous model in detecting malicious JavaScript.
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1. Introduction

The improvement of the obfuscation technique helps most

programmers or software engineers protect their code from

reverse engineering. However, cyber attackers also uti-

lize this technique to hide their intention in malicious

code/script and evade them from the anti-virus system.

We can find this obfuscated malicious code in the form of

JavaScript language, which is indeed one of the most used

client-side programming languages to develop a web applica-

tion [19]. Using the obfuscated malicious JavaScript code,

the attackers try to inject scripting code into the output

of the applications and then sends it to the user ’s web

browser [18]. It exploits the vulnerabilities of the applica-

tion so that the malicious-injected code is executed and used

to access sensitive data stored and transferred to a server un-

der the attacker’s control. These codes hide on some parts

of the web page, such as image, text, pop-up, and button.

The obfuscation techniques succeed in making malicious a

JavaScript code hard to be recognized by the anti-virus sys-

tem, yet mixed and multi-level obfuscation can make it more

complicated for the system to de-obfuscate the code [11].

Due to the complexity of the obfuscation problem, the

researchers came up with a solution that used various

JavaScript code features. One of the approaches is to trans-

form the JavaScript code into the sort of representation that
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we can analyze it effectively. We can obtain the output, such

as opcode [20], log activity [16], or byte code sequence [3],

by executing the code in a safe environment that represents

the program’s activity. In this research, we use bytecode

sequences as the feature of JavaScript code to break the

obfuscation part that the attackers might use to avoid the

anti-virus system. There is an engine in JavaScript that

compiles an abstract syntax tree (AST) into a sequence of

instruction codes to boost the performance of running time,

where it is similar to the machine code. However, this fea-

ture is hard to analyze due to the super long sequence of

bytecode, even though the program is simple. More com-

plex the obfuscation technique, the bytecode sequence will

be longer.

In this work, we examine the deep learning method to

solve the super long sequence problem in bytecode se-

quences. We use Deep Pyramid Convolutional Neural Net-

works (DPCNN) [10], which solve long sequence problems

by reducing sequence features to become some of the feature

maps. This approach gives significant performance for de-

tecting malicious JavaScript compared to other approaches.

We apply the recurrent network at the end of DPCNN to get

a long-range association of the sequence. Some adjustments

are applied to DPCNN to fit with the recurrent network.

Our motivating hypothesis is that implementing the con-

volutional neural network with a pyramid shape structure

can extend the capacity of the model to capture the infor-

mation of the bytecode sequence. We hypothesize that an-

alyzing a more extended bytecode sequence can give more
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insight information on the JavaScript program. DPCNN

makes the features are easier to analyze, providing the im-

portant feature of the bytecode sequence.

Our main contributions in this paper are as follows:

( 1 ) We thoroughly evaluate the efficacy of the DPCNN

model for obfuscated malicious JavaScript code detec-

tion and propose more extension by combining with

RNNs.

( 2 ) We compare the performance of the DPCNN model,

some alternative combination with RNNs, and RNNs

for detecting malicious JavaScript code based on byte-

code sequences.

2. Related Works

Attempt to develop a malicious code detection system has

recently undertaken by introducing machine learning or deep

learning models. The approach may depend on the feature

that we want to analyze based on how the features can be

extracted, e.g., static analysis, dynamic analysis, and hybrid

analysis.

The static analysis approach makes the feature of samples

by using the content without necessitating their execution.

The work from Rafiqul Islam et al. [9] used the static fea-

tures such as function length frequency and printable string

information to classify malware data set. They made a vec-

tor representation of each feature by counting the number

of functions and strings in the file program. In the other

works, the researcher transformed plain JavaScript source

code into a hexadecimal byte sequence for each character.

Fass et al. [4] enriched the feature to use Abstract Syntax

Tree (AST) representation that contains more information

than lexical units, and it was able to analyze samples whose

behavior is time- or environment-dependent.

Recently, some works have proposed applying deep learn-

ing model for malware or malicious JavaScript code detec-

tion. Fang et al. [3] proposed malicious JavaScript classifi-

cation by implementing Long Short-Term Memory (LSTM)

to a bytecode sequence analysis of the V8 JavaScript engine.

The experimental results showed that the proposed model

has higher accuracy than the previous methods, i.e., random

forest, support vector machine (SVM), and Naive Bayes.

Stokes et al. [17] introduced similar work that they pro-

posed the modification of the LSTM model by combining it

with the Max Pooling layer (LaMP). They also came up with

the Convoluted Partitioning of Long Sequences (CPoLS) to

address the long sequence problem from byte sequence rep-

resentation. They conducted experiments to compare both

models and evaluate the efficacy of both models. Further-

more, Zhang et al. [20] used Residual Network (ResNet),

one of the deep learning models that apply a deep convo-

lutional network to handle long sequence problems in an

opcode feature.

To deal with the long-range problem in sequential data is

quite challenging. Some researches combine convolution and

recurrent approaches to deal with the long-range problem

in sequential data. Johnson et al. [10] proposed DPCNN

Fig. 1 Overview of our proposed method.

architecture for text categorization that can efficiently rep-

resent long-range associations in text. The critical feature of

DPCNN is the downsampling layer without increasing the

number of feature maps. Due to this layer, the architec-

ture of this model is like a pyramid shape. We can use this

method in other data types similar to the characteristics of

text, such as sequences.

3. Proposed Method

The full detection framework for malicious JavaScript

code is illustrated in Fig. 1. Firstly, a preprocessing step

that we use a V8 engine to compile a program’s function into

the sequence of V8’s bytecode sequences. Then, we remove

the unimportant features of the bytecode sequences. Af-

ter that, we implement bytecode embedding for every code

to get the vector representation. Finally, We can input each

code’s vector representation for a sequence to the deep learn-

ing model.

3.1 Bytecode Sequences

Bytecode sequence is an abstract machine sequence code

that corresponds to the program’s representation without

any redundancy [7]. It has the same computational lan-

guage model as the physical CPU, for thereby, it has a very

long sequence.

There are many kinds of JavaScript engines that can com-

pile bytecode by an interpreter or the Just-In-Time (JIT)

compilers. One of them is V8 engine, which is an open-

source JavaScript engine by Google. When V8 compiles

JavaScript code, the parser in this engine generates an ab-

stract syntax tree (AST) that represents the syntactic struc-

ture of the JavaScript code, and then the interpreter gen-

erates bytecode from this syntax tree. We can find this
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Fig. 2 V8’s bytecode sequences.

Fig. 3 Preprocessing for elimination of redundant information
from bytecode sequence.

bytecode in many applications such as Chrome and Node.js.

Recently, there are two ways to generate bytecode se-

quences using the V8 engine. The first way is to use a

Node.js environment by adding ”–print-bytecode” to the

command line parameters. The second one is to use a

Chrome browser with launching the program from the com-

mand line and use ”–jsflags=’–print-bytecode’” to print.

Fig. 2 illustrates the output of V8’s bytecode sequence gen-

erated using Node.Js.

3.2 Preprocessing

We can assume the V8’s bytecodes as small building

blocks that construct any JavaScript functionality. V8’s

bytecode consists of several hundred words or codes. There-

fore, the frequency of the occurrence of the bytecode is very

high for each sequence. However, the output of a raw byte-

code sequence consists of some elements, such as register

number, properties, and values, which are not essential to

detect malicious contents. We can ignore all of these un-

necessary outputs and focus on the main body of bytecodes.

Fig. 3 presents the illustration of preprocessing by taking

actual bytecodes that we will use for the learning process.

3.3 Bytecode Embedding

To make a feature representation of bytecode, we encode

the bytecode into embedding space. Assuming that the byte-

code sequence is a word embedding problem, we can use the

Word2Vec model [13]. It is an unsupervised learning algo-

rithm to make distributed representations of a word in a

vector space to achieve better performance in natural lan-

guage processing tasks. Mikolov et al. [12] proposed two

types of architecture, Skip-gram, and Continuous Bag Of

Word (CBOW) models. The Skip-gram model uses each

current word to predict words within a specific range before

and after the current word [14]. On the other hand, CBOW

is the inverse of the Skip-gram model, which predicts the

center word given by the words’ context in range before and

after the center words. The CBOW is similar to the conven-

tional bag-of-words representation in which we discard order

information, and works by either summing or averaging the

embedding vectors of the corresponding features.

In the CBOW model, the following loss function L is min-

imized so that the prediction probability of a center word

wt can be maximized for given context words c1, c2, ..., ck:

L =

T∑
t=1

log p(wt|ct−K ...ct+K) (1)

where T is the number of corpora and K is the window

length of surrounding words which regarded as the context.

The probability is defined by softmax function

p(wO|wI) =
exp (v′wO

⊤
vwI )∑W

w=1 exp (v
′
w
⊤vwI )

(2)

where W is the number of words in vocabulary, and vw

and v′w are input and output vector representations of w,

respectively. The denominator can be approximated via hi-

erarchical softmax or negative sampling [13].

In this paper, a sequence of word vectors represents a cor-

responding bytecode sequence. We introduce word vector

embedding into JavaScript code representation because it

can express the semantic meaning of code as a continuous,

dense vector.

3.4 Deep Pyramid Convolutional Neural Net-

work

Johnson et al. [10] introduced a low-complexity word-level

deep convolutional neural networks (CNN) that can effi-

ciently represent long-range associations in text for text cat-

egorization, called deep pyramid convolutional neural net-

works (DPCNN). The name pyramid is from the architec-

ture shape of this model. Due to this pyramid shape, it

can halve the computation time per layer of the model that

yields better accuracy yet low-complexity.

Generally, DPCNN has three components: text region

embedding, shortcuts connection with preactivation and

identity mapping, and down-sampling blocks. Among those

components, down-sampling blocks are one of the compo-

nents that are characteristic of the DPCNNmodel. It shapes

the architecture of the model looks like a pyramid. The

down-sampling with stride two necessarily doubles the ade-

quate coverage of the convolutional kernel. Figure 4 shows

us how the DPCNN model looks like, where the feature map

stays at the same length. Still, the model reduces the length

of the sequence to get a shorter representation of the feature.

For the full architecture of this model is showed in Fig. 5.
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Fig. 4 Pyramidal shape in DPCNN.

3.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) is a class of neural

networks that allow previous outputs to be used as inputs

while having hidden states [2]. RNNs deal with sequences

and stacks such as sentences, documents, and sequences.

It allows representing variable-length sequential inputs in

fixed-size vectors while paying attention to the inputs’ struc-

tured properties. There are several types of RNNs model

architectures, such as simple RNN [2], the Long Short-Term

Memory (LSTM) [8], and the Gated Recurrent Unit [1].

Fig. 6 describes a graphical representation of RNNs

where hn, xn, yn is the hidden state, input, and output,

respectively. We can interpret the architecture of RNNs as a

chained neural network. Since RNNs have this architecture,

it gives advantages to the model, such as sharing weights

across the time, consideration of historical information, and

the natural processing of variable-length inputs. However,

it makes the computation of this model slower than other

neural network architectures like multi-layer perceptrons.

3.6 Detection Mechanism

Fig. 1 explains our proposed mechanism to detect obfus-

cated malicious JavaScript code. It starts with transforming

the JavaScript code into the bytecode sequence representa-

tion by using the V8 JavaScipt engine. This engine’s back-

ground is parsing the JavaScript code into an abstract syn-

tax tree (AST) such that the internal interpreter transforms

it into the bytecode sequence. After we finish getting the

sequence, we use the unsupervised learning model to create

the low-dimensional space representation for each bytecode

in a sequence. In this work, we assume the bytecode se-

quence as the same as the word in natural language process-

ing (NLP). We maximize the similarity between bytecode

using the Word2Vec model to have a proper vector repre-

sentation of bytecodes.

Next, we have our full architecture of the model in Fig. 5.

In the figure, the model consists of two models: the DPCNN

and the RNNs. We use the embedding layer to transform

the bytecode sequence into a distributed vector represen-

tation sequence based on the bytecode vocabulary of the

Word2Vec model. By having this sequence, we can pass it to

the DPCNN model. This model has two main components:

text region embedding and downsampling block. Text region

embedding generalizes commonly used word embedding to

the embedding of text regions covering one or more words.

It is followed by stacking of convolution blocks (two convo-

lution layers and a shortcut) interleaved with pooling layers

with stride 2 for downsampling [10]. We stop the downsam-

pling block until a certain length before we compute it into

the RNNs model. Finally, we implement the RNNs model

and fully connected layer for the rest process to get the final

output.

4. Experiments

We conduct experiments to evaluate our proposed

method’s performance and compare it with the previous

work, i.e., LSTM and other alternatives combined with the

RNNs model.

4.1 Experimental Setup

Table 1 describes our experiments on the extensive la-

beled JavaScript files data set. Our malicious data set

consists of three different sources: anti-malware engineer-

ing workshop (MWS) 2015 [6], JavaScript malware collec-

tions by Hynek Petrak [15], and GeeksOnSecurity of GitHub

[5]. Moreover, we acquired 12,914 JavaScript files by depth

crawling from Alexa top domain list as benign JavaScript

data set. Initially, we split data set randomly into two set

with a percentage of 80% and 20%. We used the 20% data

set for testing the model, and we took 10% of the other data

set for validation. Then, we used the rest (72%) as a training

data set.

Most of the original data set are the obfuscated code with

many varieties of obfuscation technique styles. We applied

obfuscation with some techniques such as string and encod-

ing obfuscation for the non-obfuscated JavaScript code.

Meanwhile, we executed the JavaScript code in a virtual

environment to compile a JavaScript code into a bytecode

sequence. The virtual machine keeps the experiment safe

from any malicious behaviors because our data have the po-

tential to be active. Jsdom library in Node.js provides DOM

objects so that we can run and compile code into bytecode

sequence in a terminal. WScript objects are also needed to

comply with some of JavaScript codes that use those script-

ing in the program.

In our experiments, We tuned hyper-parameters of our

proposed models to choose the best setting based on the val-

idation error rate. For the Word2Vec model, we adopt the

following parameters: window size=3, embedding size=100,

and vocabulary size=203. We applied the embedding matrix

as the first layer of our deep learning model before feeding

it to the next layer. For the region embedding layer, we set

stride=30 and kernel size=100. DPCNN-RNNs have more
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Fig. 5 Architecture of DPCNN with recurrent network for malicious JavaScript detection.

Fig. 6 Schematic structure of RNNs.

Table 1 The whole set of JavaScript code samples used for the
experiment.

Data Set Total Files #Malicious #Benign
Training 22,010 12,729 9,281
Validation 2,446 1,407 1,039
Testing 6,115 3,521 2,594
Total 30,571 17,657 12,914

profound architecture than the only DPCNN. Because of

that, the number of layers of DPCNN-RNNs is 8, while the

model with only DPCNN has 12 layers. We assigned the

number of feature maps of the convolution layer in DPCNN

by 250 and the kernel size by 3.

We compared our proposed method with the work from

Fang et al. [3], i.e., LSTM. We did our experiments with

the combination of DPCNN and other recurrent layers such

as RNN, LSTM, and Bidirectional LSTM (BiLSTM) with

the size of the hidden layer 50, and zero value as the first

hidden input. The final setting of the LSTM model that we

set for the experiment is as follows: the number of layers

is 2, the hidden layer dimension is 200, the drop-out is 0.2,

and the optimizer is SGD. Due to memory capacity, we set

the length of the sequence to 200,000 for DPCNN model,

and 60,000 for the LSTM model. Zero-padding is used for

the sequence that has shorter and we truncate the sequence

if it is longer.

4.2 Performance Evaluation

Table 2 shows the result of the performance of each

model. There are five metrics of evaluation: accuracy, pre-

cision, recall, F1-score, and the area under the receiver op-

Fig. 7 ROC curves for different DPCNN models zoomed into a
maximum FPR = 0.5.

erating characteristics (ROC) curve (AUC). Our objective

is to find a suitable model that can minimize the false nega-

tive (FN) cases, which indicates that JavaScript file that is

actually malicious but the system classify it as benign.

Our experimental results show that the combination of

DPCNN and RNNs has superior results than the only RNNs.

It clearly shows that the DPCNN model outperformed other

models that do not use DPCNN (97.36% vs. 95.75%). If we

look at the combined model DPCNN and RNNs, DPCNN-

BiLSTM has the best accuracy, recall, and AUC score. Be-

sides that, DPCNN-RNN gives a slightly higher performance

in precision and F1-score.

We assessed the diagnostic ability of binary classifiers by

plotting the ROC curve. This curve shows the trade-off be-

tween the true-positive rate and the false-negative rate. We

can see the ROC curve of the result in Fig. 7. It explains

that the LSTM model has the lowest curve of other models

that use DPCNN as the first architecture. Besides that, all

models with DPCNN give a better AUC score as well as the

ROC curve. Therefore, we can infer that the proposed model

has suitable property as a detector of malicious JavaScript

codes.

5. Discussion

We demonstrate how the feature learning in DPCNN

works for extracting representation of bytecode sequences

in Section IV. The notion of a pyramid shape architecture

can reduce the model’s complexity so that it can detect ma-
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Table 2 Performance of various models which were evaluated for this work

Model Accuracy (%) Precision (%) Recall (%) F1-score AUC

LSTM (L=60K) 95.75(±0.1102) 95.90(±0.0986) 96.14(±0.0845) 0.9451(±0.0011) 0.9698(±0.0005)

DPCNN (L=200K) 97.33(±0.1379) 96.64(±0.0678) 97.10(±0.0940) 0.9684(±0.0008) 0.9949(±0.0002)

DPCNN-RNN (L=200K) 97.15(±0.2525) 96.69(±0.3020) 97.03(±0.2649) 0.9684(±0.0029) 0.9951(±0.0002)

DPCNN-LSTM (L=200K) 96.87(±0.1867) 96.37(±0.2917) 96.85(±0.2335) 0.9657(±0.0027) 0.9937(±0.0005)

DPCNN-BiLSTM (L=200K) 97.36(±0.2046) 96.63(±0.2578) 97.11(±0.1702) 0.9683(±0.0023) 0.9951(±0.0001)

licious bytecodes efficiently, even though for representing a

very long sequence. Also, the recurrent layer sharpens the

accuracy of the model by capturing each feature’s depen-

dencies.

This work introduces the DPCNN model to solve the long-

range association problem in the bytecode sequence. We

compare the model with the LSTM model to see the effi-

cacy of both models to handle long input of the bytecode

sequence. The result shows that the DPCNN gives a sig-

nificant improvement compared to the LSTM model. The

reason is because of the ability of DPCNN to reduce the

complexity of the network but still capture the essential fea-

ture of a sequence so that it can process longer sequences.

On the other hand, the LSTM model uses a memory cell to

save temporary information from the previous state. How-

ever, this model cannot work on a super long sequence be-

cause it requires a large amount of memory bandwidth as

the sequence become longer.

Moreover, we introduce the combination of the DPCNN

with some alternatives of RNNs. The use of RNNs re-

sults in performance improvement to some extend, which

helps to consider historical information of the bytecode se-

quence. However, the addition of RNNs after DPCNN occa-

sionally causes a vanishing gradient problem, which affects

the model’s performance.

The length of the bytecode sequence affects the model’s

ability to capture the essential features of the sequence.

More extended input that we can use, the better perfor-

mance we will get. It is because the bytecode sequence con-

sists of code blocks that make up any JavaScript function-

ality when composed together.

We consider several limitations of our proposed method

as follows: the virtual environment, length of a sequence,

and adversarial learning-based attacks. We use a virtual

environment to compile the high-level JavaScript language

into the bytecode sequence. Therefore, We need to set all

possibilities DOM object and function for execution and the

environment’s security. However, it is hard to provide all the

required objects that make many JavaScript files not fully

executed due to error function or unknown objects. Besides

that, we have to concern about securing the deep learning

model from the adversarial learning-based attack. For that

reason, it is essential to run the model in a secure envi-

ronment. Furthermore, because of the computer’s memory

capacity, we have to limit the length of the bytecode se-

quence to get into our model. This limitation affects the

performance of the detection system to capture all features

in the bytecode sequence.

6. Conclusion

In this paper, we introduced a new method to solve ob-

fuscated malicious JavaScript code detection. We examined

a deep neural network, the DPCNN, and RNNs to detect

malicious intention on the JavaScript’s bytecode sequences

feature that helps to break the obfuscation parts in source

code. The model has a pyramid shape architecture that can

compress the model’s complexity into more straightforward

features. It succeeds in representing the long-range associa-

tion in the bytecode sequences. Moreover, the combination

with the RNNs model slightly improves the accuracy of the

model. The experimental results demonstrated that our pro-

posed method performed well to detect the maliciousness of

JavaScript code.
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