
A Study on Registered Email System Using
Blockchain

Kouame Michel Robin1,a) Inaba Hiroyuki1,b)

Abstract: With the recent expansion of the Internet, the electronic mail system has been widely promoted.
With various proprietary and opensource systems developed, registration feature is not offered. In this paper,
we present a new way of providing registration in email systems. We have implemented a blockchain-based
email protocol built upon the Ethereum public blockchain and the current email system. The protocol tracks
and traces transmitted message between parties. Furthermore, the protocol encounters repudiation by track-
ing the receivers’ actions on the received email, while ensuring confidentiality, integrity and authentication.
A detailed analysis of the security is presented.

Keywords: Blockchain, Email Security, Smart Contract, Ethereum

1. Introduction

Email systems are one of the most used services over the

Internet. Even if we have many solutions, they lack the

registration service. We suppose that an important email

is sent between two parties A and B, and B deletes this

message or avoid opening it for a long time. Then, when

A complains, B answers that he/she did not receive such a

message. The current study presents a solution to resolve

this conflict without any third party.

Our solution is based on the blockchain distributed com-

puting system like in [2]. We implement a new protocol built

upon the Ethereum public blockchain to offer this registra-

tion service [1]. The protocol allows the email originator to

track the message transmission through the Internet. More-

over, it tracks the email recipient actions on the received

message and detects a delay in the reading. The rest of the

paper is organized as follows: we introduce our new proto-

col in section II. The implementation details are described

in section III. The security analysis of our design are per-

formed in section IV. Finally, we present the conclusions in

Section V.

2. Background

The Message Disposition Notification protocol is a solu-

tion for confirming the existence of a designated email mes-

sage at its destination after transmission. The protocol is

specified in the RFC 1459. It describes the MIME content

type to be used by a mail user agent(MUA) or any elec-

tronic mail gateway for reporting the existence of an email

message after this one has been successfully delivered. This

1 Kyoto Institute of Technology, 京都工芸繊維大学
a) kouame15@sec.is.kit.ac.jp
b) inaba@kit.ac.jp

protocol provides a tracking functionality for email messages

between parties. Even if the idea behind the design shows

some interests, this solution seems to have some limitations.

The first limitation is about users privacy. In fact, recalling

our example where an email is sent from A and B, A will

request the notification of receipt from B. But, A also does

not want B to know that he is using this feature. The sec-

ond limitation concerns the timeout feature. MDN is used

to notify the sender about the actions on the receiver side,

that is if the message is displayed, printed, deleted or if the

recipient refuse to proceed the MDN request. But in this

condition, the MDN does not provide a result for the case

in which the message is ignored by the receiver for a certain

time(a timeout parameter). As a third point, MDN mes-

sages could be falcified by bad users to declare false diposi-

tion. Finally, some agents could send massive unsolicitated

MDN messages that could lead to a denial of service attack.

Having exposed the above arguments, this leads in this

current study to design a delivery notification protocol us-

ing the blockchain. Here are our main contributions:

• the design of a Blockchain-based email delivery notifi-

cation protocol

• Ensuring user privacy better than the MDN protocol

• We provide a timeout feature for managing a delay in

message reading

• We garantee using the blockchain payment service that

the notification request is charged for avoiding malicious

behavior by the users

3. Proposed Protocol

3.1 Overview

3.1.1 Protocol Architecture

Fig. 1 shows the operating diagram. The system includes

Computer Security Symposium 2020
26 - 29 October 2020

© 2020 Information Processing Society of Japan －502－

a user interface which is handled by the sender and the re-

ceivers. During its transmission, the email reaches first the

sender’s email (SMTP) server. Then the sender’s SMTP

forwards it to the Internet relay servers until the last one

conveys it to the receiver’s email server. Each server han-

dles the email processes the registration.

Fig. 1: Protocol overview.

3.1.2 Architecture of Smart Contracts

The EmailRegistrationMaster contract orders the

EmailRegistrationFactory contract to create and deploy

the EmailRegistration contract for a designated email.

In this design, an email sent to many recipients is handled

with only one instance of EmailRegistration contract. A

status list is kept for each element of the list of recipients.

The EmailRegistration contract owner field is set to the

sender’s blockchain address.

Fig. 2: Protocol Architecture.

3.2 Assumptions

The sender’s SMTP server, the receivers SMTP servers,

and at least one of the intermediate relay servers have the

capability to speak the current protocol. They have each

a blockchain account. Relay servers unable to speak the

protocol will ignore the related feature. The sender’s email

server’s blockchain address is known by sender’s client. The

following provides a detailed description of the diagram on

Fig. 2.

3.3 Initialization and Email Transmission

The sender handles the client to set the parameters values

for the email system and the blockchain contracts.

Step 1: the client creates and deployes the registration

contract through the Master contract which replies with the

address of the registration contract.

Step 2: the client builds the header of the email by in-

cluding the registration contract address and the local ID

generated with the timestamp and a sequence number.

Step 3: the client sends the email to the sender’s email

server. The email header is encrypted with the sender’s

server blockchain address public key. The sender pays the

fee for the registration contract deployment.

3.4 Registration

It is mainly managed in the EmailRegistration con-

tract.

Step 1: the sender’s email server extracts the contract ad-

dress from the email header and uses it to build the regis-

tration transaction. This transaction’s price is calculated in

the protocol, and paid by the server of the sender.

Step 2: using the transaction ID, the contract sends the

payment status to the sender’s client who reimburses the

server. This cost is finally charged by the server to the

sender.

Step 3: the server updates the header with the new Email-

Registration contract address. After the SMTP QUIT

command between the sender’s server and the relay server,

the sender’s server updates the server list in the Email-

Registration contract with this relay server blockchain and

email addresses. The relay server generates the transaction

and pays the fee. Like in Step 2, the sender receives a

notification of payment to reimburse.

3.5 Receivers Action Tracking

The receiver client downloads the email from its email

server. This email server detects the receivers actions on the

email and sends the notification information to the Email-

Registration contract.

3.6 Email Status Tracking

The sender client receives notifications from the

blockchain about the registration contract and its associ-

ated email. When the receiver does not download the email

for a long time, meaning after an amount of time set as

timeout parameter, the receiver’s email server sends the

status to the registration contract.

4. Implementation

4.1 User Interface

The sender handles the web client to set the values of

his/her blockchain and email addresses along with the re-

ceivers email addresses, the timeout, and the email data.

Like the SMTP protocol, the timeout value can be set less

than ten days. The client sends the email to the sender’s

SMTP server via the SMTP protocol. The receiver also uses

the client to access its mailbox through IMAP or POP pro-

tocol. In addition to calling the smart contracts methods,

the client generate a unique ID for each email.

4.2 Email Server

Procmail is an email processing utility for Unix systems.

－503－

At the MDA (Mail Delivery Agent), Procmail operates be-

fore emails reach the user client. It filters the received emails

and extract in the header the values of the parameters used

to build and send the blockchain transaction EmailRegis-

tration contract address.

4.3 Ethereum Public Blockchain

The Ethereum public blockchain offers an efficient smart

contracts eexecuting for interacting with the client or email

server. Ethereum transactions generated by the sender’s

client or the relay server execute contracts methods and re-

turn values. The protocol calculates the transaction price as

the product of the network gas price and the method’s gas

cost. This transaction is built using the server blockchain

address, along with the contract address, the method, the

values of the method’s parameters and the gas price.

4.4 The Blockchain Smart Contracts

The EmailRegistrationMaster contract keeps a map-

ping of EmailRegistration contract address with this con-

tract owner’s blockchain address. These information are en-

crypted with the owner’s blockchain private key and pro-

vided with that owner’s signature on them. For the registra-

tion, the server sends a request to the EmailRegistration-

Master contract, which forwards it to the EmailRegis-

tration contract. The EmailRegistration contract veri-

fies the existence of the server’s blockchain address in the list

of agents allowed to perform the registration and replies to

the EmailRegistrationMaster contract. This last con-

tract responds with the EmailRegistration address and

the hash of this address both encrypted with the server’s

public key. Then, the server computes this address, accesses

the EmailRegistration contract and performs the regis-

tration.

5. Security Analysis

5.1 Illegitimate registration

The attacker’s wants to intercept the information sent

between two legitimate servers or client and his/her email

server in order to perform false registration and prevent the

legitimate agent (server or user) to register. But, any call

to the EmailRegistration contract requires the caller au-

thenticate through the EmailRegistrationMaster con-

tract. This prevents the illegitimate user from acting.

5.2 Users privacy in the public blockchain

To access the EmailRegistration contract, the relay

server or client must send a request to the EmailRegis-

trationMaster contract. This public contract requires the

user to authenticate as the owner of the EmailRegistra-

tion contract or as a member of the list of servers or clients

allowed to perform a registration. This preserves the privacy

of the sender and the receivers information.

6. Conclusion

The protocol adds registration feature to the current email

system by using the public blockchain. It the sender with

email tracking and status notification of the receiver’s ac-

tions. Moreover, it offers confidentiality, integrity and user

authentication. A future study could consider a third party

through dispute resolving. The email sender pays around 1

USD.

References

[1] P. CUI , J. DIXON, U. GUIN, D. Dimase, “A Blockchain-
Based Framework for Supply Chain Provenance,” 2019 IEEE
vol. 7, pp. 113–125, October 2019.

[2] T. Sanda and H. Inaba, “Proposal of new Authentcation
Method in wi-fi Access using bitcoin 2.0,” 2016 IEEE 5th
Global Conference on Consumer Electronics (GCCE), pp.
459–463, Japan, Sept. 2016.

[3] Ethereum:(online)，available from ⟨http://ethereum.org⟩
(2020.08.17).

[4] Ether price:(online)，available from
⟨https://ethereumprice.org⟩ (2020.08.17).

－504－

